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Monte Carlo 
Integration
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Monte Carlo Integration

Monte Carlo integration is based on the 
identification of probabilities with measures

There are much better methods of carrying out 
low dimensional quadrature

All other methods become hopelessly expensive for large 
dimensions

In lattice QFT there is one integration per degree of freedom

We are approximating an infinite dimensional functional integral
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Measure the value of Ω on each configuration 
and compute the average

1

1 ( )
N

t
tN

φ
=

Ω ≡ Ω∑

Monte Carlo Integration

Generate a sequence of random field 
configurations                                         
chosen from the probability distribution 

( )1 2 t N, , , , ,φ φ φ φ… …

( )1( ) tS
t t tP d e d

Z
φφ φ φ−=
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Central Limit Theorem

Distribution of values for a single sample ω = Ω(φ)

( ) ( )( )( )P d Pω φ φ δ ω φΩ ≡ − Ω∫ ( )( )δ ω φ= − Ω

Central Limit Theorem

where the variance of the distribution of Ω is

( )2C
NOΩ ∼ Ω +

( )22C ≡ Ω − Ω

Law of Large Numbers lim
N →∞

Ω = Ω

The Laplace–DeMoivre Central Limit theorem
is an asymptotic expansion for the probability 
distribution of Ω
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= = Ω − Ω

= Ω = Ω − Ω −

= Ω − Ω

The first few cumulants are

Central Limit Theorem

Note that this is an asymptotic expansion

Generating function for connected moments

( ) ln ( ) ikW k d P e ωω ωΩ Ω≡ ∫
( ) ( )ln lnik ikd P e eφφ φ Ω Ω= =∫ ( )

0 !

n

n
n

ik
C

n

∞

=
∑∼
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Central Limit Theorem

Connected generating function

( ) ( )ln
Nik Nd P e φφ φ Ω⎡ ⎤= ⎣ ⎦∫

( ) ( ) ( )1 1
1

ln exp
N

N N t
t

ikd d P P
N

φ φ φ φ φ
=

⎡ ⎤
= Ω⎢ ⎥

⎣ ⎦
∑∫ … …

( ) ln ( ) ikW k d P e ωω ω
Ω Ω

≡ ∫

( )
1

1 !

n

n
n

n

ik C
n N

∞

−
=
∑∼

ln ik NN e Ω=

kNW
NΩ
⎛ ⎞= ⎜ ⎟
⎝ ⎠

( ) ( ) ( ) ( )1 1
1

1 N

N N t
t

P d d P P
N

ω φ φ φ φ δ ω φ
Ω

=

⎛ ⎞
≡ − Ω⎜ ⎟

⎝ ⎠
∑∫ … …

Distribution of the average of N samples
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( )
3 4

3 4 212 3 3 4
223! 4!

2
N

C Cd d
ik ik CN N dk ikd de e e ωω ω

π

− + −
Ω + −∼ ∫

Take inverse Fourier transform to obtain distribution P
Ω

( ) ( )1
2

W k ikP dk e e ωω
π

Ω −
Ω

= ∫

( )2
3 4 23 4 2

2 3 3 43! 4!

2 2

C Cd d C N
N Nd d

C N

ee

ω

ω ω

π

− Ω
−

− + −

=

Central Limit Theorem
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Central Limit Theorem

where                           and( ) Nξ ω≡ − Ω

( ) ( ) 2
2

2 2
3 2

3
2 2

3
1

6 2

CC C eF
C N C

ξξ ξ
ξ

π

−⎡ ⎤−
⎢ ⎥= + +
⎢ ⎥⎣ ⎦

( ) ( ) dP F
d
ξω ξ
ωΩ

=

Re-scale to show convergence to Gaussian distribution
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Asymptotic Expansions
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If                                                             is 

the absolute minimum of f, show that

( ) ( )0
2

0 0exists for , where 
f x f x

dx e xε ε ε
−∞ −

−∞

≤∫

( ) ( ) ( )( )20 1
0 02 2 2

1f x f x
f x x x

dx e dx eε ε

−∞ ∞ ⎡ ⎤′′− − − +⎢ ⎥⎣ ⎦

−∞ −∞

=∫ ∫ 0x xξ
ε
−

≡

( ) ( ) ( )21
02 /1f kxd e eξ εε ξ ε

∞
′′−

∞

−

−

⎡ ⎤= + +⎣ ⎦∫  

( ) ( ) ( )1
0

/
2 1 kef x εε π ε −′′ ⎡ ⎤= + +⎣ ⎦ 
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Laplace’s Method
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( ) ( ) ( ) ( ) ( ) ( )0 0 00
2 2 2

0 0

f x f x f x f x f x f xx

x x x

dx e dx e dx eε ε ε

− − −+Δ∞ − − −

−∞ −Δ − >Δ

= +∫ ∫ ∫

( ) ( )00
2

0

2

2

f x f xx

x

K

edx e ε ε

−+Δ
−

Δ

−

−

Δ

⎛ ⎞
+ ⎜

⎟
⎝

= ⎟
⎜

⎠
∫  ( )

0 21
02

0

2

0

x
f x j j

j
jx

d e cξε ξ ε ξ
+Δ ∞

′′− +

=−Δ
∑∫∼

( )
0 21

02

0

2

0

x
f xj j

j
j x

c d e ξε ε ξ ξ
+Δ∞

′′−+

= −Δ

= ∑ ∫ ( ) 21
022

0

f xj j
j

j
c d e ξε ε ξ ξ

∞∞
′′−+

= −∞
∑ ∫∼
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Proof for Laplace’s Method
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( )0f x

0x 0x δ+

( )20K x x−

( ) ( ) 2

0 0f x f x K x x− ≥ −

0x δ ′+

( )0f x δ ′+

( ) ( )0f x f x δ ′≥ +

( ) ( ) 2
0f x f x K− ≥ Δ

( )min ,δ δ ′Δ =

( ) ( ) 20
2 22

00

0

1 1f x f x K

x

dx e e ε εε

⎛ ⎞−∞ − − Δ⎜ ⎟⎜ ⎟
⎝ ⎠

+Δ

≤ ∫

( ) ( )0
2

0

f x f x

x

I dx e ε
ε

−∞ −

+Δ

= ∫
2

2 2
0

0

1 1 K

I e ε ε
ε

⎛ ⎞
− − Δ⎜ ⎟⎜ ⎟
⎝ ⎠≤

( )f x
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Markov Chain 
Monte Carlo
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Markov Chains
State space Ω
(Ergodic) stochastic transitions  P’: Ω → Ω

Distribution converges to unique fixed point Q

Deterministic evolution of probability 
distribution  P: Q → Q
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The sequence Q, PQ, P²Q, P³Q,… is Cauchy

Define a metric                                               on 
the space of (equivalence classes of) probability 
distributions 

( ) ( ) ( )1 2 1 2,d Q Q dx Q x Q x≡ −∫

Prove that                                              with 
α > 0, so the Markov process P is a contraction 
mapping

( ) ( ) ( )1 2 1 2, 1 ,d PQ PQ d Q Qα≤ −

The space of probability distributions is complete, so the 
sequence converges to a unique fixed point lim n

n
Q P Q

→∞
=

Convergence of Markov Chains
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Simple but Inadequate Proof
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( ) ( ) ( )1 2 1 2,d PQ PQ dx PQ x PQ x= −∫
( ) ( ) ( ) ( )1 2dx dy P x y Q y dy P x y Q y= ← − ←∫ ∫ ∫
( ) ( )dx dy P x y Q y= ← Δ∫ ∫ ( ) ( ) ( )1 2Q y Q y Q yΔ ≡ −

( ) ( )dy dx P x y Q y= ← Δ∫ ∫
( )dy Q y= Δ∫ ( ) 1dx P x y← =∫( )1 2,d Q Q=

( ) ( )dx dy P x y Q y≤ ← Δ∫ ∫ ( ) ( )dx f x dx f x≤∫ ∫
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( ) ( ) ( )1 2 1 2,d PQ PQ dx PQ x PQ x= −∫
( ) ( ) ( ) ( )1 2dx dy P x y Q y dy P x y Q y= ← − ←∫ ∫ ∫

( ) ( ) ( )( ) ( )( )dx dy P x y Q y Q y Q yθ θ⎡ ⎤= ← Δ Δ + −Δ⎣ ⎦∫ ∫

( ) ( )dx dy P x y Q y= ← Δ∫ ∫

( ) ( ) ( )( )2 mindx dy P x y Q y Q yθ
±

− ← Δ ±Δ∫ ∫
( ) ( )dx dy P x y Q y= ← Δ∫ ∫

( )2min ,a b a b a b− = + −

( ) ( ) ( )1 2Q y Q y Q yΔ ≡ −

( ) ( ) 1y yθ θ+ − =

Proof
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( ) ( ) ( ) ( )( )2 mindy Q y dx dy P x y Q y Q yθ
±

= Δ − ← Δ ±Δ∫ ∫ ∫
( ) ( ) ( ) ( )( )2 inf min

y
dy Q y dx P x y dy Q y Q yθ

±
≤ Δ − ← Δ ±Δ∫ ∫ ∫

( ) ( ) ( )inf
y

dy Q y dx P x y dy Q y≤ Δ − ← Δ∫ ∫ ∫ ( )1 2(1 ) ,d Q Qα≤ −

( ) ( ) ( )1 2 1 1 0dy Q y dy Q y dy Q y= Δ = − = − =∫ ∫ ∫
( ) ( )( ) ( ) ( )( )dy Q y Q y dy Q y Q yθ θΔ Δ + Δ −Δ∫ ∫

( ) 1dx P x y← =∫

( ) ( )( ) ( )1
2dy Q y Q y dy Q yθ⇒ Δ ±Δ = Δ∫ ∫

( )0 inf
y

dx P x yα< = ←∫

( )1 2,d PQ PQ

Proof
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Banach Fixed-Point Theorem
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1
1

0

( , ) ( , )
n m

m n m j m j

j
d P Q P Q d P Q P Q

− −
+ + +

=

≤ ∑

( )
1

1

0

1 ( , )
n m

j m m

j
d P Q P Qα

− −
+

=

≤ −∑ ( )1

0

( , ) 1
jm m

j
d P Q P Q α

∞
+

=

≤ −∑
1( , )m md P Q P Q

α

+

= ( )1
( , )

m

d Q PQ
α
α
−

=

We show that the sequence of distributions is Cauchy

Hence the sequence converges to the unique fixed point 
probability distribution lim n

n
Q P Q

→∞
=

ε<

for any ε > 0, provided m is large enough and α > 0.
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Markov Chains

Use Markov chains to sample from Q
Suppose we can construct an ergodic Markov process P which has 
distribution Q as its fixed point 

Start with an arbitrary state (“field configuration”)

Iterate the Markov process until it has converged (“thermalized”)

Thereafter, successive configurations will be distributed according to Q
But in general they will be correlated

To construct P we only need relative probabilities of states
Do not know the normalisation of Q

Cannot use Markov chains to compute integrals directly

We can compute ratios of integrals
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Metropolis algorithm ( ) ( )
( )

min 1,
Q x

P x y
Q y

⎛ ⎞
← = ⎜ ⎟⎜ ⎟

⎝ ⎠

Markov Chains
How do we construct a Markov process with a specified 
fixed point                                            ?( ) ( ) ( )Q x dy P x y Q y= ←∫

Integrate w.r.t. y to obtain fixed point condition
Sufficient but not necessary for fixed point

( ) ( ) ( ) ( )P y x Q x P x y Q y← = ←Detailed balance

( ) ( )
( ) ( )

Q x
P x y

Q x Q y
← =

+
Other choices are possible, e.g.,

Consider cases                     and                     separately to 
obtain detailed balance condition

( ) ( )Q x Q y> ( ) ( )Q x Q y<

Sufficient but not necessary for detailed balance
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Markov Chains

Composition of Markov steps
Let P1 and P2 be two Markov steps which have the desired fixed 
point distribution

They need not be ergodic

Then the composition of the two steps P2 P1 will also have the 
desired fixed point

And it may be ergodic

This trivially generalises to any (fixed) number of steps
For the case where P1 is not ergodic but (P1 )n is the terminology 
weakly and strongly ergodic are sometimes used
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Markov Chains

This result justifies “sweeping” through a 
lattice performing single site updates

Each individual single site update has the desired fixed point 
because it satisfies detailed balance
The entire sweep therefore has the desired fixed point, and 
is ergodic
But the entire sweep does not satisfy detailed balance
Of course it would satisfy detailed balance if the sites were 
updated in a random order

But this is not necessary
And it is undesirable because it puts too much randomness into 
the system
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Markov Chains

α

Coupling from the Past
Propp and Wilson (1996)
Use fixed set of random numbers
Flypaper principle: If states coalesce they stay together forever 

– Eventually, all states coalesce to some state α with probability one
– Any state from t = -∞ will coalesce to α
– α is a sample from the fixed point distribution
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The eigenvectors                                           satisfy

so either         or

( ) ( ) ( ) ( ) ( ) ( )dx u x dx dy P x y u y dy dx P x y u y dy u yλ ⎡ ⎤= ← = ← =⎣ ⎦∫ ∫ ∫ ∫ ∫ ∫
( ) ( )( )dy P x y u y u xλ← =∫

1λ = ( ) 0dx u x =∫

Wednesday, 15 June 2011 A D Kennedy

Exponential Autocorrelations

All its other eigenvalues must lie within the unit circle

max 1λ <In particular, the largest subleading eigenvalue is

The unique fixed point of an ergodic Markov process corresponds 
to a unique eigenvector with eigenvalue 1

Hence we may expand any probability density as

with the exponential autocorrelation time

1j

j jQ Q c u
λ <

= + ∑
exp/

max
1 1j j

N N NN N
j j j j jP Q Q c u c u Ke

λ λ

λ λ −

< <

− = ≤ =∑ ∑

exp
max

1
0

ln
N

λ
≡ − >
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Integrated Autocorrelations

( ) ( )2

2
1 1

1 N N

t t
t tN

φ φ ′
′= =

Ω = Ω Ω∑∑ ( ) ( ) ( )
1

2

2
1 1 1

1
2

N N N

t t t
t t t tN

φ φ φ
−

′
′= = = +

⎧ ⎫
= Ω + Ω Ω⎨ ⎬

⎩ ⎭
∑ ∑ ∑

Consider the autocorrelation of operator Ω

Without loss of generality we assume 0Ω =

( ) ( )
12 2 2

1

1 2 N

N C
N N

−

Ω
=

⎧ ⎫
Ω = Ω + − Ω⎨ ⎬

⎩ ⎭
∑

( )
( ) ( )

( )2
t tC
φ φ

φ

+
Ω

Ω Ω
≡

Ω
Define autocorrelation function
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Integrated Autocorrelations

The autocorrelation function must fall faster that the 
exponential autocorrelation ( ) exp

max
NC eλ −

Ω ≤ =

{ }
2

2 exp1 2 1
N

A
N NΩ

Ω ⎡ ⎤⎛ ⎞
Ω = + +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦


( )
2

2 exp

1

1 2 1
N

C
N N

∞

Ω
=

Ω ⎡ ⎤⎛ ⎞⎧ ⎫
Ω = + +⎨ ⎬ ⎢ ⎥⎜ ⎟

⎩ ⎭ ⎝ ⎠⎣ ⎦
∑ 

For a sufficiently large number of samples

( )
1

A C
∞

Ω Ω
=

≡ ∑Define integrated autocorrelation function
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In order to carry out Monte Carlo computations 
including the effects of dynamical fermions we 
would like to find an algorithm which

Updates the fields globally
Because single link updates are not cheap if the action is not local

Take large steps through configuration space
Because small-step methods carry out a random walk which leads 
to critical slowing down with a dynamical critical exponent z=2

Does not introduce any systematic errors

z relates the autocorrelation to the correlation length of the 
system, zA ξΩ ∝

Hybrid Monte Carlo
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A useful class of algorithms with these properties is 
the (Generalised) Hybrid Monte Carlo (HMC) method

Introduce a “fictitious” momentum p corresponding to each 
dynamical degree of freedom q
Find a Markov chain with fixed point ∝ exp[-H(q,p) ] where H is the 
“fictitious” Hamiltonian ½p2 + S(q)

The action S of the underlying QFT plays the rôle of the potential in the 
“fictitious” classical mechanical system
This gives the evolution of the system in a fifth dimension, “fictitious” or 
computer time

This generates the desired distribution exp[-S(q) ] if we ignore the 
momenta p (i.e., the marginal distribution)

Hybrid Monte Carlo
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The HMC Markov chain alternates two Markov 
steps

Molecular Dynamics Monte Carlo (MDMC)
(Partial) Momentum Refreshment

Both have the desired fixed point
Together they are ergodic

Hybrid Monte Carlo



34Wednesday, 15 June 2011 A D Kennedy

MDMC

If we could integrate Hamilton’s equations 
exactly we could follow a trajectory of 
constant fictitious energy

This corresponds to a set of equiprobable fictitious 
phase space configurations
Liouville’s theorem tells us that this also preserves the 
functional integral measure dp ∧ dq as required

Any approximate integration scheme which 
is reversible and area preserving may be 
used to suggest configurations to a 
Metropolis accept/reject test

With acceptance probability min[1,exp(-δH)]
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MDMC

Molecular Dynamics (MD), an approximate integrator
which is exactly( ) ( ) ( ): , ,U q p q pτ ′ ′

We build the MDMC step out of three parts

A Metropolis accept/reject step 

Area preserving, ( )
( )*

,
det det 1

,
q p

U
q p

⎡ ⎤′ ′∂
= =⎢ ⎥∂⎣ ⎦

Reversible, ( ) ( ) 1F U F Uτ τ =

A momentum flip :F p p−

( ) ( ) ( )1H Hq q
F U e y y e

p p
δ δτ ϑ ϑ− −′⎛ ⎞ ⎛ ⎞⎡ ⎤= − + −⎜ ⎟ ⎜ ⎟⎣ ⎦′⎝ ⎠ ⎝ ⎠

The composition of these gives 

with y being a uniformly distributed random number in [0,1]
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The Gaussian distribution of p is invariant under F
The extra momentum flip F ensures that for small θ the 
momenta are reversed after a rejection rather than after an 
acceptance
For θ = π / 2 all momentum flips are irrelevant

This mixes the Gaussian distributed momenta p
with Gaussian noise ξ

cos sin
sin cos

p p
F

θ θ
ξ θ θ ξ
′⎛ ⎞ ⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟ ⎜ ⎟′ −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Partial Momentum Refreshment
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Acceptance Rates
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The normalization of the equilibrium distribution is
( ),1

1 H q pdqdp e
Z

−= ∫
( ),1 H q p Hdq dp e

Z
δ− −′ ′= ∫

( ),1 H q pdq dp e
Z

′ ′−′ ′= ∫

and dq dp dq dp′ ′∧ = ∧( ) ( )since , ,H H q p H q pδ ′ ′≡ −

( ),1 H q p Hdqdp e
Z

δ− −= ∫ He δ−=

For small      we have                                             , 

hence

21
21He H Hδ δ δ− = − + +

21
2H Hδ δ≈

Hδ

Thus if                   we have  ( )nHδ δτ= ( )2nHδ δτ=
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Thermodynamic Limit
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( )1 h h
He dh P h eδ

− −= = ∫
so we must have ( ) 2 2

2

2

h H H hV
Vdh e

V

δ

π

− −
−

= ∫ ( )1
2 2V He δ−=

2V Hδ=

( ) ( )2 2

0
4 4

0

1

2

h H h H
h

H Hdh e dh e
H

δ δ
δ δ

π δ

− −∞− − −

−∞

⎛ ⎞
⎜ ⎟= +⎜ ⎟⎜ ⎟
⎝ ⎠
∫ ∫

If box size          (correlation length) cluster decomposition 

and central limit theorem ( ) ( )
( )2

1
2 22

h H
V

HP h V e
δ

δ π
−

−−
⇒ =

L ξ

2

1
2

2 h

H

dh e
δπ

∞
−= ∫ ( )1

2erfc Hδ=

and thus the average acceptance rate         is

( )min 1, he −

accP
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Hamiltonian Vector Fields
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Classical mechanics is not 
specified just by a 
Hamiltonian H but also by 
a closed fundamental 2-
formω
For every function (0-
form) A this defines a 
Hamiltonian vector field

ˆ
ˆ such that

A
A dA i ω=

( ) ( )ˆ,dA X A Xω=
Which just means that for all X
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Hamiltonian Vector Fields
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ˆ ˆ
q p p qA X A X= −

To be a little less abstract 
consider the familiar case
where      anddq dpω = ∧

; q p
A AdA dq dp X X X
q p q p
∂ ∂ ∂ ∂

≡ + ≡ +
∂ ∂ ∂ ∂

A A
p q q p
∂ ∂ ∂ ∂

= −
∂ ∂ ∂ ∂

so

( ) q p
A AdA X X X
q p
∂ ∂

= +
∂ ∂

ˆ ˆ ˆ
q pA A A

q p
∂ ∂

≡ +
∂ ∂

( )ˆ,A Xω=
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Classical Trajectories

Classical trajectories are then integral curves
of the Hamiltonian vector field    of the 
Hamiltonian H

Wednesday, 15 June 2011 A D Kennedy

Ĥ

ˆf ff q p Hf
q p
∂ ∂

≡ + =
∂ ∂

;
H Hq p
p q

∂ ∂
= = −
∂ ∂

H f H f
p q q p

∂ ∂ ∂ ∂
= −
∂ ∂ ∂ ∂

In other words, this vector field is always 
tangent to the classical trajectory
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Symplectic Integrators
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We are interested in finding the classical 
trajectory in phase space of a system described 
by the Hamiltonian

( ) ( ) ( ) ( )21
2,H q p T p S q p S q= + = +

Define the corresponding Hamiltonian vector 

fields (with                 )                      and

so that H T S= +( )S S q
p
∂′≡ −
∂

( )T T p
q
∂′≡
∂

dq dpω = ∧



44

Symplectic Integrators
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Since the kinetic energy T is a function only of p and 
the potential energy S is a function only of q, it follows 
that the action of      and      may be evaluated trivially 
(Taylor’s theorem!)

Ŝe τ T̂e τ

( ) ( )( )
( ) ( )( )

: , ,

: , ,

T

S

e f q p f q T p p

e f q p f q p S q

τ

τ

τ

τ

′+

′−

Formally the solution of Hamilton’s equations with 
trajectory length   is the exponential of the Hamiltonian 
Hamiltonian vector field, Ĥe τ

τ
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Leapfrog
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The simplest example is the Leapfrog PQP
integrator ( )

1 1
2 2

0
S STU e e eδτ δτδτδτ ≡

It consists of three steps

( ) ( ) ( )1
2

1 1 0 0 0 0 0, , ,
2

Sf q p e f q p f q p S qδτ δτ⎛ ⎞′= = −⎜ ⎟
⎝ ⎠

( ) ( ) ( )( )2 2 1 1 1 1 1, , ,Tf q p e f q p f q T p pδτ δτ′= = +

( ) ( ) ( )1
2

3 3 2 2 2 2 2, , ,
2

Sf q p e f q p f q p S qδτ δτ⎛ ⎞′= = −⎜ ⎟
⎝ ⎠
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Langevin Algorithm
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( ) ( )( )

( ) ( )

( ) ( )( )

0 0
2 2

0
2

2 2

p p S q

q q p

p p S q

δτ δτ

δτδτ δτ

δτ δτδτ δτ

⎫⎛ ⎞ ′= −⎜ ⎟ ⎪
⎝ ⎠ ⎪

⎪⎛ ⎞ ⎪= + ⎬⎜ ⎟
⎝ ⎠ ⎪

⎪⎛ ⎞ ′= − ⎪⎜ ⎟ ⎪⎝ ⎠ ⎭

The leapfrog update is
If we ignore the Metropolis
acceptance step (e.g., if we take 
small enough steps)

( ) ( ) ( )( ) ( )
2 11

22

0 0
0

q q p
S q

δτ
δτδτ

−
′= − +

Rescale time step     
and initial Gaussian noise 
(momenta) ( ) ( )1

20sp sη δτ≡

( ) ( ) ( ) ,0 0; 0 0s s s s sp p p δ′ ′= =

( ) ( ) ( ) ( ),0; 2 2s ss s s s s
δ

η η η δ
ε

′′ ′= = → −

21
2ε δτ≡

dq S
ds q

δ η
δ

= − +

We obtain the Langevin equation
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Shadow 
Hamiltonians
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Into the Shadow World
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For each symplectic integrator 
there exists a Hamiltonian H’  
which is exactly conserved
This may be obtained by 
replacing the commutators

in the BCH expansion
of                with the Poisson 
bracket

ˆ ˆ,S T⎡ ⎤
⎣ ⎦

( )ˆ ˆln S Te e− −

{ },S T



49

Poisson Brackets
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Consider the action of a Hamiltonian vector 
field on a function (0-form)

( ) ( ) ( ) { }ˆ
ˆ ˆ ˆ ˆ ˆ, ,

F
AF dF A i A F A A Fω ω= = = ≡

These obey the Jacobi identity
{ }{ } { }{ } { }{ }, , , , , , 0A B C B C A C A B+ + =

We have introduced the Poisson bracket of 
two functions

0dω =This follows from the closure of the fundamental 2-form
It is not trivial: Poisson brackets are not commutators
Functions form a Lie algebra with PBs as the Lie product
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Jacobi Identity
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( ) ( ) ( ) ( ), ,d X Y X Y Y X X Yθ θ θ θ= − − ⎡ ⎤⎣ ⎦
( ) ( ) ( ) ( )

( ) ( ) ( )
, , , , ,

, , , , , ,
d X Y Z X Y Z Y Z X Z X Y

X Y Z Y Z X Z X Y
ω ω ω ω

ω ω ω
= + +
− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦

( ) ( ), , , ,X Y Z Z X Yω ω⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦ ( ),dZ X Y⎡ ⎤= − ⎣ ⎦ ,X Y Z⎡ ⎤= − ⎣ ⎦ ( )XY Y X Z= − −

XY Z Y X Z= − + { } { }, ,X Y Z Y X Z= − + { }{ } { }{ }, , , ,X Y Z Y X Z= − +

Invariant definition of exterior derivative

For Hamiltonian vector fields we have

( ) { }, ,X Y Z X Y Zω = − { }{ }, ,X Y Z= −

( ) { }{ } { }{ } { }{ }, , 0 , , , , , ,d X Y Z X Y Z Y Z X Z X Yω = = + +

The condition           gives the Jacobi identity0dω =

( )dF X XF=
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Concrete Poisson Brackets
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To make this more familiar 
when                   the Poisson 
bracket
becomes

{ } ( )ˆ ˆ, ,A B A Bω≡ −
dq dpω = ∧

ˆ A AA
p q q p
∂ ∂ ∂ ∂

= −
∂ ∂ ∂ ∂

( ) ( )ˆ ˆ, ,
A A B BA B dq dp
p q q p p q q p

ω
⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= ∧ − −⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

{ },
A B A BA B
p q q p
∂ ∂ ∂ ∂

= −
∂ ∂ ∂ ∂
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Hamilton’s Equations (again)
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To make this really concrete 
consider the action of the 
Hamiltonian Hamiltonian vector 
field on an arbitrary function f
that we saw earlier 

{ }ˆ ,
f ff q p Hf H f
q p
∂ ∂

≡ + = =
∂ ∂

{ },
H f H fH f
p q q p

∂ ∂ ∂ ∂
= −
∂ ∂ ∂ ∂
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Commutators
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{ } { }ˆ ˆ, ,A B F B A F= −

{ }{ } { }{ }, , , ,A B F B A F= − { },A B F={ }{ }, ,A B F=

The commutator of Hamiltonian vector fields 
is itself a Hamiltonian vector field

So far this is just a fancy (and complicated) 
way of rewriting Hamilton’s equations, but 
now we derive a surprising new result

( )ˆ ˆ ˆ ˆ ˆˆ,A B F AB BA F⎡ ⎤ = −⎣ ⎦

To derive it consider
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Baker—Campbell—Hausdorff
(BCH) Formula
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( )

( ) 1 2
1 2

1 2

1
1 2

2
2

, , 10

1 ,

, , ,
2 ! m

m

m

n n

n
m

k k
k km

k k n

n c c A B

B c c A B
m

+

⎢ ⎥⎣ ⎦

≥=
+ + =

⎡ ⎤+ = − −⎣ ⎦

⎡ ⎤⎡ ⎤⎡ ⎤+ +⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦∑ ∑
…

… …

More precisely,                         where                 and( )
1

ln A B
n

n
e e c

≥

= ∑ 1c A B= +

If A and B belong to any (non-commutative) 
algebra then     , where is constructed 
from commutators of and

i.e.,    is in the Free Lie Algebra generated by and

A B A Be e e δ+ += δ
A B

BAδ
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Symplectic Integrators
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Explicitly, the first few terms are

( ) { } { }1 1 1
2 12 24

1
720

ln , , , , , , , ,

, , , , 4 , , , , 6 , , , ,

4 , , , ,

A Be e A B A B A A B B A B B A A B

A A A A B B A A A B A B A A B

B B A A B

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + + − − ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− − −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦+
⎡ ⎤⎡ ⎤⎡ ⎤⎡ ⎤+ ⎢ ⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦⎣

2 , , , , , , , ,A B B A B B B B A B

⎧ ⎫
⎪ ⎪⎪ ⎪ +⎨ ⎬

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎪ ⎪⎡ ⎤ ⎡ ⎤ ⎡ ⎤− +⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎪ ⎪⎦ ⎣ ⎦⎩ ⎭

In order to construct reversible integrators we use symmetric 
symplectic integrators

( ) { } { }2 2 1
24

1
5760

ln , , 2 , ,

7 , , , , 28 , , , , 12 , , , ,

32 , , , , 16 , , , ,

A B Ae e e A B A A B B A B

A A A A B B A A A B A B A A B

B B A A B A B B A B

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤= + + −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦+
⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ −⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦

8 , , , ,B B B A B

⎧ ⎫
⎪ ⎪⎪ ⎪ +⎨ ⎬

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤⎪ ⎪⎡ ⎤+ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎦⎪ ⎪⎣ ⎦⎩ ⎭

The following identity follows directly from the BCH formula
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( )1 1
2 2

/
S STe e e

τ δτ
δτ δτδτ

( ) ( ) ( )3 51
24exp , , 2 , ,T S S S T T S T

τ δτ

δτ δτ δτ
⎛ ⎞⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤= + − + +⎜ ⎟⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦⎝ ⎠



1 1
2 2S STe e eδτ δτδτ

( ) ( ) ( )3 51
24exp , , 2 , ,T S S S T T S Tδτ δτ δτ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤= + − + +⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦



Symplectic Integrators
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( ) ( ) ( )2HH He e eτ δττ δτ τ δτ
+′= = = +

 
In addition to conserving energy to O (δτ² ) such symmetric 
symplectic integrators are manifestly area preserving and 
reversible

( ) ( )2 41
24exp , , 2 , ,T S S S T T S Tτ δτ δτ

⎡ ⎤⎛ ⎞⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤= + − + +⎜ ⎟⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎝ ⎠⎣ ⎦


From the BCH formula we find that the PQP symmetric 
symplectic integrator is given by
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Shadow Hamiltonian
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But more significantly the PQP 
integrator follows the integral curves 
of            exactly( )H δτ′

Therefore it is the Hamiltonian vector 
field of the corresponding combination 
of Poisson brackets ( )H δτ′

And           is constructed from 
commutators of the Hamiltonian 
vector fields    andTS

( )H δτ′

This is called the shadow Hamiltonian
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Leapfrog Shadow Hamiltonian
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For the PQP integrator we have

( ) { }{ } { }{ }
{ }{ }{ }{ }
{ }{ }{ }{ }

{ } { }{ }{ }
{ }{ }{ }{ }

{ }{ } { }{ }
{ }{ }{ }{ }

2

4

24

5760

, , 2 , ,

7 , , , ,

28 , , , ,

12 , , ,

32 , , , ,

16 , , ,

8 , , , ,

PQPH T S S S T T S T

S S S S T

T S S S T

S T S S T

T T S S T

S T T S T

T T T S T

δτ

δτ

δτ ⎡ ⎤′ = + + −⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥+⎢ ⎥
⎢ ⎥
+⎢ ⎥

+ +⎢ ⎥
+⎢ ⎥
⎢ ⎥
−⎢ ⎥

⎢ ⎥
+⎢ ⎥⎣ ⎦
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Leapfrog Shadow Hamiltonian 

Evaluating the Poisson brackets with
gives

( ) { }
( ) ( ){ } ( )

2

4

2 2
24

44 2 2 2 6
720

2

6 2 3

PQPH H p S S

p S p S S S S S O

δτ

δτ

δτ

δτ

′ ′′ ′= + −

′ ′′′ ′′ ′ ′′+ − + + − +

Note that H’PQP cannot be written as the sum of 
a p-dependent kinetic term and a q-dependent 
potential term

So, sadly, it is not possible to construct an integrator that 
conserves the Hamiltonian we started with

dq dpω = ∧
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An integrator becomes unstable when 
the BCH (asymptotic) expansion for 
its shadow fails to converge

In which case there is no (real) conserved 
shadow Hamiltonian

What use are Shadows?

Monday, 13 June 2011 A D Kennedy

Optimize the integrator by minimizing
?

Not quite, as we shall see later
H H H ′Δ ≡ −

Use the shadow to tune an integrator
Reduce large contributions to the shadow 
Hamiltonian



61

Gauge Theories
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But first there are a 
few details that we 
shouldn’t overlook
Can we compute 
Poisson brackets and 
shadow Hamiltonians 
for gauge fields and 
fermions?
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Inexact Algorithms
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Let us take a small detour to consider what happens the 
an HMC-like algorithm if we omit the Metropolis step.

We assume that the momenta a completely refreshed from a 
Gaussian heatbath before each trajectory
Momentum distribution is not Gaussian at the end of a trajectory

( ) ( ) ( ),H q p S qdq dp e q qδ− −Δ ′ ′′= −∫

If such an algorithm is ergodic it has a unique fixed point  
( ) ( )( )S q S qe ′ ′− +Δ ( ) ( )( ) ( )

21
2
pS q S qdq e dp e q qδ−− +Δ ′ ′′= −∫ ∫

where the MD evolution is                              ( ): ( , ) ,U q p q p′′ ′′
( ) ( ) ( )

11

*det H S Udq dp U e q qδ
−− − +Δ′′ ′′ ′ ′′= −∫

( )
( )

,
* *,det det =tr ln q p

q p U U′′ ′′∂
∂ =and the Jacobian is
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Inexact Algorithms
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If we define the quantities

then we obtain

1:   violation of reversibilityU F U Fδ −Ω Ω − Ω
:   change in  over a trajectoryU F Fδ Ω Ω − Ω Ω

( )( ) *tr ln
1

H S U

p
e δ δ− + +Δ −

=

This may be expanded as an asymptotic series in the 
integration step size δτ to obtain an expression for ΔS

This shows that ΔS is a power series in δτ up to terms like             , where 
the constant C is not necessarily real

The form of ΔS is not known in closed form for long trajectories

/Ce δτ−
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Review

{ },
A B A B

A B
p q q p

∂ ∂ ∂ ∂
= −
∂ ∂ ∂ ∂

Monday, 13 June 2011 A D Kennedy

: 0dω ω =dq dp∧

Flat Manifold General
Symplectic 2-form

Hamiltonian 
vector field

Equations of 
motion

Poisson bracket

ˆ H HH
p q q p

∂ ∂ ∂ ∂
= −
∂ ∂ ∂ ∂ Ĥ

dH i ω=

,
H Hq p
p q

∂ ∂
= = −
∂ ∂

ˆd H
dt σ

=

{ } ˆ ˆ, ( , )A B A Bω= −

Darboux theorem:
All manifolds are 
locally flat
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Lie Group Manifolds
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A Lie Group is a differential manifold with a globally 
well-defined smooth multiplication :h g hg
This induces a smooth map on 0-forms (functions)

, i.e., * :h f f h ( ) ( )*h f g f hg=

Similarly, we have smooth induced map on vector 
fields (linear differential operators) *

*:h v v h

A left-invariant 0-form satisfies           for any h,
so it is specified by its value at the origin

— a constant, not very interesting

*f h f=

( ) ( ) ( )*1 1f g f f g= =

A left-invariant vector field satisfies ( )*v h v h= ∀
( ) ( ) ( )*

*h v f v h f v f h= =
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Lie Group Manifolds
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An frame of vectors        at the origin can therefore 
be extended to a frame of left-invariant vector fields 
over the whole group

{ }je

( ) ( )* 0i ie h h e=

Their commutators satisfy                          with

coefficients called structure constants

, k
i j ij k

k
e e c e⎡ ⎤ =⎣ ⎦ ∑

For a classical matrix group this is quite intuitive: each
element g of the group is associated with the frame which is 
obtained from that at the origin by the action of g
While there is a globally well-defined basis of left-invariant 
frame vector fields, but there are no globally well-defined 
coordinates
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Maurer—Cartan Equations
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1
2

i i j k
jk

jk
d cθ θ θ= − ∧∑

The dual left invariant forms with                  satisfy 

the Maurer—Cartan equations
{ }iθ ( )i i

j jeθ δ=

The Maurer—Cartan forms also provide the group-

invariant Haar measure 1 2 nd θ θ θΩ ≡ ∧ ∧ ∧…

( ) ( ) ( ) ( ), ,i i i i
j k j k k i j kd e e e e e e e eθ θ θ θ ⎡ ⎤= − − ⎣ ⎦

( )i i i
j k k j jke e c eδ δ θ= − − i

jkc= −

( )1
2

,

,i j k
j k j k

j k
c e eθ θ′ ′

′ ′
′ ′

= − ∧∑
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Fundamental 2-form
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We can invent any Classical Mechanics we 
want…

( )1
2

i i i i j k
jk

i
dp p cθ θ θ= ∧ + ∧∑

( )i i i i

i
dp p dθ θ= ∧ −∑

So we may therefore define the closed 
fundamental 2-form which globally defines 
an invariant Poisson bracket by

ω

i i

i
d pω θ≡ − ∑
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Hamiltonian Vector Field
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We may now follow the usual procedure to find the 
equations of motion

Define a vector field     such that
Ĥ

dH i ω=Ĥ

( )ˆ k k
i ji ii j i

i jk

H HH e c p e H
p p p

⎛ ⎞⎡ ⎤∂ ∂ ∂
= + −⎜ ⎟⎢ ⎥⎜ ⎟∂ ∂ ∂⎣ ⎦⎝ ⎠
∑ ∑

Introduce a Hamiltonian function (0-form)  on the 
cotangent bundle (phase space) over the group 
manifold

H
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Poisson Brackets
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( )ˆ k k
i ji ii j i

i jk

A AA e c p e A
p p p

⎛ ⎞⎡ ⎤∂ ∂ ∂
= + −⎜ ⎟⎢ ⎥⎜ ⎟∂ ∂ ∂⎣ ⎦⎝ ⎠
∑ ∑

For any Hamiltonian vector field

ˆ k k
i jii j i

i jk

T TT e c p
p p p

⎛ ⎞⎡ ⎤∂ ∂ ∂
= +⎜ ⎟⎢ ⎥⎜ ⎟∂ ∂ ∂⎣ ⎦⎝ ⎠
∑ ∑

( )ˆ
i i

i
S e S

p
∂

= −
∂∑

( )
2

 if 
2

i k k j
i ji i

i jk

pp e c p p T p
p

⎛ ⎞∂
= + =⎜ ⎟∂⎝ ⎠
∑ ∑

Â

So for                                we have vector fields( ) ( ) ( ),H q p T p S q= +
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More Poisson Brackets
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{ } ( )ˆ ˆ, ,S T S Tω= −

We thus compute the lowest-order Poisson bracket

and the Hamiltonian vector corresponding to it

{ } { } { } { }( ), ,
, ,k k

i ji ii j i
i jk

S T S T
S T e c p e S T

p p p
⎛ ⎞⎡ ⎤∂ ∂ ∂

= + −⎜ ⎟⎢ ⎥⎜ ⎟∂ ∂ ∂⎣ ⎦⎝ ⎠
∑ ∑

( ) ( ) ( )k k j
i i ji j i j ie S e c p e S p e e S

p
∂⎡ ⎤= − + − +⎣ ⎦ ∂

( ) ( ) ( )1
2

ˆ ˆ,i i i i j k i
jk idp p c S T p e Sθ θ θ= − ∧ + ∧ = −
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Even More Poisson Brackets
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{ }{ }
{ }{ }

{ }{ }{ }{ }
{ } { }{ }{ }

{ }{ }{ }{ }
{ } { }{ }{ }

, , ( ) ( )

, , ( )

, , , , 2 ( ) ( ) ( ) ( )

, , , , ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

, , , , 0

, , , , 2

i i

i j
i j

i j
i j k k i k j k

i i
jk j k k

i j
k k i j k i i k k j

i

S S T e S e S

T S T p p e e S

T T S S T p p e e e S e S e e S e e S

S T T S T c p p e S e e S e e S

p p e S e e e S e e S e e S e e S

T S S S T

S T S S T e

=

= −

⎡ ⎤= +⎣ ⎦

= + +⎡ ⎤⎣ ⎦

⎡ ⎤+ − +⎡ ⎤⎣ ⎦⎣ ⎦

=

= −

{ }{ }{ }{ }
{ }{ }{ }{ }

( ) ( ) ( )

, , , , ( )

, , , , 0

j i j

i j k
i j k

S e S e e S

T T T S T p p p p e e e e S

S S S S T

= −

=



74

Computing Poisson Brackets

Fortunately there is a recursive way of 
computing them which is tractable 
even for more complicated gauge 
actions

It involves inserting previously computed Lie-
algebra-valued fields living on links into the 
loops in the action using a “tower” algorithm

Monday, 13 June 2011 A D Kennedy

These are quite complicated (some might say 
disgusting) objects to compute on the lattice

Even for the simplest Wilson gauge action
They consists sums of complicated lattice loops with momenta
inserted in various places
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Fermion Poisson Brackets
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Fermions are easy to include in the formalism: we 
only need a few extra linear equation solves

( ) ( ) ( )† 1 1 †TrFS U U Uφ φ φ φ− −⎡ ⎤= = ⊗⎣ ⎦M M

1
1 1

U U

−
− −∂ ∂

= −
∂ ∂
M M

M M
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Tuning Your Integrator

Monday, 13 June 2011 A D Kennedy

For any (symmetric) 
symplectic integrator the 
conserved Hamiltonian is 
constructed from the same
Poisson brackets
A procedure for tuning such 
integrators is

Measure the Poisson brackets during 
an HMC run
Optimize the integrator (number of 
pseudofermions, step-sizes, order of 
integration scheme, etc.) offline 
using these measured values
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What to Tune
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It is much better to 
minimize the variance
of  

This is a function of two 
sets of quantities

The ensemble-averaged 
Poisson brackets
The integrator parameters

HΔ

H H H ′Δ ≡ −
As I said a while ago, 
minimizing
is not a good choice

Clark, Kennedy, and Silva 
Lattice 2008 (JLab)
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Why Minimize the Variance?
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f iH H H Hδ δ= − = Δ

As the system wanders through 
phase space     is constant, soH ′

We hypothesize that the distribution 
of      is essentially sampled 
independently and randomly at the 
start and end of each equilibrium 
trajectory

HΔ

Clark, Kennedy, and Silva 
Lattice 2008 (JLab)

Therefore we want to minimize the 
variance of this distribution
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Simplest Integrators
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{ }{ } { }{ }( )

{ }{ } { }{ }( )

{ }{ }
( )

2
/ 2 / 2

2
2 2

2 2
6 3 62 2

3 3 3

36 2 2

Integrator Update Steps Shadow Hamiltonian

, , 2 , ,
24

2 , , , ,
24

Omelyan , ,
72

Omelyan 

S T S

T T
S

S S ST T

S ST T

PQP e e e T S S S T T S T

QPQ e e e T S S S T T S T

SST e e e e e T S S S T

TST e e e e e

ε ε
ε

ε ε εε ε

ε εε ε

ε

ε

ε

− −

+ − +

+ + +

+ +

( )
{ }{ }

3
26 3 2

T, S,T
24

S

T S
ε

ε−
+ +
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Eliminate the leading order error by choosing            and 

adjust the step size by setting

to obtain

2nσ =

( )2δτ ε σ= −

( ) ( ) ( ) ( ) ( )2
2 1H n

n n n nX X X X e δτδτ ε σε ε δτ +
+

⎡ ⎤= − = +⎣ ⎦

Campostrini Integrators

Monday, 13 June 2011 A D Kennedy

Campostrini found an ingenious way of 
constructing integrators with errors of 
arbitrarily high order

Start with an integrator with errors of order n in the 
integration step size ( ) ( ) ( )21H H n n

nX e eε ε εε ε ε′ +⎡ ⎤≡ = + Δ +⎣ ⎦

( ) ( ) ( ) ( ) ( ) ( )2 21 2H n n n
n n nX X X e ε σε σε ε ε σ ε− +⎡ ⎤− = + − Δ +⎣ ⎦

Construct the “wiggle” sandwiching a backward step of this 
integrator between two forward ones
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Campostrini Integrators
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( ) { }{ }{ }{ } ( ) { }{ }{ }{ }

3 33 3

3 33 3 3 3

3 3 3 3

3 3 3
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4 2 2 44 2 2 4
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4 2 2 14 2 2 2 4 2 2 2
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4 2 2 4 4 2 2 4
6 12

40 4+40 2+48 , , , , + 20 2+32 , , , ,

60 4+

Integrator Campostrini

Update Steps

Shadow Hamiltonian
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ST T
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T S

S S S S T T T S S T

e e

e e e

e e

εε

εε ε

ε ε

+ ++ +

+ +− − + − − +
−

+ + + +

+

−

+

+

×

×

( ) { } { }{ }{ } ( ) { }{ }{ }{ }
( ) { } { }{ }{ } ( ) { }{ }{ }{ }

3 3

3 3 3

80 2+104 , , , , 20 4+8 , , , ,

+ 180 4+240 2+312 , , , , 5 2+8 , , , ,
4

34560

S T T S T T S S S T

S T S S T T T T S T
ε

⎛ ⎞
⎜ ⎟
⎜ ⎟

+ −⎜ ⎟
⎜ ⎟
⎜ ⎟+
⎝ ⎠
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Force-Gradient Integrators
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We may therefore evaluate the integrator
explicitly{ }{ } 3, ,S S Te δτ

An interesting observation is that the Poisson 
bracket                 depends only of q{ }{ }, ,S S T

The force for this integrator involves second 
derivatives of the action

Using this type of step we can construct 
efficient Force-Gradient (Hessian) integrators
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Force-Gradient Integrators
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{ }{ } { }{ }{ }{ } { }{ }{ }{ }
{ } { }{ }{ } { }{ }{ }{ }
{ } { }{ }{ } { }{ }{ }{ }

3

3
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48 , ,
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3
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Integrator Update Steps Shadow Hamiltonian
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e e e

e

e e e

ε ε ε

ε ε

ε ε ε

−

+

⎛ ⎞+
⎜
⎜ + +⎜
⎜
⎜ + +
⎝+
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S S S T
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T S

S S S S T T T S S T

S T T S T T S S S T

S T S S T T T T S T
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e

e e

ε ε

ε ε

εε
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ε

−

⎟
⎟
⎟
⎟
⎟
⎠
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⎛ ⎞
⎜ ⎟
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⎜ ⎟
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Multiple timescales

and                       , so 1 2H T S S= + +( )i iS S q
p
∂′≡ −
∂

( )T T p
q
∂′≡
∂

1 2( , ) ( ) ( ) ( )H q p T p S q S q= + +Split Hamiltonian into pieces

Introduce a symmetric symplectic integrator of the 

form
2 1 1 21 1 1 1

2 1 1 22 2 2 22 1 1 2

/

/
SW ( ) n n n n

n n n nS S STU e e e e e
τ δτ

δτ δτ δτ δττ δτ δτδτ
⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

If                         then the instability in the integrator is 

tickled equally by each sub-step

1 2

1 22 2

S S
P

n n
≈ ≈

This helps if the most expensive force computation does not 
correspond to the largest force                   
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Pseudofermions

Direct simulation of Grassmann fields is not feasible
The problem is not that of manipulating anticommuting
values in a computer

We therefore integrate out the fermion fields to 
obtain the determinant ( )detMd d e Mψ ψψ ψ − ∝∫

It is that                    is not positive, and thus we 
get poor importance sampling

FS Me e ψ ψ− −=

and    always occur quadraticallyψψ

The overall sign of the exponent is unimportant
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Pseudofermions

( ) ( )

0

, , Me ψ φ ψ

ψ ψ

δ δφ φ
δψ δψ

−

= =

⎛ ⎞
′Ω = Ω⎜ ⎟

⎝ ⎠

Any operator Ω can be expressed solely in 
terms of the bosonic fields

( ) ( ) 1( , ) ( , )G x y x y M x yψ ψ ψ −= =

E.g., the fermion propagator is
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Pseudofermions

Represent the fermion determinant as a bosonic Gaussian 
integral with a non-local kernel ( ) ( )1

det MM d d e χ φ χφ χ χ
−−∝ ∫

The fermion kernel must be positive definite (all its 
eigenvalues must have positive real parts) otherwise the 
bosonic integral will not converge
The new bosonic fields are called pseudofermions

The determinant is extensive in the lattice volume, thus again we 
get poor importance sampling

Including the determinant as part of the observable to be 

measured is not feasible
( ) ( )

( )
det

det
B

B

S

S

M

M

φ φ

φ

Ω
Ω =
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Pseudofermions
It is usually convenient to introduce two flavours of fermion 
and to write  ( )( ) ( ) ( )( ) ( ) 1†2 †det det

M MM M M d d e χ χ
φ φ φ χ χ

−
−

= ∝ ∫

The evaluation of the pseudofermion action and the 
corresponding force then requires us to find the solution of a 
(large) set of linear equations ( ) 1†M M χ ψ

−
=

This not only guarantees positivity, but also allows us to generate 
the pseudofermions from a global heatbath by applying      to a 
random Gaussian distributed field 

†M

The equations for motion for the boson (gauge) fields are

( ) ( ) ( ) ( ) ( ) ( )
†1 1 1† † † † †B BS S

M M M M M M M M

φ π
φ φ

π χ χ χ χ
φ φ φ φ

− − −

=

∂ ∂∂ ∂⎡ ⎤ ⎡ ⎤= − − = − + ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∂ ∂ ∂ ∂
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Pseudofermions

It is not necessary to carry out the inversions 
required for the equations of motion exactly

There is a trade-off between the cost of computing the force 
and the acceptance rate of the Metropolis MDMC step

The inversions required to compute the 
pseudofermion action for the accept/reject 
step does need to be computed exactly, 
however

We usually take “exactly” to by synonymous with “to 
machine precision”
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Reversibility

Are HMC trajectories reversible and area 
preserving in practice?

The only fundamental source of irreversibility is the rounding 
error caused by using finite precision floating point arithmetic

For fermionic systems we can also introduce irreversibility by 
choosing the starting vector for the iterative linear equation solver 
time-asymmetrically

We do this if we to use a Chronological Inverter, which takes (some 
extrapolation of) the previous solution as the starting vector

Floating point arithmetic is not associative
It is more natural to store compact variables as scaled integers 
(fixed point)

Saves memory
Does not solve the precision problem
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Reversibility

Data for SU(3) gauge theory 
and QCD with heavy quarks 
show that rounding errors are 
amplified exponentially

The underlying continuous 
time equations of motion are 
chaotic
Ляпунов exponents 
characterise the divergence of 
nearby trajectories
The instability in the integrator 
occurs when δH » 1

Zero acceptance rate anyhow
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Reversibility

In QCD the Ляпунов exponents appear 
to scale with β as the system approaches 
the continuum limit β → ∞

νξ = constant
This can be interpreted as saying that the 
Ляпунов exponent characterises the 
chaotic nature of the continuum classical 
equations of motion, and is not a lattice 
artefact
Therefore we should not have to worry 
about reversibility breaking down as we 
approach the continuum limit
Caveat: data is only for small lattices, and 
is not conclusive



95Monday, 13 June 2011 A D Kennedy

Data for QCD with 
lighter dynamical quarks

Instability occurs close 
to region in δτ where 
acceptance rate is near 
one

May be explained as 
a few “modes” 
becoming unstable 
because of large 
fermionic force 

Integrator goes 
unstable if too poor an 
approximation to the 
fermionic force is used

Reversibility
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What is the best polynomial 
approximation p(x) to a continuous
function f(x) for x in [0,1] ?

Polynomial approximation

Best with respect to the appropriate norm

where n ≥ 1

1 /1

0

( ) ( )
n

np f dx p x f xn
⎛ ⎞

− = −⎜ ⎟
⎝ ⎠
∫
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Weierstraß’ theorem

Weierstraß: Any continuous 
function can be arbitrarily well 
approximated by a polynomial

0 1
minmax ( ) ( )

p x
p f p x f x

≤ ≤
− = −∞

Taking n →∞ this is the minimax
norm
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Бернштейне polynomials

( )
0

(1 )
n

n n k
n

k

nkf x x
n k

p x −

=

⎛ ⎞⎛ ⎞ −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
≡ ∑

The explicit solution is 
provided by Бернштейне
polynomials
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Чебышев’s theorem

The error |p(x) - f(x)| reaches its 
maximum at exactly d+2 points on 
the unit interval

( ) ( )
0 1
max

x
p f p x f x

∞ ≤ ≤
− = −

Чебышев: There is always a 
unique polynomial of any 
degree d which minimises 
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Чебышев’s theorem: 
Necessity

Suppose p-f has less than d+2 extrema of equal magnitude
Then at most d+1 maxima exceed some magnitude

And whose magnitude is smaller than the “gap”
The polynomial p+q is then a better approximation than p to f

This defines a “gap”
We can construct a polynomial q of degree d which has the opposite sign to p-f at 
each of these maxima (Lagrange interpolation)



102Monday, 13 June 2011 A D Kennedy

Чебышев’s theorem: 
Sufficiency

Then                                                         at each of the d+2 extrema( ) ( ) ( ) ( )i i i ip x f x p x f x′ − ≤ −

Thus p’ – p = 0 as it is a polynomial of degree d

Therefore p’ - p must have d+1 zeros on the unit interval

Suppose there is a polynomial p f p f
∞ ∞

′ − ≤ −



103Monday, 13 June 2011 A D Kennedy

The notation is an old transliteration of Чебышев !

Чебышев polynomials

Convergence is often exponential in d
The best approximation of degree d-1 over [-1,1] to 
xd is ( ) ( ) ( )

1

1
1
2

d
d

d dp x x T x
−

− ≡ −

( ) ( )( )1cos cosdT x d x−=

Where the Чебышев polynomials are

( ) ( ) ( )
1 ln21 2

2

d
d

d d
dx p x T x e

−

∞∞

−− = =The error is
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Чебышев rational functions

Чебышев’s theorem is easily extended to 
rational approximations

Rational functions with nearly equal degree numerator and 
denominator are usually best
Convergence is still often exponential 
Rational functions usually give a much better approximation

A simple (but somewhat slow) numerical 
algorithm for finding the optimal Чебышев 
rational approximation was given by Ремез
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Чебышев rationals: Example
A realistic example of a rational approximation is

( ) ( ) ( )
( ) ( ) ( )
x  2.3475661045 x  0.1048344600 x  0.00730638141

0.3904603901
x  0.4105999719 x  0.0286165446 x  0.0012779193x
+ + +

≈
+ + +

Using a partial fraction expansion of such rational functions 
allows us to use a multishift linear equation solver, thus 
reducing the cost significantly.

1 0.0511093775 0.1408286237 0.5964845033
0.3904603901

x  0.0012779193 x  0.0286165446 x  0.4105999719x
≈ + + +

+ + +

The partial fraction expansion of the rational function above is

This is accurate to within almost 0.1% over the range [0.003,1]

This appears to be numerically stable.
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Polynomials versus rationals

Optimal L2 approximation with weight               
is

2

1

1 x−
2 1

0

( ) 4
( )

(2 1)

jn

j
j

T x
j π +

=

−
+∑

Optimal L∞ approximation cannot be too 
much better (or it would lead to a better L2
approximation)

ln
n

e εΔ ≤Золотарев’s formula has L∞ error

This has L2 error of O(1/n)
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Non-linearity of CG solver

Suppose we want to solve A2x=b for 
Hermitian A by CG

It is better to solve Ax=y, Ay=b successively
Condition number κ(A2) = κ(A)2

Cost is thus 2κ(A) < κ(A2) in general

Suppose we want to solve Ax=b
Why don’t we solve A1/2x=y, A1/2y=b successively?

The square root of A is uniquely defined if A>0
This is the case for fermion kernels

All this generalises trivially to nth roots
No tuning needed to split condition number evenly

How do we apply the square root of a matrix?
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Rational matrix approximation

Functions on matrices
Defined for a Hermitian matrix by diagonalisation
H = U D U -1

f (H) = f (U D U -1) = U f (D) U -1

Rational functions do not require diagonalisation
α H m + β H n = U (α D m + β D n) U -1

H -1 = U D -1 U -1

Rational functions have nice properties
Cheap (relatively) 
Accurate 
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No Free Lunch Theorem

We must apply the rational approximation 
with each CG iteration

M1/n ≈ r(M)
The condition number for each term in the partial fraction 
expansion is approximately κ(M)
So the cost of applying M1/n is proportional to κ(M)
Even though the condition number κ(M1/n)=κ(M)1/n

And even though κ(r(M))=κ(M)1/n

So we don’t win this way…
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Pseudofermions

We want to evaluate a functional integral 
including the fermionic determinant det M

1

det MM d d e φ φφ φ
−∗−∗∝ ∫

We write this as a bosonic functional integral 
over a pseudofermion field with kernel M -1
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Multipseudofermions

We are introducing extra noise into the system by 
using a single pseudofermion field to sample this 
functional integral

This noise manifests itself as fluctuations in the force 
exerted by the pseudofermions on the gauge fields
This increases the maximum fermion force
This triggers the integrator instability
This requires decreasing the integration step size

11

det
nMnM d d e φ φφ φ

−∗−∗∝ ∫

A better estimate is det M = [det M1/n]n
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Hasenbusch’s method

Introduce separate pseudofermions for each 
determinant ( )1det det detM M M M−′ ′=

Easily generalises
More than two pseudofermions
Wilson-clover action

Adjust κ’ to minimise the cost

1M M M M−′ ′=Use the (associative) identity 

1M Hκ= −Start with the Wilson fermion kernel

1M Hκ′ ′= −Introduce the quantity
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Violation of NFL Theorem

Let’s try using our n th root trick to implement 
multipseudofermions

Condition number κ(r(M))=κ(M)1/n

So maximum force is reduced by a factor of nκ(M)(1/n)-1

This is a good approximation if the condition number is dominated 
by a few isolated tiny eigenvalues
This is so in the case of interest

Cost reduced by a factor of nκ(M)(1/n)-1

Optimal value nopt ≈ ln κ(M)
So optimal cost reduction is (e lnκ) /κ

This works!
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Rational Hybrid Monte Carlo

Generate pseudofermion from Gaussian heatbath

RHMC algorithm for fermionic kernel ( )
1

2† nMM

†1
2( )P e ξ ξξ −∝ ( )χ ξ=

1
4† nMM

( ) ( )
1

1 † †1 2†1
4 22 †( )

n
nP d e e χ χξ ξχ ξ δ χ ξ

−∞ −−

−∞

⎛ ⎞∝ − ∝⎜ ⎟∫
⎝ ⎠

MM
MM

Use accurate rational approximation ≈ 4( ) nr x x

Use less accurate approximation for MD, ≈ 2( ) nr x x
, so there are no double poles2( ) ( )r x r x≠

Use accurate approximation for Metropolis acceptance step
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Rational Hybrid Monte Carlo

Reminders
Apply rational approximations using their partial fraction 
expansions
Denominators are all just shifts of the original fermion kernel

All poles of optimal rational approximations are real and positive for 
cases of interest (Miracle #1)
Only simple poles appear (by construction!)

Use multishift solver to invert all the partial fractions using a single 
Krylov space

Cost is dominated by Krylov space construction, at least for O(20)
shifts

Result is numerically stable, even in 32-bit precision
All partial fractions have positive coefficients (Miracle #2)

MD force term is of the usual form for each partial fraction
Applicable to any kernel
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Multipseudofermions with 
multiple timescales

Semiempirical observation: 
The largest force from a 
single pseudofermion does 
not come from the smallest 
shift

1 0.0511093775 0.1408286237 0.5964845033
0.3904603901

x  0.0012779193 x  0.0286165446 x  0.4105999719x
≈ + + +

+ + +

For example, look at the 
numerators in the partial 
fraction expansion we 
exhibited earlier

Make use of this by using a 
coarser timescale for the 
more expensive smaller 
shifts

0%

25%

50%

75%

100%

-13 -10 -8.5 -7.1 -5.8 -4.4 -3.1 -1.7 -0.3 1.5

Shift [ln(β)]

Residue (α)
L² Force
α/(β+0.125)
CG iterations
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L2 versus L∞ Force Norms

Wilson fermion forces (from Urbach et. al.)

β=5.6, 243×32
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Conclusions (RHMC)

Advantages of RHMC
Exact

No step-size errors; no step-size extrapolations

Significantly cheaper than the R algorithm
Allows easy implementation of Hasenbusch
(multipseudofermion) acceleration
Further improvements possible

Such as multiple timescales for different terms in the partial 
fraction expansion

Disadvantages of RHMC
Costly for FG integrators (numerous right hand sides)
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