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Outline Variational Method Distillation LMA Stochastic estimates Variance reduction One-end-trick Grid noise Outlook

Part I: introduction and basic methods

Motivation

Two point functions

Some group theory

Smearing

Generalized eigenvalue/variational method

“Distillation”

Part II: all-to-all and stochastic methods

Low mode averaging

Stochastic all-to-all methods

Variance reduction techniques

The one-end-trick

Thinning the estimates: grid noise and distillation

Many examples and more details by Christian Lang and David Richards!
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Correlation matrices

We consider a correlation matrix,

Dĳ(t) = 〈Oi(t)O
†
j (0)〉 , i , j ∈ {1, 2, . . . ,M} ,

between states created by different (non-orthogonal) operators Ô
†
j (e.g.

different numbers of smearing iterations).
D should be Hermitian (usually symmetric) and positive definite for any
t ≥ tmin (that depends on the action and operator).
The error may be smaller for elements with more source smearing. So
substituting the upper off-diagonal triangle by the lower one may be better
than averaging or doing nothing.
There can be sign problems that are related to the use of q̄ = q†γ4 instead
of the Euclidean q†. For instance in Chroma the signs of mesonic
correlation matrix colums j need to be flipped whenever Ôj contains a Γ
with the property, Γ†γ4 = +γ4Γ. This is e.g. the case for Γ = 1.
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Following M Lüscher, U Wolff, NPB 339 (90) 222; ALPHA: B Blossier

et al, JHEP 0904 (09) 094, we define,

C(t) = D−
1
2 (t0)D(t + t0)D

− 1
2 (t0) .

This symmetric definition ensures orthogonality of the eigenvectors |ψn(t)〉:

C(t)|ψn(t)〉 = λn(t)|ψn(t)〉 ,

where we order λ1(t) > λ2(t) > · · · > λM(t) > 0 at large t. To ensure
consistency over jacknifes/bootstraps, the eigenvectors should be
monitored as well.
Note that, C(0) = 1: now everything in the eigenbasis of D(t0).
Also note that the original non-symmetrized definition of C Michael,

NPB 259 (85) 58 yields the same eigenvalues (but different eigenvectors

|φn(t)〉 = D−
1
2 (t0)|ψn(t)〉):

D−1(t0)D(t + t0)|φn(t)〉 = λn(t)|φn(t)〉 .
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Effective masses

Generalized effective masses can now be defined as,

Eeff,n(t) = −a−1 ln
λn(t)

λn(t + a)
t→∞−→ En .

These also depend on t0 and this should be varied.

If t0 is too small then states with energies larger than EM will considerably
contribute and in particular excitations with small gaps relative to EM+1

will need a larger time distance t to plateau.

If t0 is too big then the Mth state may have decayed within statistical
errors and the rank of D(t0) may not be maximal, resulting in numerical
problems. In this case the basis may need some pruning (or statistics can
be increased).
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Example for effective masses

Charmonia: a−1 ≈ 1.73 GeV, C Ehmann, GB
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Optimized smearing functions (Coulomb gauge)

1S
2S 3S
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The Gauss-Wuppertal/Jacobi smearing operator can be written as,

Φ(n) ≈
(

eκ∆t∇2
)n

.

∇2 is a scalar, Hermitian, translationally invariant, gauge covariant
operator. It contains smeared transporters U.
Define eigenvectors of ∇2 at a fixed timeslice, |v i〉 ∈ CV3Nc :

∇2|v i〉 = ω2
i |v i〉 , 〈v i |v j〉 = δĳ , v i

x,a = 〈x, a|v i 〉 .

From this we can define a projector onto the “LapH” subspace
HSP: M Peardon et al, PRD 80 (09) 054506 of the timeslice,

△ =
∑

i

|v i〉〈v i | θ(σ2 − ω2
i ) , △xy

ab =
∑

i

v i†
x,av i

y,b θ(σ
2 − ω2

i ) ,

where (obviously) △2 = △. σ cuts out all eigenvectors with eigenvalues
ωi > σ. The number of remaining eigenvalues M(σ)≪ V3Nc scales at
fixed σ2 ≈ 1/3 with V3 = L3

s .
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The “wavefunction”
Ψ(r) =

√

Tr (△0r△r0)

(averaging the zero point over all lattice points) approaches the δ-function
for M → L3

s Nc (Distillation becomes a basis transformation).
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Mesonic two point functions

Destruction operator:

Ôp =
∑

x,y,z,w

e−ipxq̄1
x △xy e−ipyΓDyz

︸ ︷︷ ︸

Ayz

△zwq2
w

where we have suppressed colour and spin indices and A depends on p, Γ

and D. △ depends on M. Correlation function (We allow for ˆ̃
O 6= Ô):

C(t) = 〈Õ(t)O†(0)〉
= ±
〈

q̄2(t)△ (t)Ã(t)△ (t)q1(t)q̄1(0)△ (0)A†(0)△ (0)q2(0)
〉

= ±
∑

i ,j,k,ℓ

〈

〈q̄2(t)|v i(t)〉Ãĳ (t)〈v j(t)|q1(t)〉

× 〈q̄1(0)|vk(0)〉Ã†kℓ(0)〈v ℓ(0)|q2(t)〉
〉

,

where Ãĳ(t) = 〈v i(t)|Ã(t)|v j(t)〉 and A
†
kℓ(0)〈vk(0)|A†(0)|v ℓ(0)〉 also

depend on (not displayed) spinor indices.
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This can now be factorized,

C(t) = ∓
〈

Ã ĳ
αγ(t)A

†kℓ
βδ(0)〈v j (t)|S1(t|0)αβ |vk(0)〉〈v ℓ(0)|S2(0|t)γδ |v i(t)〉

〉

U

= ∓
〈

Ã ĳ
αγ(t)A

†kℓ
βδ(0) τ (1)(t|0) jk

αβ τ
(2)(0|t) ℓiγδ

〉

U
,

where the generalized propagators (“preambulators”),

τ (n)(t|0) =
(

〈v i(t)|Sn(t|0)|v j(0)〉
)

,

are LapH ⊗ spin (4M × 4M) matrices that can be obtained by inverting
the Dirac operator on all |v j(0)〉 (times the four different source spin-δs),
and contracting the resulting propagators at the sink with 〈v i(t)|: the
colour times position indices are replaced by LapH indices i and j .
Note that the computation of the antiquark perambulator,

τ(0|t)ĳ = 〈v i(t)|γ5Sn(t|0)γ5|v j(0)〉 = γ5〈v i(t)|Sn(t|0)|v j (0)〉γ5

does not require any additional solves, due to the γ5-Hermiticity.
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Summary of Distillation

This has been generalized to baryons etc. (straight-forward).
This timesliceLapH-to-allLapH method is much more expensive than
the standard point-to-all method. The price for the inversions scales
like VV3 (rather than V ), and for mesonic contractions even like
(VV3)

2.
The Aĳ can be exchanged a posteriori. This will turn the method
competitive when many operators are involved, in particular with
derivatives at the source. Also some source “self-averaging” is built in.
All components within the

∑

ĳkℓ have the quantum numbers of A and
are gauge invariant. So different truncations can be chosen for ĳ and
kℓ (corresponding to different sink/source smearings). See also
C Lang et al, arXiv:1105.5636.
The smearing profiles can also be varied by introducing weight
functions f (ωi) in the contraction of a LapH index i , a possibility that
could be worth exploring.
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Low mode averaging

At light quark masses one may compute eigenvectors to deflate the solver.

Eigenvectors also offer the possibility of low mode averaging (LMA)
T De Grand, S Schäfer CPC 159 (04) 185, L Giusti et al, JHEP 0404

(04) 013.
CLMA(t) = Clow(t) + Cpa(t)− C

pa
low(t) .

Clow: contribution from low eigenmodes of Q = γ5M (Q = Q†), all-to-all,
averaged over the lattice volume.
Cpa: standard point-to-all 2-point function.
C

pa
low: low mode contribution (point-to-all), needs to be subtracted since

this is already included into Cpa.

This does not affect the expectation value but may reduce the error, due
to the self-averaging of the low-mode contribution.

This works well for positive parity baryons and negative parity mesons
GB, L Castagnini, S Collins, PoS (LATTICE2010) 096
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Effective masses

N
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Example: meson

Q|ui〉 = qi |ui〉 , 〈ui |uj〉 = δĳ , qi ∈ R , Q = γ5M .

This means that,

Q =
12V∑

i=1

1

qi

|ui〉〈ui | .

We need to truncate: i ∈ {1, 2, . . . ,m} where m ∝ V . So the number of
operations increases ∝ V 2.
The eigenvectors have position, spin and colour components:
ui(x)αa = 〈x , α, a|ui 〉.

Clow(t) = ±
∑

i ,j

〈

1

qiqj
t〈uj |γ5Γ|ui〉t 0〈ui |γ5Γ|uj〉0

〉

U

,

where the subscripts t denote a projection of the vector onto timeslice t.
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The point-to-all low mode contribution can be obtained using (Note that
ui(x) = 〈x |ui 〉 is a spin-colour vector),

C
pa
low(t) = ±

∑

i ,j

〈

1

qiqj
t〈uj |γ5Γ|ui〉tui(0)†γ5Γuj(0)

〉

U

.

It is straight-forward to add momenta and smearing functions. The latter
however cannot be factorized: unlike the LapH vectors, the eigenvectors
have a colour component.

What about eigenmodes of M?
Left 〈ℓi | and right |r i〉 eigenvectors of an eigenvalue λi ∈ C need to be
distinguished. These fulfill the biorthonormality relations 〈ℓi |r i 〉 = δĳ and
M−1 =

∑

i
1
λi
|r i〉〈ℓi |. Moreover, 〈ri |γ5 and γ5|ℓi〉 are left and right

eigenvectors, respectively, with eigenvalue λ∗i . It turns out that this
converges badly L Castagnini et al, PoS (LATTICE2010) 096: the
dynamics appears to be driven by eigenmodes of the Hermitian Dirac
operator Q.
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Often “all-to-all” is necessary:

nucleon structure:

〈N†(t)|Jµ(t/2)|N(0)〉:
(Example: Jµ = ψ†γµψ)
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Stochastic methods K Bitar et al, NPB 313 (89) 348:

Generate a set of random noise vectors |ηℓ〉, ℓ = 1, . . . , n where

1

n

∑

ℓ

|ηℓ〉〈ηℓ| = |η〉〈η|n = |η〉〈η| = 1+O(1/
√

n) ,

〈η| = O(1/
√

n) .

Often: ηℓ(x)αa ∈ Z = Z2 ⊗ i Z2/
√

2 S Dong, K-F Liu, PLB 328 (94)

130. Other choices: Z = Z2,Z3,U(1),SU(3).
By solving

M|sℓ〉 = |ηℓ〉
for the |sℓ〉 one can construct an unbiased estimate:

M−1
E = |s〉〈η|

= M−1 + M−1 (|η〉〈η| − 1)
︸ ︷︷ ︸

O(1/
√

n)

⇒ n≪ 12V solver applications only !
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On each configuration an estimate AE of A has a stochastic error

∆stochA = O(1/
√

n). We define:

σ2
A,stoch :=

〈(∆stochA)2〉U
N

∝ 1

Nn
for n,N large ,

where N is the number of gauge configurations. The configuration average
〈AE 〉U carries the statistical error σA,gauge:

σ2
A,gauge ≥ σ2

A,stoch .

Both sides scale ∝ 1/N.

σA,gauge ≃ σA,stoch ⇒ increase n.

σA,gauge ≫ σA,stoch ⇒ reduce n and increase N (or the source positions).

The optimal choice depends on the observable A.

Increasing n is usually not the smartest thing to do.

It is better to reduce the coefficient of the 1/
√

n term.
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The stochastic error

[

∆M−1
XZ

]2
:=
[

∆stochM−1
XZ

]2
=
∑

Y

[

M−1 −M−1
E

]

XY

[

M−1 −M−1
E

]†

YZ
,

[

∆M−1
]2

= M−1O [M−1O]† ,
where O = 1− |η〉〈η| = O( 1√

n

)

is an off-diagonal 12V × 12V matrix. [X = (x , αa)]. This means that,
[

∆M−1
XZ

]2
∝ 1

n

∑

Y 6=X ,Z

M−1
XY M

−1†
YZ

[

∆
(

Tr ΓM−1
)]2
∝ 1

n

∑

x ,y

q̄yΓγ5qy q̄xΓγ5qx minus diagonal terms

This is a sum over a mesonic two point function cM(y − x)!
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The stochastic error ∆ Tr ΓM−1 ∝ [(V /n)
∑

y 6=0 c(y)]1/2 (plus non
spin-colour-diagonal terms at y = 0.)

c(y) is the point-point correlation function of ÔM = q̄Γγ5q.

Biggest contributions are from the “neighbourhood”, where c(y) is large.
Intuitively this is clear from M−1

E −M−1 = M−1(|η〉〈η| − 1) but above is
gauge invariant. Exercise: repeat this for a mesonic two-point-function
with and without one-end-trick.

Hopping parameter expansion (HPE)
C Thron et al, PRD 57 (98) 1642; C Michael et al, NPPS 83 (00)

185. For static-light mesons: SESAM: GB et al, PRD 71 (05) 114513.

The first few terms of the hopping parameter expansion of
Tr(ΓM−1) = Tr[Γ(1− κ 6D)−1] vanish identically but still contribute to the
noise. For the Wilson action, Tr(ΓM−1) = Tr(Γκn 6DnM−1), n = 4, 8,
depending on Γ, where estimating the latter yields smaller errors. The
n = 0 term for Γ = 1 can easily be calculated and corrected for.

This only works for ultra-local actions. No Neuberger Fermions!
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Coined “unbiased subtraction method” the first few non-vanishing κ 6D
orders have been calculated analytically for the clover action
M Deka et al, PRD 79 (09) 094502.

Heavy quarks (charm) C Ehmann, GB, PoS (LATTICE2008) 114
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Partitioning S Bernardson et al, CPC 78 (93) 256; J Viehoff et al,

NPPS 63 (98) 269; W Wilcox, arXiv:hep-lat/9911013

(also known as the spin-explicit-method (SEM) or dilution)
Decompose R = volume⊗ colour⊗ spin into np subspaces:

R = ⊕np

j=1Rj .

Set |ηℓ|j〉 to zero outside of the domain Rj .
Calculate restricted solutions,

M|sℓ|j〉 = |ηℓ|j〉 .

Now: M−1
E =

∑

j |s|j〉〈η|j |
This can be used to black out large off-diagonal error terms.

It is sensible to choose the same random vector components within each
subspace (if they have the same dimension). This allows for hand-coding
of, e.g., the spin structure (SEM).
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Often not all columns of M−1 are required (e.g. time partitioning for
3-point functions). Spin partitioning sometimes is justified by the error
reduction. Mostly it does not do any harm either:
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Comparison of partitioning patterns in mesonic three point functions
R Evans, S Collins, GB, PRD 82 (10) 094501.
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The partitioning pattern can be adapted to the problem:

staggered spin dilution (SSD).

There is also the possibility of “recursive noise subtraction” (RNS).

These methods are introduced in C Ehmann, GB, PoS (LATTICE2008) 114.
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Truncated eigenmode approach (TEA) H Neff et al, PRD 64 (01)

114509; GB et al, NPPS 140 (05) 609; PRD 71 (05) 114513; A O’Cais

et al, NPPS 140 (05) 844; CPC 172 (05) 145.

Calculate the m lowest eigenvalues and eigenvectors of Q = γ5M, qi and
|v i〉. Projection operator: P =

m∑

i=1

|v i〉〈v i | .

With
M|sℓ⊥〉 = |ηℓ⊥〉 = γ5 (1− P) γ5|ηℓ〉

one obtains,

M−1
E = |s⊥〉〈η⊥|+

m∑

i=1

|v i〉q−1
i 〈v i |γ5 .

Deflation is included for free and with the CG algorithm, the solution does
not need to be projected back.
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Truncated solver method (TSM) S Collins et al, PoS (LAT2007) 141

Obtain approximate solutions |sℓnt
〉 after nt solver iterations (before

convergence), and estimate the difference stochastically to obtain an
unbiased estimate of M−1:

M−1
E = |snt 〉〈η|n1

+ (|s〉 − |snt 〉)〈η|n2
with n2 ≪ n1 .

n2/n1 can be optimized to minimize the cost for a given error.

Do ∃ other factorizations of M−1 into an
expensive contribution with a small error
and a cheap contribution with a larger er-
ror?

Iterative schemes to fight
√

V /n prob-
lem?
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Reduction of the stochastic error at fixed cost

Results for Tr(ΓM−1) on 1 configuration Sara Collins et al, PoS

(LATTICE2008) 161; CPC 181 (10) 1570:

-4

-2

0

2

4

Γ=1 γ3 γ5 γ1γ2 γ3γ5

Reduction in the error of Tr( ΓM
-1

) for M
PS

=600 MeV
Fixed cost in terms of computer time

-4

-2

0

2

4

Γ=1 γ3 γ5 γ1γ2 γ3γ5

Reduction in the error of Tr( ΓM
-1

) for M
PS

=300 MeV
Fixed cost in terms of computer time

(a) Partitioning, HPE, TSM (b) Partitioning, HPE, eigenmodes, TSM

Significant gain for all Γs.

Using different combinations of methods allows one to obtain similar
gains at different quark masses.
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One-end literature

One-end-trick
M Foster, C Michael, PRD 59 (99) 074503

Spin-explicit OET
C McNeile, C Michael, PRD 73 (06) 074506

Sequential use in 3-point functions
ETMC: S Simula et al, PoS (LAT2007) 371;

UKQCD: P Boyle et al, JHEP 0807 (08) 112;

R Evans et al, PRD 82 (10) 094501

Sequential use in 4-point functions
CP-PACS: S Aoki et al, PRD 76 (07) 094506

OET in baryons
χQCD: A Li et al, PRD 82 (10) 114501;

L Castagnini et al, in preparation
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Define noise ηℓ(x)αa ∈ Z that is zero for any t 6= t0.

1

n

n∑

ℓ=1

|ηℓ〉〈ηℓ| = 1t0
+O
(

1√
n

)

≈
∑

x,α,a

|x , α, a〉〈x , α, a| ,

where x4 = t0. Consider the (not gauge averaged) pion two-point function
(t0 = 0, y = (y, t)),

c(t) =
∑

xy

Tr M−1(y |x)[M−1(x |y)]† ≈ cE (t)

=
∑

y

1

n

n∑

ℓ=1

Tr 〈y |M−1|ηℓ〉〈ηℓ|M−1†|y〉

=
∑

y

1

n

n∑

ℓ=1

Tr 〈y |sℓ〉〈sℓ|y〉 =
∑

y,β,b

1

n

n∑

ℓ=1

|sℓ(y)βb|2,

where M|sℓ〉 = |ηℓ〉. cE (t) differs from c(t) by terms of O(1/
√

n). Since
the noise is unbiased, C(t) = 〈c(t)〉U = 〈cE (t)〉U .
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Without the OET we would have needed two sets of sources |ηℓ1〉 and |ηℓ2〉:

ctrad
E (t) =

∑

y

1

n2

n∑

ℓ,k=1

Tr 〈y |sℓ1〉〈ηℓ1|ηk
2 〉〈sk

2 |y〉

=
∑

y

1

n2

n∑

ℓ,k=1

Tr 〈y |M−1|η1〉〈η1| |η2〉〈η2|M−1†|y〉 .

Each product with |η〉〈η| involves a sum over 12V3 randomly oscillating
components of moduli O(1/

√
n).

This means that the OET error scales ∝
√

V3/n while the traditional error

is ∝
√

V 2
3 /n. Source self-averaging yields a factor ∝ 1/

√
V3.

For baryons the OET error is ∝
√

V 2
3 /n while without the OET (LHPC: R

Edwards et al, PoS (LAT2007) 108) it will scale ∝
√

V 3
3 /n.

NB: the error can be reduced by a constant factor by recycling random
sources: 1

n2

∑n
ℓ,k〈ηℓ1|ηk

2 〉 7→ 1
n(n−1)

∑2n
ℓ 6=k〈ηℓ|ηk〉, {|η〉} = {|η1〉} ∪ {|η2〉}.

J Foley et al, CPC 172 (05)145
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The OET can be made spin-explicit, defining,

ηℓα(x)βa = δαβ η̃
ℓ(x)a ,

where |η̃〉 is a (spin-independent) noise colour vector in the timeslice
t0 = x4. With solutions,

M|sℓΦ,α〉 = Φ|ηℓα〉 and M|sℓΦ,p,α〉 = eipxΦ|ηℓα〉 ,
we can contract,

c
p
Γ,Φ(y) =

∑

x

[M−1Φ](y |x)eipxΓ
[

[ΦM−1](x |y)
]†

≈ 1

n

∑

ℓ,α,β

〈

y |sℓΦ,p,α
〉

Γαβ
〈

sℓΦ,β|y
〉

.

This can now be contracted with e−ipy, smearing and a Γ at the sink and
averaged over gauge configurations.
For each momentum p 6= 0 and each smearing function Φ four solves are
required.
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Summary of OET

|η〉 and |s〉 are temporally separated (less noise).

Only one set of random sources needed, no noise–noise correlations.

Scaling improved by
√

V , relative to the naive method.

Making OET spin-explicit costs a factor four but allows for all 16 Γs.

No t self-averaging.

Loss of generality: for each momentum/smearing new solves are
needed.

Note that there is no use in combining the OET with the HPE.
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The “thinning” idea

The OET error scaling (ignoring the benefit of self-averaging) is ∝
√

V3/n

for mesons and ∝
√

V 2
3 /n for baryons. The V3 factors are due to the

number of non-zero entries of the stochastic noise vectors.

Reducing the number of non-zero entries to M points yields
√

M/n and
√

M2/n behaviour, respectively, while self-averaging (for M not taken

overly small) largely remains unaffected, in particular at light quark
masses. L Castagnini et al, in preparation.

This looks like partitioning, however there is no exponential fall-off with
the distance: only with respect to self-averaging it matters what points are
being selected.

Grid noise was combined with low mode substitution (rather than
averaging) in χQCD: A Li et al, PRD 82 (10) 114501.
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Nucleon effective masses on V = 32364 at equal cost
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Error ratios for the nucleon effective mass
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Noise thinning using LapH basis instead of a regular grid

It seems possible to reduce the computational overhead of the distillation
method by stochastically estimating the preambulators within the LapH
space HSC: C Morningstar et al, arXiv:1104.3870.
Introduce spin-explicit noise vectors in LapH space:

|ηℓα〉 =
M∑

i=1

ηℓi eα|v i(0)〉 ,

where ηℓi ∈ Z , ℓ ∈ {1, . . . , n}, eα is a unit spin vector in direction α and
|v i(0)〉 are LapH basis vectors on timeslice 0.
Now solve,

M|sℓα〉 = |ηℓα〉 .
Estimates of the preambulators are now given by,

τE (t|0) ik
αβ =

1

n

n∑

ℓ=1

〈v i(t)|sℓα〉〈ηℓβ |vk(0)〉 .
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Summary & Outlook

All-to-all methods are needed in particular at small mπ where many
hadrons become unstable and in general isosinglet contributions
should become more important.

Note that OET is a timeslice-to-all, distillation a
timesliceLapH-to-allLapH method.

Combinations of (new?) methods can easily save large factors of
computer time.

Efficient solvers for multiple right hand sides are needed.

Scaling n ∝ V or n ∝ V3: can this be overcome?

The number of low eigenmodes of Q scales like V but 4/mphys
π is

almost 6 fm. Similarly the LapH space can become large for such
volumes. Is there any “inexact” eigen/domain method?
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