# Lattice gravity

Jan Ambjørn<sup>1</sup>

<sup>1</sup>Niels Bohr Institute, Copenhagen, Denmark

Lectures, Strongnet, Bielefeld, June 15-16, 2011

# 4d QG regularized by CDT

#### Main goal (at least in 80ties) for QG

- ullet Obtain the background geometry ( $\langle g_{\mu
  u}
  angle$ ) we observe
- Study the fluctuations around the background geometry

### What lattice gravity (CDT) offers:

- A non-perturbative QFT definition of QG
- A background independent formulation
- ullet An emergent background geometry ( $\langle g_{\mu
  u}
  angle$ )
- The possibility to study the quantum fluctuations around this emergent background geometry.



## Problems to confront for a lattice theory

- (1) How to face the non-renormalizability of quantum gravity (this is a problem for any field theory of quantum gravity, not only lattice theories)
- (2) Provide evidence of a continuum limit (where the continuum field theory has the desired properties)
- (3) If rotation is performed to Euclidean signature, how does one deal with the unboundedness of the Euclidean Einstein-Hilbert action?
- (4) If there exists no continuum field theory of gravity, can a lattice theory be of any use?

# (1) Facing the non-renormalizability of gravity

#### Effective QFT of gravity

We believe gravity exists as an effective QFT for  $E^2 \ll 1/G$ .

True for other non-renormalizable theories

Weak interactions 
$$\mathcal{L} = \bar{\psi}\partial\psi + G_F\bar{\psi}(\cdot)\psi\bar{\psi}(\cdot)\psi$$

Nonlinear sigma model 
$$\mathcal{L} = (\partial \pi)^2 + \frac{1}{F_{\pi}^2} \frac{(\pi \partial \pi)^2}{1 - \pi^2 / F_{\pi}^2}$$

Good for  $E^2 \ll 1/G_F$  and  $E^2 \ll F_{\pi}^2$ .



#### **Effective QFT of gravity**

Lowest order quantum correction to the gravitational potential of a point particle:

$$\frac{G}{r} \rightarrow \frac{G(r)}{r}, \quad G(r) = G\left(1 - \omega \frac{G}{r^2} + \cdots\right), \quad \omega = \frac{167}{30\pi}.$$

The gravitational coupling constant becomes scale dependent and transferring from distance to energy we have

$$G(E) = G(1 - \omega GE^2 + \cdots) \approx \frac{G}{1 + \omega GE^2}.$$



#### Effective QFT of the electric charge

Same calculation in QED

$$\frac{e^2}{r} \to \frac{e^2(r)}{r}, \quad e^2(r) = e^2 \left( 1 - \frac{e^2}{6\pi^2} \ln(m\,r) + \cdots \right), \quad m\,r \ll 1.$$

The electric charge is also scale dependent and has a Landau pole

$$e^2(E) = e^2\left(1 + \frac{e^2}{6\pi^2}\ln(E/m) + \cdots\right) \approx \frac{e^2}{1 - \frac{e^2}{6\pi^2}\ln(E/m)}.$$

$$GE^2 \ll 1 \rightarrow G(E)E^2 \ll 1$$

BUT

$$G(E)E^2 < 1 \ (\ll 1 ?).$$

Suddenly seems as if quantum gravity has become an (almost) reliable quantum theory at all energy scales.

The behavior can be described the  $\beta$  function for QG. For the dimensionless coupling constant  $\tilde{G}(E) = G(E)E^2$ 

$$E\frac{d\tilde{G}}{dF} = \beta(\tilde{G}), \quad \beta(\tilde{G}) = 2\tilde{G} - 2\omega\tilde{G}^2.$$

Two fixed points  $(\beta(\tilde{G}) = 0)$ :  $\tilde{G} = 0$  and  $\tilde{G} = 1/\omega$ .





Generic situation for asymptotic free theories in d dimensions, extended to  $d + \varepsilon$  dimensions.

$$\beta(g) \rightarrow \varepsilon g + \beta(g)$$

The four-Fermi action, the nonlinear sigma model and QG are all renormalizable theories in 2d, with a negative  $\beta$ -function and have a  $2 + \varepsilon$  expansion. For QG first explored by Kawai et al.

Alternatively one can use the exact renormalization group approach. (Reuter et al., Litim, .....). Philosophy: asymptotic safety (Weinberg).



# (2) Continuum limit?



### Defining the continuum limit in lattice field theory

Let the lattice coordinate be  $x_n = a n$ , a being the lattice spacing and  $\mathcal{O}(x_n)$  an observable.

$$-\log\langle\mathcal{O}(x_n)\mathcal{O}(x_m)
angle\sim |n-m|/\xi(g_0)+o(|n-m|).$$
  $\xi(g_0)\propto rac{1}{|g_0-g_0^c|^
u}, \qquad \boxed{a(g_0)\propto |g_0-g_0^c|^
u}.$ 

 $\langle \mathcal{O}(\mathbf{x}_n)\mathcal{O}(\mathbf{y}_m)\rangle$  falls off exponentially like  $\mathrm{e}^{-m_{ph}|\mathbf{x}_n-\mathbf{y}_m|}$  for  $g_0\to g_0^c$  when  $|\mathbf{x}_n-\mathbf{y}_m|$ , but not |n-m|, is kept fixed in the limit  $g_0\to g_0^c$ .

 $m_{ph}a(g_0) = 1/\xi(g_0), \quad e^{-|n-m|/\xi(g_0)} = e^{-m_{ph}|x_n - x_m|}$ 

How to define the equivalent of  $\langle \mathcal{O}(x_n)\mathcal{O}(y_m)\rangle$  in a diffeomorphism invariant theory

$$\langle \phi \phi(R) \rangle \equiv \int \mathcal{D}[g_{\mu\nu}] \, \mathrm{e}^{-\mathrm{S}[g_{\mu\nu}]} \times \\ \iint \sqrt{g(x)} \sqrt{g(y)} \, \langle \phi(x) \phi(y) \rangle_{matter}^{[g_{\mu\nu}]} \, \delta(R - d_{g_{\mu\nu}}(x,y)).$$

 $\langle \phi(x)\phi(y)\rangle_{matter}^{[g_{\mu\nu}]}$  denotes the correlator of the matter fields calculated for a fixed geometry, defined by the metric  $g_{\mu\nu}(x)$ .

It works in 2d Euclidean QG (Liouville gravity)



## (3) Unboundedness of the Euclidean action

Already the discussion about continuum limit of the lattice theories hinted a rotation to Euclidean signature. The Einstein-Hilbert action is unbounded from below, caused by the conformal factor:

$$ilde{g}_{\mu
u}=\Omega^2 g_{\mu
u}$$

$$S[g, \Lambda, G] = -\frac{1}{16\pi G} \int d^4\xi \sqrt{g} \Big(R - 2\Lambda\Big).$$

$$S[\tilde{g}, \Lambda, G] = -\frac{1}{16\pi G} \int d^4 \xi \sqrt{g} \Big( \Omega^2 R + 6 \partial^\mu \Omega \partial_\mu \Omega - 2 \Lambda \Omega^4 \Big).$$

How is this dealt with?



Using the lattice regularization called dynamical triangulations (DT) the Euclidean action is bounded for a fixed lattice spacing a and a fixed four-volume  $V_4 = N_4 a^4$ . However, for  $a \to 0$  the unboundedness re-emerges.

$$S[T] = -\kappa_2 N_2(T) + \kappa_4 N_4(T), \quad c_1 < \frac{N_2}{N_4} \ (= x) < c_2.$$

The unbounded configurations corresponds to  $x \approx c_2$ . But are they important in the non-perturbative path integral?

$$Z = \sum_{T} e^{-S[T]} = \sum_{N_4} e^{-k_4 N_4} \sum_{N_2} \mathcal{N}(N_2, N_4) e^{\kappa_2 N_2}$$

$$\mathcal{N}(N_2,N_4) \; \mathrm{e}^{\kappa_2 N_2} = P_{N_4}(x), \quad \sum_x P_{N_4}(x) = f(N_4) \; \mathrm{e}^{\kappa_4^c(\kappa_2)N_4}$$







$$\begin{split} P_{N_4}(x) &\approx A \, e^{N_4 \left(\kappa_4^c - \alpha (x - x_0)^2\right)} + \tilde{A} \, e^{N_4 \left(\tilde{\kappa}_4^c - \tilde{\alpha} (x - \tilde{x_0})^2\right)}. \\ k_2 &\to \kappa_2 + \Delta \kappa_2, \quad \kappa_4^c \to k_4^c + \Delta \kappa_2 x_0, \quad \tilde{\kappa}_4^c \to \tilde{k}_4^c + \Delta \kappa_2 \tilde{x}_0 \end{split}$$

Phase transition when  $\kappa_4^c = \tilde{\kappa}_4^c$ .



#### The A-C transition



Do we know examples of such entropy driven phase transitions? Yes, the Kosterlitz-Thouless transition in the XY model. This Abelian 2d spin model has vortices with energy

$$E = \kappa \ln(R/a)$$

Saturating the partition function by single vortex configurations:

$$Z \equiv e^{-F/k_BT} = \sum_{\text{spin configurations}} e^{-E[\text{spin}]/k_BT} \approx \left(\frac{R}{a}\right)^2 e^{-[\kappa \ln(R/a)]/k_BT}.$$

 $S = k_B \ln(\text{number of configurations})$  has the same functional form as the vortex energy. Thus

$$F = E - ST = (\kappa - 2k_BT)\ln(R/a)$$



### **Examples**

- Lattice compact U(1) gauge theory in 3 dimensions has confinement for all values of the coupling constant, due to lattice monopoles. It describes perfectly the non-perturbative physics of the Georgi-Glashow model, i.e. the physics below the scale of Higgs and the W-particle. The formula for the string tension is the same expressed in terms of lattice monopoles masses and continuum monopole masses.
- Lattice compact U(1) gauge theory in 4 dimensions at the phase transition point describes the low energy physics of certain broken  $\mathcal{N}=1,2$  supersymmetric field theories. In fact, one can use the supersymmetric symmetry breaking technology of Seiberg et al. scale matching to "post-dict" (unfortunately) the lattice critical exponents.

# Lattice gravity: causal dynamical triangulations (CDT)

#### Basic tool: The path integral

Text-book example: non-relativistic particle in one dimension.



$$x(t) = \langle x(t) \rangle + y(t)$$
  
 $\langle |y| \rangle \propto \sqrt{\hbar/m\omega}$ 

In QG we want 
$$\langle x(t) 
angle$$
  $\langle |y| 
angle \propto \sqrt{\hbar G}$ 

Transition amplitude as a weighted sum over all possible trajectories. On the plot: time is discretized in steps *a*, trajectories are piecewise linear.



In a continuum limit  $a \rightarrow 0$ 

$$G(\mathbf{x}_{\mathrm{i}}, \mathbf{x}_{\mathrm{f}}, t) := \int_{\mathrm{trajectories:} \, \mathbf{x}_{\mathrm{i}} \to \mathbf{x}_{\mathrm{f}}} \mathrm{e}^{iS[\mathbf{x}(t)]}$$

where  $S[\mathbf{x}(t)]$  is a classical action.

The QG amplitude between the two geometric states

$$egin{aligned} G(\mathbf{g}_{\mathrm{i}},\mathbf{g}_{\mathrm{f}},t) := \int \int \mathrm{e}^{iS[\mathbf{g}_{\mu
u}(t')]} \mathrm{e}^{iS[\mathbf{g}_{\mu
u}(t')]} \end{aligned}$$

To define this path integral we need a geometric cut-off *a* and a definition of the class of geometries entering.

## showcasing piecewise linear geometries via building blocks:



Piecewise linear geometry is defined without coordinates











CDT slicing in proper time. Topology of space preserved.

$$a_t^2 = -\alpha a_s^2, \quad iS_L[\alpha] = -S_E[-\alpha]$$

$$S_{E}[-\alpha] = -(\kappa_{0} + 6\Delta)N_{0} + \kappa_{4} \left(N_{4}^{(2,3)} + N_{4}^{(1,4)}\right) + \Delta \left(N_{4}^{(2,3)} + 2N_{4}^{(1,4)}\right)$$

### The way this comes about:

$$S_{E}(\Lambda,G) = -\frac{1}{16\pi Ga^{2}} \sum_{\sigma^{d-2} \in T_{d-2}} \left( 2\varepsilon_{\sigma^{d-2}} \ V_{\sigma^{d-2}} - 2\Lambda \ V(\sigma^{d-2}) \right),$$

Introducing dimensionless quantities:

$$\mathcal{V}(\sigma^{d-2}) = a^{-d}V(\sigma^{d-2}), \quad \mathcal{V}_{\sigma^{d-2}}a^{2-d}, \quad \kappa = \frac{a^{d-2}}{16\pi G}, \quad \lambda = \frac{2\Lambda a^d}{16\pi G},$$

and the action becomes

$$S_{E}(\lambda,\kappa;T) = -\sum_{\sigma^{d-2} \in T_{d-2}} \left( \kappa \ 2\varepsilon_{\sigma^{d-2}} \ \mathcal{V}_{\sigma^{d-2}} - \lambda \ \mathcal{V}(\sigma^{d-2}) \right)$$

Using building blocks the action can be expressed in terms of the number of building blocks (and the number of subsimplices)

$$G(\mathbf{g}_{i}, \mathbf{g}_{f}, t) := \int_{\text{geometries: } \mathbf{g}_{i} \to \mathbf{g}_{f}} e^{iS[\mathbf{g}_{\mu\nu}(t')]}$$

$$= \lim_{a \to 0} \sum_{T: T_{i}^{(3)} \to T_{f}^{(3)}} \frac{1}{C_{T}} e^{iS_{T}}$$

$$G_E(\mathbf{g}_i, \mathbf{g}_f, t, \kappa_0, \kappa_4, \Delta) = \lim_{\mathbf{a} \to 0} \sum_{T: T_t^{(3)} \to T_t^{(3)}} \frac{1}{C_T} e^{-S_E[T]}$$

$$\langle x_f | e^{i\hat{H}t} | x_i \rangle \rightarrow \langle x_f | e^{-\hat{H}\tau} | x_i \rangle$$

# Scaling in the IR limit?

$$\label{eq:Z} Z(\kappa_0,\kappa_4) = \sum_{N_4} e^{-\kappa_4 N_4} \; Z_{N_4}(\kappa_0),$$

where  $Z_{N_4}(\kappa_0)$  is the partition function for a fixed number  $N_4$  of four-simplices (we ignore  $\Delta$  for simplicity), namely,

$$Z_{N_4}(\kappa_0) = e^{k_4^c N_4} f(N_4, \kappa_0), \quad Z(\kappa_0, \kappa_4) = \sum_{N_4} e^{-(\kappa_4 - \kappa_4^c) N_4} \ f(N_4, \kappa_0)$$

We want to consider the limit  $N_4 \to \infty$ , and fine-tune  $\kappa_4 \to \kappa_4^c$  for fixed  $\kappa_0$ . We expect the physical cosmological constant  $\Lambda$  to be defined by the approach to the critical point according to

$$\kappa_4 = \kappa_4^c + \frac{\Lambda}{16\pi G} a^4, \quad (\kappa_4 - \kappa_4^c) N_4 = \frac{\Lambda}{16\pi G} V_4, \quad V_4 = N_4 a^4,$$



How can one imagine obtaining an interesting continuum behavior as a function of  $\kappa_0$ ? Assume  $f(N_4, \kappa_0)$  has the form (numerical evidence)

$$f(N_4, \kappa_0) = e^{k_1(\kappa_0)\sqrt{N_4}}, \qquad \left\langle e^{-\frac{1}{G}\int_{V_4}\sqrt{g}R}\right\rangle = e^{c\frac{\sqrt{V_4}}{G}}.$$

$$Z(\kappa_4, \kappa_0) = \sum_{N_4} e^{-(\kappa_4 - \kappa_4^c)N_4 + k_1(\kappa_0)\sqrt{N_4}}.$$

Search for  $\kappa_0^c$  with  $k_1(\kappa_0^c) = 0$ , with the approach to this point governed by

$$k_1(\kappa_0) \propto rac{a^2}{G}$$
, i.e.  $k_1(\kappa_0) \sqrt{N_4} \propto rac{\sqrt{V_4}}{G}$ .  $Z(\kappa_4, \kappa_0) pprox \exp\left(rac{k_1^2(\kappa_0)}{4(\kappa_4 - \kappa_2^2)}
ight) = \exp\left(rac{c}{G\Lambda}
ight)$ ,

as one would naïvely expect from Einstein's equations, with the partition function being dominated by a typical instanton contribution, for a suitable constant *c*.

## **UV** scaling limit?

If we are close to the UV fixed point, we know that G will not be constant when we change scale, but  $\hat{G}(a)$  will. Writing  $G(a) = a^2 \hat{G}(a) \approx a^2 \hat{G}^*$ ,

$$\kappa_4 - \kappa_4^c = rac{\Lambda}{G(a)} a^4 pprox rac{\Lambda}{\hat{G}^*} a^2,$$
  $k_1(\kappa_0^c) = rac{a^2}{G(a)} pprox rac{1}{\hat{G}^*}.$ 

The first of these relations now looks two-dimensional because of the anomalous scaling of G(a)! Nevertheless, the expectation value of the four-volume is still finite:

$$\langle V_4 \rangle = \langle N_4 \rangle \ a^4 \propto rac{\kappa_1^2 (\kappa_0^c)}{(\kappa_4 - \kappa_4^c)^2} \ a^4$$



## Relation to asymptotic freedom

Assume now that we have a fixed point for gravity. The gravitational coupling constant is dimensionful, and we can write for the bare coupling constant

$$G(a) = a^2 \hat{G}(a), \quad a \frac{d\hat{G}}{da} = -\beta(\hat{G}), \quad \beta(\hat{G}) = 2\hat{G} - c\hat{G}^3 + \cdots.$$

The putative non-Gaussian fixed point corresponds to  $\hat{G} \to \hat{G}^*$ , i.e.  $G(a) \to \hat{G}^*a^2$ . In our case it is tempting to identify our dimensionless constant  $k_1$  with  $1/\hat{G}$ , up to the constant of proportionality. Close to the UV fixed point we have

$$\hat{\mathbf{G}}(\mathbf{a}) = \hat{\mathbf{G}}^* - \mathbf{K}\mathbf{a}^{\tilde{\mathbf{c}}}, \quad \mathbf{k}_1 = \mathbf{k}_1^* + \mathbf{K}\mathbf{a}^{\tilde{\mathbf{c}}}, \qquad \tilde{\mathbf{c}} = -\beta'(\hat{\mathbf{G}}^*).$$

Usually one relates the lattice spacing near the fixed point to the bare coupling constants with the help of some correlation length  $\xi$ .





Consider  $V_4 = N_4 a^4$  as fixed. It requires the fine-tuning of coupling constants.

$$k_1(N_4) = k_1^c - \tilde{K}N_4^{-\tilde{c}/4}.$$

How to determine  $k_1(N_4)$ ?



# Phase diagram of CDT



### Lifshitz-like diagram....

Phase C: constant magnetization (constant 4d geometry)

Phase B: zero magnetization (no 4d geometry)

Phase A: oscillating magnetization (conformal mode ?)

## Volume distribution in (imaginary) time



 Phase A. The universe "oscillating" in time direction. The oscillation maybe reflecting the dominance of the conformal mode.

 Phase B. Compactification into a 3d Euclidean DT. Only minimal extension in the time direction.

Phase C. Extended de Sitter phase.
 d<sub>H</sub> = 4.



$$S_{\text{Lifshitz}}[\phi] = \int d^D x \left( \mu_i (\partial_i \phi)^2 + (\Delta \phi)^2 + \dots + \nu \phi^2 + \phi^4 + \dots \right)$$



# Snapshot of a typical configuration



A typical configuration. Distribution of a spatial volume  $N_3(t)$  as a function of (imaginary) time t.

Quantum fluctuation around a semiclassical background?

Configuration consists of a "stalk" of the cut-off size and a "blob". Center of the blob can shift. We fix the "center of mass" to be at zero time.



$$\langle N_3(i) 
angle \propto N_4^{3/4} \cos^3 \left( rac{i}{s_0 N_4^{1/4}} 
ight)$$

## Minisuperspace model

The semiclassical distribution can be obtained from the minisuperspace effective action of Hartle and Hawking

$$S_{ ext{eff}} = rac{1}{24\pi G} \int dt \sqrt{g_{tt}} \left( rac{{g^{tt} \, \dot{V_3}}^2(t)}{V_3(t)} + \emph{k}_2 \, V_3^{1/3}(t) - \lambda \, V_3(t) 
ight),$$

The discretization of this action is (and we have reconstructed it from the date (the 3-volume–3-volume correlations))

$$S_{discr} = k_1 \sum_{i} \left( \frac{(N_3(i+1) - N_3(i))^2}{N_3(i)} + \tilde{k}_2 N_3^{1/3}(i) - \tilde{\lambda} N_3(i) \right),$$

$$G = \frac{a^2}{k_1} \frac{\sqrt{C_4} \ s_0^2}{3\sqrt{6}}.$$



### Quantum fluctuations

The classical solution to the minisuperspace action is

$$\sqrt{g_{tt}} \ V_3^{cl}(t) = V_4 \ \frac{3}{4B} \cos^3\left(\frac{t}{B}\right)$$

where  $\tau = \sqrt{g_{tt}} t$ ,  $V_4 = 8\pi^2 R^4/3$  and  $\sqrt{g_{tt}} = R/B$ .

Writing  $V_3(t) = V_3^{cl}(t) + x(t)$  we can expand the action around this solution

$$S(V_3) = S(V_3^{cl}) + \frac{1}{18\pi G} \frac{B}{V_4} \int dt \ x(t) \hat{H}x(t).$$

where the Hermitian operator  $\hat{H}$  is:

$$\hat{H} = -\frac{\mathrm{d}}{\mathrm{d}t} \frac{1}{\cos^3(t/B)} \frac{\mathrm{d}}{\mathrm{d}t} - \frac{4}{B^2 \cos^5(t/B)},$$



In the quadratic approximation the volume fluctuations are:

$$C(t,t') := \langle x(t)x(t')\rangle \sim \hat{H}^{-1}(t,t').$$

 $\hat{C}$  and  $\hat{H}$  have the same eigenfunctions.

C(t, t') can be measured as

$$C(i,i') = \left\langle \left( N_3(i) - \langle N_3(i) \rangle \right) \left( N_3(i') - \langle N_3(i') \rangle \right) \right\rangle,$$

and its eigenfunctions can be found and compared to the ones calculated from  $\hat{H}$ .



## No parameters are put in! (expect $t_i/B = i/s_0 N_4^{1/4}$ )

We conclude that the quadratic approximation to the minisuperspace action describes the measured quantum fluctuations well.



### Size of our Quantum universe

For a specific value of the bare coupling constants ( $\kappa_0 = 2.2, \Delta = 0.6$ ) we have high-statistics measurements for  $N_4$  ranging from 45.500 to 362.000 four-simplices.

Largest universe corresponds to approx. 10<sup>4</sup> hyper-cubes.

We have  $G = \text{const. } a^2/k_1$  and we have measured  $k_1$ .

$$G \approx 0.23a^2$$
,  $\ell_P \approx 0.48a$ ,  $\ell_P \equiv \sqrt{G}$ .

From  $V_4 = 8\pi^2 R^4/3 = C_4 N_4 a^4$ , we obtain that

$$R = 3.1a$$

The linear size  $\pi R$  of the quantum de Sitter universes studied here lies in the range of 12-21  $\ell_P$  for the  $N_4$  used.



## Trans-Planckian?

$$\ell_P = \sqrt{G} \propto \frac{a}{\sqrt{k_1(\kappa_0, \Delta)}}$$
 i.e.  $k_1(\kappa_0, \Delta) \to 0$ .

#### BUT IS IT POSSIBLE?



# Summary and perspectives

- We have obtained the (Euclidean) minisuperspace action from first principles. (The self-organized de Sitter space)
- We have an effective field theory of (something we call)
   QG down to a few Planck scales.
- Investigate a possible UV fixed point (points, the B-C line).
   Possibly Hořava-Lifshitz gravity.
- couple matter to the system and investigate cosmological implications.
- Measure the wave function of the universe

$$\langle x | e^{-t\hat{H}} | y \rangle \rightarrow \Psi_0(y) \Psi_0(x) e^{-tE_0}$$



# Monte Carlo simulations of lattice gravity

$$\begin{split} Z &= \sum_{\phi} \mathrm{e}^{-\mathrm{S}[\phi]}, \\ \langle \mathcal{O}(\phi) \rangle &= Z^{-1} \sum_{\phi} \mathcal{O}(\phi) \; \mathrm{e}^{-\mathrm{S}[\phi]}. \end{split}$$

The purpose of the Monte Carlo simulations is to generate a sequence of statistically independent field configurations  $\phi(n)$ , n = 1, ..., N with the probability distribution

$$P(\phi(n)) = Z^{-1}e^{-S[\phi(n)]}.$$

Then

$$\langle \mathcal{O}(\phi)\rangle_N = \frac{1}{N} \sum_{n=1}^N \mathcal{O}(\phi(n)).$$

serves as an estimator of the expectation value and one has

$$\langle \mathcal{O}(\phi) \rangle_{N} \to \langle \mathcal{O}(\phi) \rangle$$
 for  $N \to \infty$ .



In a Monte Carlo simulation a change  $\phi \to \phi'$  of the field configuration is usually generated by a stochastic process  $\mathcal{T}$ , a Markow chain. The field will perform a random walk in the space of field configurations with a transition function, or transition probability,  $\mathcal{T}(\phi \to \phi')$ . Thus, if we after a certain number n of steps (changes of the field configuration) have arrived at a field configuration  $\phi(n)$ ,  $\mathcal{T}(\phi(n) \to \phi(n+1))$  is the probability of changing  $\phi(n)$  to  $\phi(n+1)$  in the next step. We have

$$\sum_{\phi'} \mathcal{T}(\phi \to \phi') = 1 \quad \text{for all } \phi.$$

The transition probability should be chosen such that

- (i) Any field configuration  $\phi$  can be reached in a finite number of steps ( ergodicity)
- (ii) The probability distribution of field configurations converges, as the number of steps goes to infinity, to the Boltzmann distribution.

The convergence of the Markov chain is usually ensured by choosing  $\mathcal T$  to satisfy the so-called rule of detailed balance

$$P(\phi)~\mathcal{T}(\phi o\phi')=P(\phi')\mathcal{T}(\phi' o\phi).$$
 Thus  $\mathcal{T}(\phi o\phi')=\mathcal{T}(\phi' o\phi)=0$  or

$$\frac{\mathcal{T}(\phi \to \phi')}{\mathcal{T}(\phi' \to \phi)} = \frac{P(\phi')}{P(\phi)}.$$



Usually decomposes the transition probability  $\mathcal{T}(\phi \to \phi')$  into a selection probability  $g(\phi \to \phi')$  and an acceptance ratio  $A(\phi \to \phi')$ . We then have:

$$\frac{P(\phi')}{P(\phi)} = \frac{T(\phi \to \phi')}{T(\phi' \to \phi)} = \frac{g(\phi \to \phi')A(\phi \to \phi')}{g(\phi' \to \phi)A(\phi' \to \phi)}.$$

The selection probability  $g(\phi \to \phi')$  is now designed to select the configurations  $\phi, \phi'$  where  $\mathcal{T}(\phi \to \phi')$  is different from zero and assign a weight of our own choice to the transition  $\phi \to \phi'$ . The acceptance ratio  $A(\phi \to \phi')$  should then be chosen to ensure detailed balance. A general choice, used in many Monte Carlo simulations, is the so-called Metropolis algorithm:

$$\begin{split} & \textit{A}(\phi \rightarrow \phi') &= & \min \Big(1, \frac{g(\phi' \rightarrow \phi)}{g(\phi \rightarrow \phi')} \, \frac{P(\phi')}{P(\phi)} \Big), \\ & \textit{A}(\phi' \rightarrow \phi) &= & \min \Big(1, \frac{g(\phi \rightarrow \phi')}{g(\phi' \rightarrow \phi)} \frac{P(\phi)}{P(\phi')} \Big). \end{split}$$

# DT and CDT implenetation of MC

Unlabeled versus labeled triangulations:

$$Z = \sum_{T} \frac{1}{C(T)} e^{-S(T)} = \sum_{T_{I}} \frac{1}{N_{0}(T_{I})!} e^{-S(T_{I})}$$

Two labeled triangulations will be identical if a mapping (a relabeling)  $i \to \sigma(i)$  maps neighbors to neighbors.

In the computer we use labeled triangulations.

We fix topology. We need moves to get ergodically arround in the class of *d*-dimensions triangulations of a fixed topology. A minimal set of moves are the Pachner moves. (here for CDT in the case of three dimensions)











In 2d  $\int \sqrt{g}R = 2\pi\chi$ , i.e. a topological invariant for fixed topology. Thus  $S[T] = \lambda N_2(T) = \lambda (2N_0 - \chi)$ , and

$$P(T) = \frac{1}{Z} \frac{1}{N_0(T)!} e^{-2\lambda N_0(T)}.$$



The (2,4) move: If the old vertices are labeled from 1 to  $N_0$ , we assign the label  $N_0 + 1$  to the new vertex (and new links and new triangles are defined by pairs and triples of vertex labels, the triples also defining the correct orientation). Given the labeled triangulation  $T_{N_0}$  we can in this way get to  $N_0$  labeled triangulations  $T_{N_0+1}$  by chosing different vertices and performing the (2,4)-move. We define the selection probability  $g(T_{N_0} \to T_{N_0+1})$  to be the same for all triangulations  $T_{N_0+1}$ which can be reached in this way and to be zero for all other labeled  $T_{N_0+1}$  triangulations. Thus for the labeled triangulations which can be reached we have:

$$g(T_{N_0} \to T_{N_0+1}) = \frac{1}{N_0},$$

and we implement this in the computer program by choosing randomly with uniform probability a vertex in  $T_{N_0}$ .



The (4,2) move: Given a labeled triangulation  $T_{N_0+1}$  we perform the inverse move by the following procedure: we select the vertex labeled  $N_0+1$ . Let us assume it is of order 4. Then we delete it from the list, in this way creating a labeled triangulation  $T_{N_0}$ . If the vertex labeled  $N_0+1$  is not of order 4 we do not perform the move. Thus, for the triangulations  $T_{N_0+1}$  where the move can be performed we can only reach one triangulation  $T_{N_0}$  and the selection probability  $g(T_{N_0+1} \to T_{N_0})$  defined by this procedure is one.

Finally we choose the acceptance ratios  $A(T \to T')$  in accordance with the Metropolis algorithm

$$A(T_{N_0} \to T_{N_0+1}) = \min\left(1, \frac{N_0}{N_0+1} e^{-2\lambda}\right),$$
  
 $A(T_{N_0+1} \to T_{N_0}) = \min\left(1, \frac{N_0+1}{N_0} e^{2\lambda}\right).$ 

#### Data structure: natural pointer oriented

Label the vertices of (a 2d) triangulation by i, i = 1, ..., n. Denote the neighbors to vertex i by k(i, m), m = 1, ..., o(i), ordered cyclicly in accordance with the orientation, and where o(i) denotes the order of vertex i



