A strong residual sign problem on the thimbles

Jacques Bloch

University of Regensburg

Sign'18 10 – 14 September 201 Bielefeld, Germany

Phase density

- Consider complex action \rightarrow weights $exp(-S_R iS_I) \equiv Re^{i\theta}$
- Density of states method for complex action: consider density $p(\theta)$ in phase quenched partition function (Gocksch, PRL 61 (1988) 2054)
- Thermodynamical observables accessible using derivatives of $\log Z$ with

$$Z = \langle e^{i\theta} \rangle Z_{pq}$$

and

verage phase factor
$$\langle e^{i\theta} \rangle = \int d\theta \, p(\theta) \, e^{i\theta}$$

- $\langle e^{i\theta} \rangle$ is exponentially small in volume for $\mu \neq 0 \rightarrow$ computation plagued by strong sign problem
- Requires very precise knowledge of $p(\theta)$, e.g. from LLR method (Langfeld and Lucini, PRD90 (2014) 094502).

Using a fit Ansatz

- Improve accuracy and stability of integration using fit Ansatz for $p(\theta)$
- Simple example shows that $\langle e^{i\theta} \rangle$ obtained using fit:
 - not accurate when sign problem is strong
 - not stable under slight variations of fit parameters
- Thimble integration: hope to reduce sign problem as magnitude of integrand falls off in Gaussian like manner away from saddle point

Motivation

How can thimble integration yield exponentially small values for $\langle e^{i\theta} \rangle$?

Potential sign problem due to residual phase along the thimble, caused by:

- phase of complex measure along integration path
- the constant phase of the integrand on the thimble.

Phase: intensive vs extensive

- Intensive phase $\theta \in (-\pi, +\pi]$
 - strong sign problem: $p(\theta) \approx$ uniform distribution
 - tiny corrections to uniformity \rightarrow exponentially small value for $\langle e^{i\theta} \rangle \rightarrow$ not measurable accurately
- Extensive phase (*Ejiri et al.*): θ no longer bounded, avoid branch cut discontinuities
 - claim: as $V \nearrow \Rightarrow p(\theta) \sim \text{Gaussian}$

ightarrow use pure Gaussian Ansatz to compute $\langle e^{i heta}
angle$ and perform

phenomenology at nonzero density

- method questioned by *Greensite et al.*: higher order corrections in cumulant expansion, which involve delicate volume cancellations
 → invalidate Gaussian value of ⟨e^{iθ}⟩
- supported by our simple example of Gaussian-like distribution:
 - cumulant expansion converges slowly when sign problem becomes strong
 → higher order terms make ⟨*i^{iθ}*⟩ several orders of magnitudes smaller than
 leading order Gaussian value

Ansatz for phase distribution

• Distribution $p(\theta)$ of extended phase: generically described by exponential of even polynomial in θ (*Greensite et al.*)

Ansatz: simplest extension of Gaussian distribution

$$p(\theta) = N \exp\left[-\frac{\theta^2}{2\sigma^2}\left(1 + a\frac{\theta^2}{\sigma^2}\right)\right]$$

with normalization factor $N = 2\sqrt{a}/(\sigma e^{\kappa} K_{1/4}(\kappa))$, $\kappa = 1/(16a)$, $K_{1/4}$: modified Bessel function of fractional order, and $a \ge 0$.

- Parameters σ and a: unambiguously extracted from $\langle \theta^2 \rangle$ and $\langle \theta^4 \rangle$ measured in phase quenched MC simulations.

Distribution and integrand

- Investigate $\langle e^{i\theta} \rangle$ for small values of *a* where $p(\theta) \sim$ Gaussian
- All results given for $\sigma = 4.2$, without loss of generality. Typical parameter value from RMT simulations with strong sign problem and quasi-normal distribution distribution

0.1

0.08

 $\begin{pmatrix} 0.06\\ \theta \end{pmatrix}_{d}^{0.04}$

0.02

-10 -5

-15

$\langle e^{i heta} angle$ versus a

 $\langle e^{i\theta} \rangle$ as function of *a* for σ = 4.2 from standard quadrature formulas

• for
$$a = 0$$
: Gaussian result $\langle e^{i\theta} \rangle_{\text{Gauss}} = e^{-\sigma^2/2}$

- zero crossing $a_0 \approx 0.00965632$
- a_c : transition from single to double-thimble \rightarrow residual sign problem sets in
- $a \in [0, a_0)$ releventant in physical simulations as $\langle e^{i\theta} \rangle > 0$ but $\propto e^{-V}$

Thimble analysis

Thimble formulation

$$\langle e^{i\theta} \rangle = \int d\theta \, p(\theta) \, e^{i\theta} = \sum_{\mathscr{T} \in \Omega} I_{\mathscr{T}}$$

- Ω: set of relevant thimbles contributing to integral
- thimbles: trajectories of constant phase ϕ through saddle points

Integral on a thimble ${\mathscr T}$

$$I_{\mathcal{T}} = \int_{\mathcal{T}} dz f(z) = \int_{\mathcal{T}} ds f(z(s)) \frac{dz}{ds}$$

- changed variable: real $\theta \rightarrow \text{complex } z$
- parametrized thimble by its arc length s.

Residual phase

- Complex measure along thimble: $dz = ds e^{i\eta(s)}$
 - Phase factor $e^{i\eta(s)}$: Jacobian of arc length parametrization
 - η(s): angle of tangential to the thimble
- Thimbles: trajectories of constant phase $\phi \to f(z(s)) = r(s)e^{i\phi}$ with r(s) = |f(z(s))| such that

$$I_{\mathscr{T}} = \int_{\mathscr{T}} ds \, r(s) \, e^{i(\phi + \eta(s))}$$

 \rightarrow useful form to investigate strong residual sign problem

Interlude: the Gaussian case

Gaussian distribution: thimble for $\langle e^{i\theta} \rangle$ trivially solves sign problem

- single saddle point at $z_0 = i\sigma^2$
- thimble || real axis
- constant phase $\phi = 0$
- oscillating integrand on real axis becomes Gaussian on thimble
- $\langle e^{i\theta} \rangle \propto e^{-V}$ as $f(z_0) \propto e^{-V}$ when path pushed up in $\mathbb C$ plane

No longer true when generalizing phase distribution \rightarrow different thimble mechanism at work close to a_0

Saddle point equation for $p(z) = N \exp \left[-\frac{z^2}{2\sigma^2} \left(1 + a \frac{z^2}{\sigma^2}\right)\right]$

• Rewrite integrand $f(z) = p(z)e^{iz}$ as $e^{-S(z)}$ with complex action:

$$S(z) = \frac{z^2}{2\sigma^2} + \frac{az^4}{2\sigma^4} - iz - \log N$$

• Complex saddle point equation:

$$\frac{\partial S}{\partial z} = \frac{z}{\sigma^2} + \frac{2az^3}{\sigma^4} - i = 0.$$

Rewrite
$$z = it \rightarrow$$
 cubic equation in t

$$t^3 + p t + q = 0$$

with real coefficients:
$$p = -\frac{\sigma^2}{2a}, \quad q = \frac{\sigma^4}{2a}$$

Saddle points: $\Delta \ge 0$

Discriminant

$$\Delta = -4p^3 - 27q^2$$

$$\Delta = 0 \text{ when } a = a_c \text{ with}$$

$$a_c = \frac{2}{27\sigma^2}$$

 $a \leq a_c$: three real roots

$$t_k = 2\sqrt{-\frac{p}{3}}\cos\left[\frac{1}{3}\arccos\left(\frac{3}{2}\frac{q}{p}\sqrt{-\frac{3}{p}}\right) - \frac{2\pi k}{3}\right], \quad k = 0, 1, 2$$

 \rightarrow three saddle points $z_k = it_k$ on imaginary axis

Relevant thimble

Similar to Gaussian case \rightarrow one relevant thimble through saddle point $z_1 = it_1$, constant phase $\phi = 0$

Saddle points: $\Delta < 0$

When $a > a_c$: one real and two complex conjugate solutions

Real solution:

$$t_0 = -2\sqrt{-\frac{p}{3}}\cosh\left(\frac{1}{3}\operatorname{arcosh}\left(-\frac{3}{2}\frac{q}{p}\sqrt{-\frac{3}{p}}\right)\right)$$

Complex conjugate solutions t_±:

$$t_{\pm} = -\frac{t_0}{2} \pm \frac{i}{2}\sqrt{4p + 3t_0^2}.$$

- Saddle points:
 - $z_0 = it_0$ on imaginary axis
 - complex pair $(z, -z^*) = (it_+, it_-)$ left and right of imaginary axis.

Relevant thimbles

- Thimble through imaginary saddle point does not contribute
- Thimble integration given by sum of two thimbles *𝒯*_− and *𝒯*₊ mirrored about imaginary axis, going through (*z*, −*z*^{*}) pair of saddle points.
- Contributions of \mathcal{T}_{-} and \mathcal{T}_{+} are complex conjugate \rightarrow real sum
- $\phi \neq 0 \rightarrow$ possible residual sign problem in integration on each thimble

Table of thimble properties

	а	<i>z</i> ₀	ϕ	$\langle e^{i\theta} \rangle$
Gauss	0	i 17.64	0	1.477×10^{-4}
single-	0.001	i 18.3393	0	1.326×10^{-4}
thimble	0.004	i 23.6046	0	8.698×10^{-5}
double-	0.00425	$\pm 1.66704 + i 26.319$	0.0066	8.318×10^{-5}
thimble	0.009	±9.85516+ <i>i</i> 18.9484	2.098	1.022×10^{-5}
	0.0095	±9.98268+ <i>i</i> 18.5119	2.249	2.439×10^{-6}
	0.00965	$\pm 10.0157 + i18.3875$	2.292	9.869×10^{-8}
	0.009656	$\pm 10.0170 + i18.3826$	2.293	5.022×10^{-9}
	0.0096563	$\pm 10.0171 + i18.3824$	2.293	3.383×10^{-10}
	0.00965632	$\pm 10.0171 + i18.3824$	2.293	2.610×10^{-11}

Summary of thimble properties for $\sigma = 4.2$

How can exponentially small integral values arise in thimble framework?

Constant phase

• Constant phase along relevant thimbles: $\phi = -S_I(z_0)$, with iS_I imaginary part of action and saddle point z_0 .

At a = a_c: transition from single-thimble mode with φ = 0
 → double-thimble mode with φ ≠ 0

$a \leq a_c - \text{single-thimble}$

- Constant phase $\phi = 0$
- Small variation of phase $\eta(s) \rightarrow \cos \eta(s) \approx 1$

 \rightarrow no sign problem

$a \approx a_c$ – Transition single to double-thimble

- Transition between single and double-thimble regions at $a_c \approx 0.0042$
- $a \rightarrow a_c$ from below: two purely imaginary saddle points move toward each other and merge when $a = a_c$
- a > a_c: saddle points move apart as (z, -z*) pair left and right of imaginary axis
- two mirrored thimbles \mathscr{T}_{-} and \mathscr{T}_{+} with complex conjugate contributions
- Constant phase $\phi = 0.0066$

A strong residual sign problem on the thimbles

Transition single to double-thimble

- $a \le a_c$ region smoothly connects to $a > a_c$ region:
 - single thimble splits in two mirrored thimbles
 - almost vertical for $s < 0 \rightarrow \eta(s < 0) \approx \pm \pi/2$
 - $\phi = \pm 0.0066$.
 - $\rightarrow \cos(\phi + \eta(s)) \approx 0$ for s < 0
- Gaussian-like curve on \mathscr{T} for $a \lessapprox a_c \to \text{sum of two half-Gaussians, on } \mathscr{T}_-$ and \mathscr{T}_+ for $a \gtrapprox a_c$

$a_c < a < a_0$ – double-thimble

• Zoom in on $a \in [0.009, a_0]$, with $a_0 \approx 0.00965632$.

Jacques Bloch

A strong residual sign problem on the thimbles

Residual sign problem

Integrand: $r(s)\cos(\phi + \eta(s))$

- η varies with *s* along thimble; but insensitive to small changes of *a*
- Increasing a from $a_c \rightarrow a_0$: constant phase ϕ on \mathscr{T}_+ increases from $\phi = 0 \rightarrow \phi \approx 2.3$
- Total phase φ + η(s): intersection with π/2 shifts towards saddle point
 → integrand oscillates → strong residual sign problem

$\rightarrow \langle e^{i\theta} \rangle$ many orders of magnitude smaller than Gaussian value

Summary

Result:

а	0	0.009	0.0095	0.00965	0.00965632
$\langle e^{i\theta} \rangle$	1.5×10^{-4}	$1.0 imes 10^{-5}$	2.4×10^{-6}	9.9×10^{-8}	2.6×10^{-11}

- Exponentially small $\langle e^{i\theta} \rangle$ obtained at cost of strong residual sign problem in thimble integration
- Problem related with existence of a zero crossing in $\langle e^{i\theta} \rangle$ versus a
- No cancellations between thimbles with different phases ϕ
- Strong sign problem occurs inside one thimble when $\phi \neq 0$ conspires with phase of Jacobian
- Situation is physically relevant as
 - $\langle e^{i\theta} \rangle > 0$ and $\propto e^{-V}$ for physical systems with complex action
 - distribution and parameter values σ and a obtained from MC simulations of RMT at nonzero chemical potential
- Binder cumulant very close to 3 \rightarrow no indication that $\langle e^{i\theta} \rangle$ takes its Gaussian value