
Geistes-, Natur-, Sozial- und Technikwissenschaften – gemeinsam unter einem Dach

Introduction to GPU Programming
using CUDA

Ol f K kOlaf Kaczmarek
University of Bielefeld

STRONGnet Summerschool 2011
ZIF Bielefeld
20.06.2011

Literature: see /home/gpu/doc for CUDA documentation or http://developer nvidia com

1

Literature: see /home/gpu/doc for CUDA documentation or http://developer.nvidia.com
Acknowledgement: most figures and infos are taken from NVIDIA documentation

What is a GPU?

G hi P i U it d i f l h di t t iGraphics Processing Unit: rendering of polygons, shading, texturing

That is fun if you like fancy games!

What is more important for us:p

 GPGPU: General Purpose Computing on Graphics Processing Units

Lots of computing cores with a simpler architecture than cpu cores

High memory bandwidth > 100GB/s on global device memory

Cheap (at least the consumer cards)

Theoretical performance and bandwidth – GPU vs CPU

Limitation in Lattice QCD code is usually bandwidth not computations

e.g. Wilson fermion matrix*vector: 1320 flops/site, 1440 bytes/site (32bit)

even 10% of peak is a lot GB/s more importanteven 10% of peak is a lot GB/s more important

Lattice QCD performance – GPU vs CPU

80140

60

70

GTX480

Speedup

(single precision)

(double precision)

243x6
323x8
243x6
323x8

120

140
Speedup compared to single CPU core

Gflops

30

40

50

GTX295 M2050(ECC)

M2050(noECC)

GTX480

100

G
flops

GTX 280

 0

10

20

Intel X5660

C1060

M2050(ECC)
M2050(noECC)

GTX480

0 32 64 96 128
Temporal Extent

80

12 reconstruct
12 reconstruct, GF
8 reconstruct
8 reconstruct, GF

GTX 280

Temporal Extent

Wilson fermion matrix*vector 243× Nt Staggered fermion matrix*vector

SU(3) matrix stored as 8/12 floats

GF = temporal gauge fixing

SU(3) matrix stored as 18 floats

Compared to Intel single core

[M.A.Clark et al., arXiv:0911.3191] [Bielefeld GPU Group]

Drawbacks of GPUs

GPUs are accelerator cards connected via the PCI-busGPUs are accelerator cards connected via the PCI bus

all data needs to be transferred from Host to Device via the bus

Y till d PC d CPU th t i t lli thYou still need a PC and a CPU that is controlling the program

hybrid programming Ansatz

Mainly two companies on the market:

NVIDIA AMD/ATI

You’ll have to rely on their business strategy

Not a long tradition in high performance computing

programming extensions and tools are still being developed

Most of the hardware details are not knownMost of the hardware details are not known

sometimes it is a black box and one has to rely on their documentation

CUDA

I will only discuss NVIDIA GPUs and CUDAI will only discuss NVIDIA GPUs and CUDA

Compute Unified Device Architecture

E t i t C i l (tl l C f ti lit)Extension to C programming language (partly also C++ functionality)

Host functions to access GPU device from the host, e.g. memcpy, kernel calls

Thread based model and easy multi-threading for utilizing the multiprocessors

Hiding latency in memory access with overlapping computations:

Some Terminology

 Th d t d t d th CUDA d i (i ll l ith th) Thread: concurrent code executed on the CUDA device (in parallel with others)

a thread is the unit of parallelism in CUDA  SIMT

Warp: a group of threads executed physically in parallel (SIMD)

 Thread Block: a group of threads that are executed together

and can share memory on the same multiprocessor

 Grid: a group of thread blocks that are executed logically in parallel

on all available multiprocessor of the CUDA device

 Device: GPU Host: CPU SM: Streaming Multiprocessor

Memory Layout (GT200 architecture)

Th d ithi ltiThreads within a multiprocessor
can exchange data using

16-64 kB shared memory (+L1 cache)y ()

Large register file:

8 096 32 768 registers/processor8.096-32.768 registers/processor

Device Memory used by all threads

1.5 GB consumer cards
3/6 GB Tesla cards (with ECC)

Memcpy Host <-> Device Memory

with 3 GB/s a bottleneck

Host Memory

Memory Layout (GT200 architecture)

Registers and shared memory

fastest !!! (latency 1 cycle)

Device Memory:Device Memory:

150-200 GB/s but
shared by all processors
(l t l 100 l)(latency several 100 cycles)

Transfer from and to host

with 3 GB/s a bottleneck

Lifetime of shared mem
only within a block!only within a block!

Communication between
all threads only
via Global Memory!

Additional Cache on new GPU models

Memory Layout (GT200 architecture)

Registers and shared memory

fastest !!! (latency 1 cycle)

Device Memory:Device Memory:

150-200 GB/s but
shared by all processors
(l t l 100 l)(latency several 100 cycles)

Transfer from and to host

with 3 GB/s a bottleneck

Lifetime of shared mem
only within a block!only within a block!

Communication between
all threads only
via Global Memory!

Additional Cache on new GPU models

Fermi Streaming Multiprocessor

32 core per SM and up to 16 SMs on one GPUp p

16 Load/Store Units

-> 16 Threads can access memory simultaneous-> 16 Threads can access memory simultaneous

Four Special Function Units (sin, cos, sqrt,…)

Large (shared) Register File

Dual Warp+Instruction Scheduler

ECC Memory Support on Tesla

64kB configurable shared memory + L1 cache

either 48kB +16kB or 16kB + 48kB

515 Gflops double precision (Tesla M2050)p p ()

1.03 Tflops single precision (Tesla M2050)

Fermi – Memory Layout

User can decide on the size of Shared Memory vs. L1 Cachey

48 kB Shared Memory + 16 kB L1 Cache

16 kB Shared Memory + 48 kB L1 Cache16 kB Shared Memory + 48 kB L1 Cache

768 kB of L2 Cache

Device Memory: 768 kB

1.5 GB on Consumer Cards

3/6 GB on Tesla Cards

CUDA basics – memory allocation

Data needed on the device has to be copied from hostp

CUDA provides routines to manage the data transfer host <-> device

Allocation of memory on the device (in device memory):Allocation of memory on the device (in device memory):

cudaError_t cudaMalloc(void ** devPtr, size_t size)

cudaError_t cudaFree(void * devPtr)

Example: size t size = N * sizeof(float); h A is an array on the hostExample: size_t size N sizeof(float);

float* h_A, d_A;

h_A = (float *) malloc (size);

h_A is an array on the host

cudaMalloc (&d_A, size);

…….

free(h A);

cudaMalloc called on the host

free(h_A);

cudaFree(d_A);
d_A is an array on the device

in the global device memory

CUDA basics – copy data to and from device

the host process is controlling data transfersp g

kernels can only operate on device memory

copy data between host and device:copy data between host and device:

cudaError_t cudaMemcpy (void *dst, void *src, size_t count, type of transfer)

(cudaMemcpyHostToDevice / cudaMemcpyDeviceToHost)

Example: cudaMemcpy (d_A, h_a, size, cudaMemcpyHostToDevice);

......... (do some calculations with d_A on the device) ….

cudaMemcpy (h a d a size cudaMemcpyDeviceToHost);cudaMemcpy (h_a, d_a, size, cudaMemcpyDeviceToHost);

CUDA basics – Kernel

device kernel code is defined using __global__ declaration specifierg __g __ p

device functions are defined using __device__ (host functions using __host__)

kernels are called by the host but operate on the devicekernels are called by the host but operate on the device

each kernel has a unique thread ID (see next page)

all data used by the kernel must be on the device

i.e. A[] and B[] are arrays in the global device memory

Example: // Kernel definition – Device code

__global__ vecAdd (const float* A, const float *B, float *C, int N)

{{

int i = blockDim.x * blockIdx.x + threadIdx.x;

if (i<N)()

C[i] = A[i] + B[i];

}

CUDA basics – Thread Hierarchy

each thread has a unique thread ID (inside a block)q ()

threadIdx is 3-component vector

either one- two- or three-dimensionaleither one-, two-, or three-dimensional

maximal number of threads per block: 1024

• large number optimal for performance

• they share registers and shared memory

• 64 or 128 threads usually good balance

unique ID:

blockID.x * blockDim.x + threadId.x

#blocks and #threads defined in kernel call

vecAdd <<< numBlocks, threadsPerBlock >>> (A,B,C,N)

CUDA basics – Program flow Host+Device

control flow of the program is managed by

i l d th h tserial code on the host

the heavy calculations are performedy p

on the device

continuous switching between host+device

synchronization between kernels importantsynchronization between kernels important

CUDA basics – example Vector Addition

Kernel (code running on GPU)

Main program running on CPU

Memory allocation on CPU

Memory allocation on GPU

Copy data HostDevicepy

Start the kernel
Copy data HostDeviceCopy data HostDevice

CUDA basics – example Vector Addition

CUDA basics – Error handling

most cuda functions return an error code cudaError_t_

return value on successful execution is cudaSuccess

cudaError t cudaGetLastError();cudaError_t cudaGetLastError();

returns last error from previous execution

use simpler interface from ‘cuda_utils.h’

cu_safecall(x); call x and abort program in case of an error

e.g. cu_safecall(cudaMalloc(…..));

cu_safecall_kernel(x); starts kernel x and check for errors

e.g. cu safecall kernel((my kernel<<<…>>>(..)));g _ _ ((y_ ()));

CUDA basics – Thread/Memory Hierarchy

Fast data access:

register or shared memory

and constant+texture memory

only threads in a block can communicate

using shared memory

Slow data access:

global device memory

all threads can access all global memoryall threads can access all global memory

but threads are usually not synchronized

no control on the order of execution

 Tipp: reduce multiple access to global memory, use shared memory if possible

CUDA – global /constant/shared memory

variables declared inside device functions reside in register or global memory

local variables per thread

if no more registers available moved to local memory

(=device memory=slow!!!)

variables declared as __constant__ (global) are readable by all threads

variables declared as shared reside in shared memory (fast!!!)variables declared as __shared__ reside in shared memory (fast!!!)

local per block  most efficient memory access in a block of threads

as fast as registers (only problem: bank conflicts)

 used as buffer if data used more than once

 fast exchange of data between threads in the same block

Example: __global__ kernel (const float* A, int N){

__shared__ float data [size];

………

}

CUDA – optimizing global memory access

l dcoalesced access:

memory access of threads in a warp

can be combined

into one memory transaction

cache line size on fermi architecture

= 128 bytes (similar behavior as above)= 128 bytes (similar behavior as above)

data should be aligned and

sequentially accessed

 minimal number of memory transactions

CUDA – optimizing shared memory access

split your code into small threads

Lessons for Lattice QCD

usually computation of one lattice site per thread

optimize memory access: coalesced access

do not use arrays of structures

su3 gauge field[nr links] e00[0] e01[1] e02[2]

(only 1 transfer at a time)

su3 gauge_field[nr_links]

use arrays for each element of SU(3) instead:

complex su3_e00[nr_links], su3_e01[nr_links] ……

e00[0] e01[1] e02[2] ..…

(16 transfers at once) (16 transfers at once)

reduce register pressure by using shared memory

e00[0] e00[1] e00[2] ..… e00[max] e01[0] e01[1] e01[2] ..… e01[max]

g p y g y

increase flops/bytes, i.e. reduce memory access

use SU(3) reconstruction, e.g. just store 2 rows = 12 floats

Exercises: Bielefeld GPU System

Login Server: bam2.physik.uni-bielefeld.de

tesla1

2xNvidia M2050

gpu2

4xNvidia GTX480

gpu1

4xNvidia GTX285

448 Cores 480 Cores 240 Cores

gpu.q@tesla1 gpu.q@gpu2 gpu.q@gpu1gp q@ gp q@gp gp q@gp

fermi.q

gpu qgpu.q
submit your job using: qsub queue_script.sh

(example script in /home/gpu)

use the program ‘vectorAdd.cu’

Exercise 1 – Vector Addition

p g

• compile: nvcc –O3 –o vector_Add vector_Add.cu

• vary the number of threads per block and plot the kernel runtimes• vary the number of threads per block and plot the kernel runtimes

what is the optimal number of threads per block?

• estimate the memory bandwidth and flops for the optimal parameters

• use an offset in the array indices,

i.e. store data in A[offset]… A[N+offset-1] and calculate A[i+offset]+B[i+offset]

for which values of offset do you observe coalesced access?

• reduce the number of threads by calculating more than 1 sum per tread

Exercise 2 – Scalar product

Write a program to compute the scalar product of two vectorsp g p p

• step1 : use one kernel to compute the product A[i]*B[i] for all i

• step2 : use one kernel for partial sums inside thread blocks

(optimization: use shared memory for the partial sums)

• step3 : reduce the partial sums for the final result

Note:

• separate kernels required as steps depend on previous results

• synchronization important between the steps

- cudaThreadSynchronize(); between kernels

- __syncthreads(); inside kernel to sync in a block

• intermediate results must be written to global memory

• see /home/gpu/reduction.pdfsee /home/gpu/reduction.pdf

• see ‘cuda_reduce.hpp’ (taken from CUDA SDK)

(Advanced) Exercise 3 – Matrix multiplication

Write a program to compute C=A*B with A,B being NxN matrices

• step1 : each thread computes Cij =  Aik × Bkj

note: each element is read N times from global memory

• step2 : each block calculates a MxM subregion of C

• step3 : optimization: read MxM subregion of A and B to shared memory

and do the computation only using shared memoryand do the computation only using shared memory

• compare the kernel runtime of the 3 versions

• compare step2 and 3 on different architecture (gpu1 vs gpu2)

Is shared memory still faster than the cacheIs shared memory still faster than the cache

architecture of Fermi?

Ph t f th C E i liPhotos from the Canoe Excursion online:
http://www2.physik.uni-bielefeld.de/strongnet2011.html

