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Introduction to GPU Programming
using CUDA




What is a GPU?

® Graphics Processing Unit: rendering of polygons, shading, texturing
That is fun if you like fancy games!

What is more important for us:

» GPGPU: General Purpose Computing on Graphics Processing Units
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* Lots of computing cores with a simpler architecture than cpu cores
* High memory bandwidth > 100GB/s on global device memory

® Cheap (at least the consumer cards)



Theoretical performance and bandwidth — GPU vs CPU

¢ Limitation in Lattice QCD code is usually bandwidth not computations

e.g. Wilson fermion matrix*vector: 1320 flops/site, 1440 bytes/site (32bit)

even 10% of peak is a lot GB/s more important
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Lattice QCD performance — GPU vs CPU
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Wilson fermion matrix*vector 243x N,
SU(3) matrix stored as 8/12 floats
GF = temporal gauge fixing

[M.A.Clark et al., arXiv:0911.3191]
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Speedup compared to single CPU core
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Staggered fermion matrix*vector
SU(3) matrix stored as 18 floats
Compared to Intel single core

[Bielefeld GPU Group]



Drawbacks of GPUs

* GPUs are accelerator cards connected via the PCl-bus
all data needs to be transferred from Host to Device via the bus
* You still need a PC and a CPU that is controlling the program
hybrid programming Ansatz
* Mainly two companies on the market:
NVIDIA AMD/ATI
® You’ll have to rely on their business strategy
* Not a long tradition in high performance computing
programming extensions and tools are still being developed
* Most of the hardware details are not known

sometimes it is a black box and one has to rely on their documentation



CUDA

| will only discuss NVIDIA GPUs and CUDA
Compute Unified Device Architecture
* Extension to C programming language (partly also C++ functionality)
* Host functions to access GPU device from the host, e.g. memcpy, kernel calls
* Thread based model and easy multi-threading for utilizing the multiprocessors

* Hiding latency in memory access with overlapping computations:

GPU - High Throughput Processor Computation Thread

Processing

I Waiting for data

. Ready to be processed

CPU core — Low Latency Processor
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Some Terminology

v Thread: concurrent code executed on the CUDA device (in parallel with others)
a thread is the unit of parallelism in CUDA -> SIMT

v Warp: a group of threads executed physically in parallel (SIMD)

v Thread Block: a group of threads that are executed together

and can share memory on the same multiprocessor

v Grid: a group of thread blocks that are executed logically in parallel

on all available multiprocessor of the CUDA device

v Device: GPU Host: CPU SM: Streaming Multiprocessor



Memory Layout (GT200 architecture)

® Threads within a multiprocessor
can exchange data using

16-64 kB shared memory (+L1 cache)

» Large register file:
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®* Device Memory used by all threads

1.5 GB consumer cards
3/6 GB Tesla cards (with ECC)

®* Memcpy Host <-> Device Memory

with 3 GB/s a bottleneck

Host Memory




Memory Layout (GT200 architecture)

Multiprocessor

Multiprocessor

Multiprocessor
[adEn o B
Eharod Woeriep

* Registers and shared memory

fastest !!! (latency 1 cycle)

® Device Memory:

150-200 GB/s but

shared by all processors

(latency several 100 cycles)

e Transfer from and to host

with 3 GB/s a bottleneck

Memory Location Cached Access | Scope Lifetime
on/off chip

Register om nia =R 1 thread Thread

Local i T RLPW 1 thread Thread

Shared om nia =R all threads in block | Block

Global ot T RLAW all threads + host Host alloecation

Constant off fies R all threads + host Host allocation

Texture off fies R all threads + host Host allocation

FCached only on devices of compute capability 2.x.

e Lifetime of shared mem
only within a block!

Communication between
all threads only
via Global Memory!

® Additional Cache on new GPU models



Memory Layout (GT200 architecture)

* Registers and shared memory
Device Memory

! ! !

fastest !!! (latency 1 cycle)

Multiprocessor 1 | | Multiprocessor 2 Multiprocessor n e DeVice MemOl’y:
Core | | Core Core | | Core Core | | Core
1 2 1 2 1 2
O 150-200 GB/s but
Core Core . Core
p S P shared by all processors
1 I 1 (latency several 100 cycles)
Registers and Registers and Registers and *
Shared Memory | Shared Memory | Shared Memory Transfer from and tO hOSt
with 3 GB/s a bottleneck
Memory | Location | Cached Access | Scope Lifetime * Lifetime of shared mem
on/off chip egp = I
pegier | om — R B Thread only within a block!
Local off T R 1 thread Thread
shared on n'a AW all threads in block | Block Communication between
Global off T R All threads + host, Host allocation a" threads Only
Constant off Ties R All threads + host. Host allocation . GI b | M m I
Texture off Yes R all threads + host Host allocation via oba e Ory.

"Cachad only on devies of compus capeblity 2 » Additional Cache on new GPU models



Fermi Streaming Multiprocessor

® 32 core per SM and up to 16 SMs on one GPU

* 16 Load/Store Units

-> 16 Threads can access memory simultaneous

® Four Special Function Units (sin, cos, sqrt,...)

® Large (shared) Register File

® Dual Warp+Instruction Scheduler

* ECC Memory Support on Tesla

* 64kB configurable shared memory + L1 cache
either 48kB +16kB or 16kB + 48kB

® 515 Gflops double precision (Tesla M2050)

* 1.03 Tflops single precision (Tesla M2050)



Fermi — Memory Layout

® User can decide on the size of Shared Memory vs. L1 Cache

48 kB Shared Memory + 16 kB L1 Cache

16 kB Shared Memory + 48 kB L1 Cache

Fermi Memory Hierarchy
Thread

* 768 kB of L2 Cache
® Device Memory: L2 Cache

1.5 GB on Consumer Cards
F

3/6 GB on Tesla Cards



CUDA basics — memory allocation

* Data needed on the device has to be copied from host

* CUDA provides routines to manage the data transfer host <-> device

® Allocation of memory on the device (in device memory):

Example:

cudaError_t cudaMalloc(void ** devPtr, size t size)

cudaError_t cudaFree(void * devPtr)

size_t size = N * sizeof(float);

float* h A, d_A: /

h_A = (float *) malloc (size);
cudaMalloc (&d_A, size); €<—— cudaMalloc called on the host

h_Ais an array on the host

d_Ais an array on the device

cudaFree(d_A); in the global device memory



CUDA basics — copy data to and from device

® the host process is controlling data transfers
® kernels can only operate on device memory
® copy data between host and device:
cudaError_t cudaMemcpy (void *dst, void *src, size_t count, type of transfer)

(cudaMemcpyHostToDevice / cudaMemcpyDevice ToHost)

Example: 4 cudaMemcpy (d_A, h_a, size, cudaMemcpyHostToDevice)?
......... (do some calculations with d_A on the device) ....

cudaMemcpy (h_a, d_a, size, cudaMemcpyDeviceToHost);

(U




CUDA basics — Kernel

® device kernel code is defined using ___global __ declaration specifier
® device functions are defined using __device _ (host functions using __host_ )
® kernels are called by the host but operate on the device
® each kernel has a unique thread ID (see next page)
* all data used by the kernel must be on the device
i.e. A[ ] and B[ ] are arrays in the global device memory

Example: // Kernel definition — Device code
__global__ vecAdd (const float* A, const float *B, float *C, int N)
{
int i = blockDim.x * blockldx.x + threadldx.x;
if (i<N)
CI[i] = Ali] + BIiJ;



CUDA basics — Thread Hierarchy

® each thread has a unique thread ID (inside a block)

® threadldx is 3-component vector

either one-, two-, or three-dimensional

* maximal number of threads per block: 1024

 large number optimal for performance

Block (1, 1)

 they share registers and shared memory
* 64 or 128 threads usually good balance

® unique ID:

[ blockID.x * blockDim.x + threadld.x]

® #blocks and #threads defined in kernel call

vecAdd <<< numBlocks, threadsPerBlock >>> (A,B,C,N)




CUDA basics — Program flow Host+Device

C Program
Sequential
Execution

Serial cods e j

* control flow of the program is managed by

Parallel kernel Device

serial code on the host Kernelt<<<>>>0 | || grido

* the heavy calculations are performed

on the device

Serial cods= Host
® continuous switching between host+device
Devicea
Parallel kermel
Eernelleces> () Grid 1
® synchronization between kernels important “W“‘ MWW

L)

Serial code executes on e host while parallel code executes on B devics,




CUDA basics — example Vector Addition

/4 Device code
lobal _ vold VechAdd(comst float* A, comnst float* B, float* C, int N)

int 1 = blockDim.x * blockIdx.x + threadIdx.x; <
1if (1 =« W)
c[i] = &a[l] + BI[1];

}

int main{int argc, char*+* argv) <

float *h_a,*h B,*h_C,*h_D;
float *d a,*d B,*d C;

int N = 1000000;
slze t size = N * sizeof({float);

f/ Allocate input wectors h_A and h B in host memory
h & = (float*)mallocisize); <%

S/ Initialize input wectors
RandomInit(h_&, H);
RandomInit(h_B, N);

// Allocate wvectors in device memory

cudaMalloc( (vold**)ed A, size); €

[/ Copy vectors from host memory to device memory
cudaMemcpy (d_2&, h_&a, size, cudaMemcpyHostToDevice); (

cudaMemcpy (d_B, h_B, size, cudaMemcpyHostTcDewlce) ;

[/ Invoke kernel
int threadsPerBlock = 256&;
int blocksPerZrid = (N + threadsPerBlock - 1) / threadsPerBlock;

Vechdd<<<blocksPercrid, threadsPerBlocks==(d &, d B, d C, N); <

[/ copy result from device memory to host memory
J/ h_C contains the result in host memory <

cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceTcHoSE);

[f verify result

// Free device memory
cudaFree(d_A) ;

[/ Free host memory
free(h a);

Kernel (code running on GPU)

Main program running on CPU

Memory allocation on CPU

Memory allocation on GPU

Copy data Host->Device

Start the kernel
Copy data Host->Device



CUDA basics — example Vector Addition

ff Variables /i Fres device me=mory
floac* h A; cudaFre=i{d A];
float* h B; cudaPFre={d B];
g].];a.t: ::E: cudaFree(d C);
ak :
float* d B; f{ Fr== hosk mamory
float* d C; fre= 1]:._;]:
fre=ik B)] :
{f Device cods= fre= ik C];

global  woid Vechdd{ocomet float* A, ocomst floac* B, floac* O, inc H) 1

inmt i = blockDim.x * blockIdt.x + throadldsx.x;

if (i <« H) f# Allocab=s an array with random floak =ntries.
CIi] = A[i]l + BIi]; volid RandomInit{float® dakta, int n)
h
for fint i = 0; i « m; ++1i)
int main{int apgco, char** argv] data[i] = rand{] / {floac)BAMD MAX;
{ } -

int H = EODDODD;
pize t pize = H * pimeocf (floac);

i Allocate input vectors h A and h B in host memory
h i = {floac*jmalloci{siz=]; -

LB = {floac*)mallocipiz=];

E € = {float¥jmallocisiz=];

ff Imitialize impur wectors
RandomIniti(h A, Hi;
RandomInit(h B, H);

ff hllocate weckors in devios me=mory
cudaMal loc{{void**] ed A, sim=];
cudaMal loc{{void**) &d B, sizme];
cudaMal loo{ {woidh ) Eﬂ_C_ im=]:

ff Copy vectors from hosk memory to devics memory

cudaMemepyid A, h A, sizs, cuﬂ.uHm.cpyE:Il:Tqurine]
cu-ﬂnbhncpy#-ﬂ:ﬁ, ]:|.::E.I IiEE, cudaMeamopyBostTolevics]

Fi Imvole kerme=l
int threadsPerBlock = ZEE;
int blocksP=r3rid = (N + thre=adsParBlock - 1] / thr=adsParBlock;

Vechdd« <<blocksPerbrid, thre=adsPerBlocks»»{d A, 4 B, 4 _C, H];

ff Copy result from devwice memory bo host memory
/¥ b C containe the r=rult in host memory

cuﬂnﬂuncpy{h_ﬂ_ d C, spize, cudaMemcpyDewviceToHosk];

S Verify r=oule
EDE: fint i = D; i < H;y ++i]

float sum = h A[i] + h B[i];
if {fabgi{h CTi] - sum] = l=-E]

printf {"Emor o ine: %do”, i)
break;

}




CUDA basics — Error handling

®* most cuda functions return an error code cudaError _t
® return value on successful execution is cudaSuccess
e cudaError_t cudaGetLastError();

returns last error from previous execution

® use simpler interface from ‘cuda_utils.h’
cu_safecall(x); call x and abort program in case of an error
e.g. cu_safecall( cudaMalloc(.....) );
cu_safecall_kernel(x); starts kernel x and check for errors

e.g. cu_safecall_kernel( (my_kernel<<<...>>>(..)));



CUDA basics — Thread/Memory Hierarch

Thread
j - — Perieead > @ Fast data access:
register or shared memory
» ¥ Per-block shared
- E INETHHY
* y and constant+texture memory
Grid 0 * only threads in a block can communicate

using shared memory

* Slow data access:

Global memory global device memory
Block (0, 0) Block (1. D)
® all threads can access all global memory
Blodck (0, 1) Block (1, 1)
i — -
* but threads are usually not synchronized

Block (1, 2)

® no control on the order of execution

> Tipp: reduce multiple access to global memory, use shared memory if possible



CUDA - global /constant/shared memory

* variables declared inside device functions reside in register or global memory
local variables per thread
if no more registers available moved to local memory
(=device memory=slow!!!)
® variables declared as __constant__ (global) are readable by all threads
d

variables

o

eclared as __shared__ reside in shared memory (fast!!!)

local per block > most efficient memory access in a block of threads
as fast as registers (only problem: bank conflicts)

-> used as buffer if data used more than once

-> fast exchange of data between threads in the same block

Example: __global__ kernel (const float* A, int N){

__shared__ float data [size];



CUDA - optimizing global memory access

® coalesced access:
memory access of threads in a warp
can be combined

into one memory transaction

# cache line size on fermi architecture

= 128 bytes (similar behavior as above)

* data should be aligned and
sequentially accessed

- minimal number of memory transactions

Aligned and sequential
Threads:
Compute capability: 1.0and 1.1 | 1.2 and 1.3 2.0
Memory transactions: Uncached Cached
1x 64Bat128 |1x 64Bati128 (1x128Bat 128
1x 64Bat192 |1x 64Bat1952
Aligned and non-sequential
Addresses: 96 128 160 192 224 56 288
iriiggéjjaantéj Tiiiial fiiirr
Threads: 0 31
Compute capability: ibandi.d | 1.2 and 1.3 2.0
Memory transactions: Uncached Cached
Bx 32Bat128 |1x 64Bat128 |1x138Bat128
Bx 32Bat160 |1x 64Bat192
Bx 3ZBar 192
Bx 32Bat224
Misaligned and sequential
Addresses: 96 128 160 192 24 256 288
n s 31
Compute capability: 10and1.1 | 1.2 and 1.3 2.0
Memory transactions: Uncached Cached
Bx 32Bat128 |1x12BBat128 |1 x138Bat 128
Bx 32Bat160 |1x 64Bat192 | 1 x 1388 at 256
Bx 32Bat192 |1x 32Bat 236
Bx 32Bat224

Figure G-1. Examples of Global Memory Accesses by a Warp,
4-Byte Word per Thread, and Associated Memory
Transactions Based on Compute Capability




Threads: Banks: Threads: Banks:
1 e 1] 1 1
3 > 2 2 — 3]
3 m—lp 3 3 3]
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Lift: Linear addressing with a stride of one 32-bit waord (no bank conflict).
Mickdle: Linear addressing with & stride of bwo 32-bit words (2-way benik conflicts),
Right: Linesr addressing with a stride of thres: 32-bit words: (no bank conflict).

Figure 2 Examples of Strided Shared Memory Accesses for
Devices of Compute Capability 2.x

Threads: Banks:
0 ) m— ]
2 2 2
. ol
4 4 - 4
5 5
6 6 6
7 7 7
8 8 e 8
9 9 lr 9
1u"“"'# 10
1] m— 11
1 7 el 12
13 - 13
14}':'*- 14
15—ty 15/
16 M 16
17—t 17
18—l 18
19 T
) el ]
21—l 21
2=t 23 ;
23— 13
24 e 24
2§ 25
2 # 26],
27 L 27
28 He 28
29 29,
30 T
3 He 31

Lesft: Confict-free acoess via rardn'npern'nta-h\.
Middlie: Conflict-free access since Mireads 3, 4, 6, 7, 80d 9 access M same word within bank 5.
Right: Conflict-fres broadeast acoets (all threads seceds Hee same word).

Figure 3 Examples of Irregular and Colliding Shared
Memory Accesses for Devices of Compute
Capability 2.x



Lessons for Lattice QCD

* split your code into small threads

usually computation of one lattice site per thread

* optimize memory access: coalesced access

e T e ‘l,(only 1 transfer at a time)‘l,
ocinve] | SRR

use arrays for each element of SU(3) instead:

[complex su3_e00[nr_links], su3_e01[nr_links] ...... ]

\l' ‘1' \l: (16 transfers at once) l, l, l, (16 transfers at once)

® reduce register pressure by using shared memory
® increase flops/bytes, i.e. reduce memory access

use SU(3) reconstruction, e.g. just store 2 rows = 12 floats



Exercises: Bielefeld GPU System

Login Server: bam2.physik.uni-bielefeld.de

- v
tesla1 gpu2 —> gpu1
2xNvidia M2050 4xNvidia GTX480 4xNvidia GTX285
448 Cores o 480 Cores 240 Cores

gpu.g@teslail dpu.g@gpu?2 gpu.q@gpu

fermi.q

gpu.q
* submit your job using:  gsub queue_script.sh

(example script in /home/gpu)



Exercise 1 — Vector Addition

use the program ‘vectorAdd.cu’

« compile: nvcc —03 —o vector_Add vector Add.cu

 vary the number of threads per block and plot the kernel runtimes
what is the optimal number of threads per block?

- estimate the memory bandwidth and flops for the optimal parameters

» use an offset in the array indices,

i.e. store data in A[offset]... A[N+offset-1] and calculate A[i+offset]+BJ[i+offset]

for which values of offset do you observe coalesced access?

* reduce the number of threads by calculating more than 1 sum per tread



Exercise 2 — Scalar product

Write a program to compute the scalar product of two vectors

 step1 : use one kernel to compute the product A[i]*BJi] for all i
 step2 : use one kernel for partial sums inside thread blocks
(optimization: use shared memory for the partial sums)

* step3 : reduce the partial sums for the final result

Note:
- separate kernels required as steps depend on previous results
* synchronization important between the steps
- cudaThreadSynchronize(); between kernels
- __syncthreads(); inside kernel to sync in a block
 intermediate results must be written to global memory
» see /home/gpu/reduction.pdf
» see ‘cuda_reduce.hpp’ (taken from CUDA SDK)



(Advanced) Exercise 3 — Matrix multiplication

Write a program to compute C=A*B with A,B being NxN matrices

- step1 : each thread computes C;; = >, Ay x By,

note: each element is read N times from global memory

* step2 : each block calculates a MxM subregion of C

* step3 : optimization: read MxM subregion of A and B to shared memory

and do the computation

« compare the kernel runtime of the 3 versions
» compare step2 and 3 on different architecture
Is shared memory still faster than the cache

architecture of Fermi?

nly using shared memory

I
________ o
o P
I

Figure 3-2. Matrix Multiplication with Shared Memory




Photos from the Canoe Excursion online:
http://lIwww2.physik.uni-bielefeld.de/strongnet2011.html




