

Outline

*. Monte Carlo integration

- Markov Chain Monte Carlo
* Autocorrelations
* Hybrid Monte Carlo
* Symplectic Integrators
* Shadow Hamiltonians
- Gauge Fields
* Fermions

Monte Carlo Integration

- Monte Carlo integration is based on the identification of probabilities with measures
- There are much better methods of carrying out low dimensional quadrature
- All other methods become hopelessly expensive for large dimensions
- In lattice QFT there is one integration per degree of freedom
- We are approximating an infinite dimensional functional integral

Monte Carlo Integration

- Generate a sequence of random field configurations $\left(\phi_{1}, \phi_{2}, \ldots, \phi_{t}, \ldots, \phi_{N}\right)$ chosen from the probability distribution

$$
P\left(\phi_{t}\right) d \phi_{t}=\frac{1}{Z} e^{-S\left(\phi_{t}\right)} d \phi_{t}
$$

* Measure the value of Ω on each configuration and compute the average

$$
\bar{\Omega} \equiv \frac{1}{N} \sum_{t=1}^{N} \Omega\left(\phi_{t}\right)
$$

Central Limit Theorem

* Law of Large Numbers $\langle\Omega\rangle=\lim _{N \rightarrow \infty} \bar{\Omega}$
- Central Limit Theorem $\langle\Omega\rangle \sim \bar{\Omega}+O\left(\sqrt{\frac{c_{2}}{N}}\right)$

Q where the variance of the distribution of Ω is $C_{2} \equiv\left\langle(\Omega-\langle\Omega\rangle)^{2}\right\rangle$

- The Laplace-DeMoivre Central Limit theorem is an asymptotic expansion for the probability distribution of $\bar{\Omega}$

Distribution of values for a single sample $\omega=\Omega(\phi)$

$$
P_{\Omega}(\omega) \equiv \int d \phi P(\phi) \quad \delta(\omega-\Omega(\phi))=\langle\delta(\omega-\Omega(\phi))\rangle
$$

Central Limit Theorem

* Generating function for connected moments

$$
\begin{aligned}
W_{\Omega}(k) & \equiv \ln \int d \omega \quad P_{\Omega}(\omega) \quad e^{i k \omega} \\
& =\ln \int d \phi P(\phi) \quad e^{i k \Omega(\phi)}=\ln \left\langle e^{i k \Omega}\right\rangle \sim \sum_{n=0}^{\infty} \frac{(i k)^{n}}{n!} C_{n}
\end{aligned}
$$

- The first few cumulants are

$$
\begin{array}{ll}
C_{0}=0 & C_{3}=\left\langle(\Omega-\langle\Omega\rangle)^{3}\right\rangle \\
C_{1}=\langle\Omega\rangle & C_{4}=\left\langle(\Omega-\langle\Omega\rangle)^{4}\right\rangle-3 C_{2}^{2} \\
C_{2}=\left\langle(\Omega-\langle\Omega\rangle)^{2}\right\rangle &
\end{array}
$$

* Note that this is an asymptotic expansion

Central Limit Theorem

- Distribution of the average of N samples

$$
P_{\bar{\Omega}}(\bar{\omega}) \equiv \int d \phi_{1} \ldots d \phi_{N} \quad P\left(\phi_{1}\right) \ldots P\left(\phi_{N}\right) \quad \delta\left(\bar{\omega}-\frac{1}{N} \sum_{t=1}^{N} \Omega\left(\phi_{t}\right)\right)
$$

* Connected generating function

$$
\begin{aligned}
W_{\bar{\Omega}}(k) & \equiv \ln \int d \bar{\omega} \quad P_{\bar{\Omega}}(\bar{\omega}) \quad e^{i k \bar{\omega}} \\
& =\ln \int d \phi_{1} \ldots d \phi_{N} P\left(\phi_{1}\right) \ldots P\left(\phi_{N}\right) \quad \exp \left[\frac{i k}{N} \sum_{t=1}^{N} \Omega\left(\phi_{t}\right)\right] \\
& =\ln \left[\int d \phi \quad P(\phi) e^{i k \Omega(\phi) / N}\right]^{N}=N \ln \left\langle e^{i k \Omega / N}\right\rangle \\
& =N W_{\Omega}\left(\frac{k}{N}\right) \sim \sum_{n=1}^{\infty} \frac{(i k)^{n}}{n!} \frac{C_{n}}{N^{n-1}}
\end{aligned}
$$

Central Limit Theorem

* Take inverse Fourier transform to obtain distribution $P_{\bar{\Omega}}$

$$
\begin{aligned}
P_{\bar{\Omega}}(\bar{\omega}) & =\frac{1}{2 \pi} \int d k \quad e^{W_{\Omega}(k)} e^{-i k \bar{\omega}} \\
& \sim e^{-\frac{C_{3}}{3!N^{2}} \frac{d^{3}}{d \bar{\omega}^{-3}}+\frac{C_{4}}{4!N^{3}} \frac{d^{4}}{d \omega^{4}}-\cdots} \int \frac{d k}{2 \pi} e^{i k\langle\Omega\rangle+\frac{1}{2 N}(i k)^{2} C_{2}} e^{-i k \bar{\omega}} \\
& =e^{-\frac{C_{3}}{3!N^{2} \frac{d^{3}}{d \bar{\omega}^{-3}}+\frac{C_{4}}{4!N^{3}} \frac{d^{4}}{d \bar{\omega}^{4}} \cdots} \frac{e^{-\frac{(\bar{\omega}-(\Omega))^{2}}{2 C_{2} / N}}}{\sqrt{2 \pi C_{2} / N}}}
\end{aligned}
$$

Central Limit Theorem

Re-scale to show convergence to Gaussian distribution

$$
P_{\bar{\Omega}}(\bar{\omega})=F(\xi) \frac{d \xi}{d \bar{\omega}}
$$

- where $\xi \equiv(\bar{\omega}-\langle\Omega\rangle) \sqrt{N}$ and

$$
F(\xi)=\left[1+\frac{C_{3} \xi\left(\xi^{2}-3 C_{2}\right)}{6 C_{2}^{3} \sqrt{N}}+\cdots\right] \frac{e^{-\xi^{2} / 2 C_{2}}}{\sqrt{2 \pi C_{2}}}
$$

Asymptotic Expansions

- If $\int d x e^{\frac{f(x)-f\left(x_{0}\right)}{\delta^{2}}}$ exists for $\varepsilon \leq \varepsilon_{0}$, where x_{0} is the absolute minimum of $f_{\text {, }}$ show that

$$
\begin{array}{r}
\int_{-\infty}^{\infty} d x e^{-\frac{f(x)-f\left(x_{0}\right)}{\varepsilon^{2}}}=\int_{-\infty}^{\infty} d x e^{-\frac{1}{\varepsilon^{2}}\left[\frac{1}{2} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}+\cdots\right]} \\
=\varepsilon \int_{-\infty}^{\infty} d \xi e^{-\frac{1}{2} f^{\prime \prime \prime}\left(x_{0}\right) \xi^{2}}[1+O(\varepsilon)] \\
=\varepsilon \sqrt{\frac{1}{2} \pi f^{\prime \prime}\left(x_{0}\right)[1+O(\varepsilon)]} \text { (e) }
\end{array}
$$

Laplace's Method

$$
\begin{aligned}
& \int_{-\infty}^{\infty} d x e^{\frac{f(x)-f\left(x_{0}\right)}{\varepsilon^{2}}}=\int_{x_{0}-\Delta}^{x_{0}+\Delta} d x e^{\frac{f(x)-f\left(x_{0}\right)}{\varepsilon^{2}}}+\int_{\left|x-x_{0}\right\rangle \Delta} d x e^{\frac{f(x)-f\left(x_{0}\right)}{\varepsilon^{2}}} \\
& =\int_{x_{0}-\Delta}^{x_{0}+\Delta} d x e^{\frac{f(x)-f\left(x_{0}\right)}{\varepsilon^{2}}} \\
& =\varepsilon \sum_{j=0}^{\infty} c_{j} \varepsilon^{\delta^{j}} \int_{x_{0}-\Lambda}^{x_{0}+\Delta} d \xi^{\xi} \xi^{j+2} e^{-\frac{1}{2} r^{\mu}\left(x_{0}\right) \xi^{2}} \sim \varepsilon \sum_{j=0}^{\infty} c_{j} \varepsilon^{j} \int_{-\infty}^{\infty} d \xi^{\xi} \xi^{j+2} e^{\frac{-1}{2} r^{\mu}\left(x_{0}\right) \xi^{2}}
\end{aligned}
$$

Proof for Laplace's Method

$$
\begin{aligned}
& f(x)-f\left(x_{0}\right) \geq K \mid x \\
& f(x) \geq f\left(x_{0}+\delta^{\prime}\right) \\
& f(x)-f\left(x_{0}\right) \geq K \Delta^{2}
\end{aligned}
$$

$$
I_{\varepsilon}=\int_{x_{0}+\Delta}^{\infty} d x e^{-\frac{f(x)-f\left(x_{0}\right)}{\varepsilon^{2}}}
$$

$$
\leq \int_{x_{0}+\Delta}^{\infty} d x e^{\frac{f(x)-f\left(x_{0}\right)}{\varepsilon_{0}^{2}}} e^{-\left(\frac{1}{\varepsilon^{2}}-\frac{1}{\varepsilon_{0}^{2}}\right) k \Delta^{2}}
$$

$$
\leq I_{\varepsilon_{0}} e^{-\left(\frac{1}{\varepsilon^{2}}-\frac{1}{\varepsilon_{0}^{2}}\right) K \Delta^{2}}
$$

Monte carco

Wednesday, 15 June 2011

Markov Chains

- State space Ω
* (Ergodic) stochastic transitions $P^{\prime}: \Omega \rightarrow \Omega$
* Deterministic evolution of probability distribution $P: Q \rightarrow Q$
- Distribution converges to unique fixed point \bar{Q}

Convergence of Markov Chains

- Define a metric $d\left(Q_{1}, Q_{2}\right) \equiv \int d x\left|Q_{1}(x)-Q_{2}(x)\right|$ on the space of (equivalence classes of) probability distributions
- Prove that $d\left(P Q_{1}, P Q_{2}\right) \leq(1-\alpha) d\left(Q_{1}, Q_{2}\right)$ with $\alpha>0$, so the Markov process P is a contraction mapping
- The sequence $Q, P Q, P^{2} Q, P^{3} Q, \ldots$ is Cauchy
- The space of probability distributions is complete, so the sequence converges to a unique fixed point $Q=\lim _{n \rightarrow \infty} P^{n} Q$

Simple but Inadequate Proof

$$
\begin{aligned}
& d\left(P Q_{1}, P Q_{2}\right)=\int d x\left|P Q_{1}(x)-P Q_{2}(x)\right| \\
& \quad=\int d x\left|\int d y P(x \leftarrow y) Q_{1}(y)-\int d y P(x \leftarrow y) Q_{2}(y)\right| \\
& \quad=\int d x\left|\int d y P(x \leftarrow y) \Delta Q(y)\right| \quad \Delta Q(y) \quad Q_{1}(y)-Q \\
& \quad \leq \int d x \int d y P(x \leftarrow y)|\Delta Q(y)| \\
& \quad=\int d y \int d x P(x \leftarrow y)|\Delta Q(y)| \\
& \quad=\int d y|\Delta Q(y)|=d\left(Q_{1}, Q_{2}\right) \quad|d x|
\end{aligned}
$$

Proof

$d\left(P Q_{1}, P Q_{2}\right)=\int d x\left|P Q_{1}(x)-P Q_{2}(x)\right|$
$=\int d x\left|\int d y P(x \leftarrow y) Q_{1}(y)-\int d y P(x \leftarrow y) Q_{2}(y)\right|$
$=\int d x\left|\int d y P(x \leftarrow y) \Delta Q(y)\right|$
$=\int d x\left|\int d y P(x \leftarrow y) \Delta Q(y)[\theta(\Delta Q(y))+\theta(-\Delta Q(y))]\right|$
$=\int d x \int d y P(x \leftarrow y)|\Delta Q(y)|$
$-2 \int d x \min _{ \pm}\left|\int d y P(x \leftarrow y) \Delta Q(y) \theta(\pm \Delta Q(y))\right|$

Proof

$d\left(P Q_{1}, P Q_{2}\right)$

$=\int d y|\Delta Q(y)|-2 \int d x \min _{ \pm}\left|\int d y P(x \leftarrow y) \Delta Q(y) \theta(\pm \Delta Q(y))\right|$
$\leq \int d y|\Delta Q(y)|-2 \int d x \inf _{y} P(x \leftarrow y) \min _{ \pm}\left|\int d y \Delta Q(y) \theta(\pm \Delta Q(y))\right|$

$$
\leq \int d y|\Delta Q(y)|-\int d x \inf _{y} P(x \leftarrow y) \int d y|\Delta Q(y)| \leq(1-\alpha) d\left(Q_{1}, Q_{2}\right)
$$

$d x \inf P$

Banach Fixed-Point Theorem

- We show that the sequence of distributions is Cauchy

$$
\begin{aligned}
& d\left(P^{m} Q_{1} P^{n} Q\right) \leq \sum_{j=0}^{n-m-1} d\left(P^{m+j} Q_{1} P^{m+j+1} Q\right) \\
& \quad \leq \sum_{j=0}^{n-m-1}(1-\alpha)^{j} d\left(P^{m} Q_{1} P^{m+1} Q\right) \leq d\left(P^{m} Q_{1} P^{m+1} Q\right) \sum_{j=0}^{\infty}(1-\alpha)^{j} \\
& \quad=\frac{d\left(P^{m} Q_{1} P^{m+1} Q\right)}{\alpha}=\frac{(1-\alpha)^{m}}{\alpha} d(Q, P Q)<\varepsilon
\end{aligned}
$$

for any $\varepsilon>0$, provided m is large enough and $\alpha>0$.

* Hence the sequence converges to the unique fixed point probability distribution $\bar{Q}=\lim _{n \rightarrow \infty} P^{n} Q$

Markov Chains

- Use Markov chains to sample from Q
* Suppose we can construct an ergodic Markov process P which has distribution Q as its fixed point
- Start with an arbitrary state ("field configuration")
- Iterate the Markov process until it has converged ("thermalized")
- Thereafter, successive configurations will be distributed according to Q
- But in general they will be correlated
- To construct P we only need relative probabilities of states
* Do not know the normalisation of Q
* Cannot use Markov chains to compute integrals directly
* We can compute ratios of integrals

Markov Chains

- How do we construct a Markov process with a specified fixed point $\bar{Q}(x)=\int d y P(x \leftarrow y) \bar{Q}(y)$?

2. Detailed balance $P(y \leftarrow x) \bar{Q}(x)=P(x \leftarrow y) \bar{Q}(y)$

- Integrate w.r.t. y to obtain fixed point condition
- Sufficient but not necessary for fixed point
-. Metropolis algorithm $P(x \leftarrow y)=\min (1, \bar{Q}(x))$
- Consider cases $\bar{Q}(x)>\bar{Q}(y)$ and $\bar{Q}(x)<\bar{Q}(y)$ separately to obtain detailed balance condition
- Sufficient but not necessary for detailed balance
- Other choices are possible, e.g., $P(x \leftarrow y)=\frac{\bar{Q}(x)}{\bar{Q}(x)+\bar{Q}(y)}$

Markov Chains

- Composition of Markov steps
- Let P_{1} and P_{2} be two Markov steps which have the desired fixed point distribution
- They need not be ergodic
*. Then the composition of the two steps $P_{2} \circ P_{1}$ will also have the desired fixed point
- And it may be ergodic
* This trivially generalises to any (fixed) number of steps
* For the case where P_{1} is not ergodic but $\left(P_{1}\right)^{n}$ is the terminology weakly and strongly ergodic are sometimes used

Markov Chains

* This result justifies "sweeping" through a lattice performing single site updates
* Each individual single site update has the desired fixed point because it satisfies detailed balance
* The entire sweep therefore has the desired fixed point, and is ergodic
* But the entire sweep does not satisfy detailed balance
- Of course it would satisfy detailed balance if the sites were updated in a random order
- But this is not necessary
* And it is undesirable because it puts too much randomness into the system

Markov Chains

* Coupling from the Past
- Propp and Wilson (1996)
- Use fixed set of random numbers
- Flypaper principle: If states coalesce they stay together forever
- Eventually, all states coalesce to some state α with probability one
- Any state from $t=-\infty$ will coalesce to α
- α is a sample from the fixed point distribution

Exponential Autocorrelations

- The unique fixed point of an ergodic Markov process corresponds to a unique eigenvector with eigenvalue 1
- All its other eigenvalues must lie within the unit circle
* In particular, the largest subleading eigenvalue is $\left|\lambda_{\max }\right|<1$
- The eigenvectors $\int d y P(x \leftarrow y) u(y)=\lambda u(x)$ satisfy
$\lambda \int d x u(x)=\int d x \int d y P(x \leftarrow y) u(y)=\int d y\left[\int d x P(x \leftarrow y)\right] u(y)=\int d y u(y)$ so either $\lambda=1$ or $\int d x u(x)=0$
- Hence we may expand any probability density as $Q=\bar{Q}+\sum_{\lambda_{j} \mid<1} c_{j} u_{j}$

$$
\left\|P^{N} Q-\bar{Q}\right\|=\left\|\sum_{\| \lambda_{j} \mid 11} c_{j} \lambda_{j}^{N} u_{j}\right\| \leq\left|\lambda_{\max }\right|^{N} \sum_{\left|\lambda_{j}\right| 11}\left|c_{j}\right|\left\|u_{j}\right\|=K e^{-N / N_{\text {ex }}}
$$

with the exponential autocorrelation time $N_{\text {exp }}=-\frac{1}{\ln \left|\lambda_{\max }\right|}>0$

Integrated Autocorrelations

- Consider the autocorrelation of operator Ω
* Without loss of generality we assume $\langle\Omega\rangle=0$

$$
\left\langle\vec{\Omega}^{2}\right\rangle=\frac{1}{N^{2}} \sum_{t=1}^{N} \sum_{i=1}^{N}\left\langle\Omega\left(\phi_{t}\right) \Omega\left(\phi_{t}\right)\right\rangle=\frac{1}{N^{2}}\left\{\sum_{i=1}^{N}\left\langle\Omega\left(\phi_{t}\right)^{2}\right\rangle+2 \sum_{t=1}^{N-1} \sum_{t=1}^{N}\left\langle\Omega\left(\phi_{i}\right) \Omega\left(\phi_{t}\right)\right\rangle\right\}
$$

- Define autocorrelation function $c_{\Omega}(\rho) \equiv \frac{\left\langle\Omega\left(\phi_{t+1}\right) \Omega\left(\phi_{t}\right)\right\rangle}{\left\langle\Omega(\phi)^{2}\right\rangle}$

$$
\left\langle\bar{\Omega}^{2}\right\rangle=\frac{1}{N}\left\{\left\langle\Omega^{2}\right\rangle+\frac{2}{N} \sum_{\ell=1}^{N-1}(N-\ell) C_{\Omega}(\ell)\left\langle\Omega^{2}\right\rangle\right\}
$$

Integrated Autocorrelations

- The autocorrelation function must fall faster that the exponential autocorrelation $\left|C_{\Omega}(\ell)\right| \leq \lambda_{\max }^{\ell}=e^{-\gamma / N_{\text {epp }}}$
- For a sufficiently large number of samples

$$
\left\langle\bar{\Omega}^{2}\right\rangle=\left\{1+2 \sum_{\ell=1}^{\infty} C_{\Omega}(\ell)\right\} \frac{\left\langle\Omega^{2}\right\rangle}{N}\left[1+O\left(\frac{N_{\exp }}{N}\right)\right]
$$

- Define integrated autocorrelation function $A_{\Omega} \equiv \sum_{\ell=1}^{\infty} C_{\Omega}(\ell)$

$$
\left\langle\bar{\Omega}^{2}\right\rangle=\left\{1+2 A_{\Omega}\right\} \frac{\left\langle\Omega^{2}\right\rangle}{N}\left[1+O\left(\frac{N_{\text {exp }}}{N}\right)\right]
$$

Wednesday, 15 June 2011 Seal of, Amersarucod Kennedy

Hybrid Monte Carlo

- In order to carry out Monte Carlo computations including the effects of dynamical fermions we would like to find an algorithm which
- Updates the fields globally
* Because single link updates are not cheap if the action is not local
- Take large steps through configuration space
* Because small-step methods carry out a random walk which leads to critical slowing down with a dynamical critical exponent $z=2$
* z relates the autocorrelation to the correlation length of the system, $A_{\Omega} \propto \xi^{z}$
- Does not introduce any systematic errors

Hybrid Monte Carlo

- A useful class of algorithms with these properties is the (Generalised) Hybrid Monte Carlo (HMC) method
* Introduce a "fictitious" momentum p corresponding to each dynamical degree of freedom q
* Find a Markov chain with fixed point $\propto \exp [-H(q, p)]$ where H is the "fictitious" Hamiltonian $1 / 2 p^{2}+S(q)$
* The action S of the underlying QFT plays the rôle of the potential in the "fictitious" classical mechanical system
* This gives the evolution of the system in a fifth dimension, "fictitious" or computer time
* This generates the desired distribution $\exp [-S(q)]$ if we ignore the momenta p (i.e., the marginal distribution)

Hybrid Monte Carlo

* The HMC Markov chain alternates two Markov steps
- Molecular Dynamics Monte Carlo (MDMC)
- (Partial) Momentum Refreshment
- Both have the desired fixed point
- Together they are ergodic

MDMC

- If we could integrate Hamilton's equations exactly we could follow a trajectory of constant fictitious energy
* This corresponds to a set of equiprobable fictitious phase space configurations
* Liouville's theorem tells us that this also preserves the functional integral measure $\mathrm{d} p \wedge \mathrm{~d} q$ as required
- Any approximate integration scheme which is reversible and area preserving may be used to suggest configurations to a Metropolis accept/reject test
* With acceptance probability min[1, $\exp (-\delta H)]$

MDMC

- We build the MDMC step out of three parts
- Molecular Dynamics (MD), an approximate integrator $U(\tau):(q, p) \mapsto\left(q^{\prime}, p^{\prime}\right)$ which is exactly
* Area preserving, $\operatorname{det} U_{*}=\operatorname{det}\left[\frac{\partial\left(q^{\prime}, p^{\prime}\right)}{\partial(q, p)}\right]=1$
* Reversible, $F \circ U(\tau) \circ F \circ U(\tau)=1$
- A momentum flip $F: p \mapsto-p$
- A Metropolis accept/reject step
- The composition of these gives

$$
\binom{q^{\prime}}{p^{\prime}}=\left[\begin{array}{lll}
F \circ U(\tau) & \vartheta\left(e^{-\delta H}-y\right)+1 & \vartheta\left(y-e^{-\delta H}\right)
\end{array}\right]\binom{q}{p}
$$

* with y being a uniformly distributed random number in $[0,1]$

Partial Momentum Refreshment

- This mixes the Gaussian distributed momenta p with Gaussian noise ξ

$$
\binom{p^{\prime}}{\xi^{\prime}}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) \circ F\binom{p}{\xi}
$$

2 The Gaussian distribution of p is invariant under F

- The extra momentum flip Fensures that for small θ the momenta are reversed after a rejection rather than after an acceptance
- For $\theta=\pi / 2$ all momentum flips are irrelevant

Acceptance Rates

- The normalization of the equilibrium distribution is

$$
\begin{aligned}
1 & =\frac{1}{Z} \int d q d p e^{-H(q, p)}=\frac{1}{Z} \int d q^{\prime} d p^{\prime} e^{-H\left(q^{\prime}, p^{\prime}\right)} \\
& =\frac{1}{Z} \int d q^{\prime} d p^{\prime} e^{-H(q, p)-\delta H}=\frac{1}{Z} \int d q d p e^{-H(q, p)-\delta H}=\left\langle e^{-\delta H}\right\rangle
\end{aligned}
$$

since $\delta H \equiv H\left(q^{\prime}, p^{\prime}\right)-H(q, p)$ and $d q \wedge d p=d q^{\prime} \wedge d p^{\prime}$

- For small δH we have $\left\langle e^{-\delta H}\right\rangle=1-\langle\delta H\rangle+\frac{1}{2}\left\langle\delta H^{2}\right\rangle+\cdots$, hence $\langle\delta H\rangle \approx \frac{1}{2}\left\langle\delta H^{2}\right\rangle$
- Thus if $\delta H=O\left(\delta \tau^{n}\right)$ we have $\langle\delta H\rangle=O\left(\delta \tau^{2 n}\right)$

Thermodynamic Limit

- If box size $L \gg \xi$ (correlation length) cluster decomposition and central limit theorem $\Rightarrow P_{\delta H}(h)=(2 \pi V)^{-\frac{1}{2}} e^{\frac{(h-(\delta H))^{2}}{2 V}}$
- so we must have $V=2\langle\delta H\rangle$

$$
1=\left\langle e^{-h}\right\rangle=\int d h P_{\delta H}(h) e^{-h}=\int \frac{d h}{\sqrt{2 \pi V}} e^{-\frac{(h-\langle\delta H\rangle) H^{2}-2 h V}{2 V}}=e^{\frac{1}{2}(V-2(\delta H\rangle)}
$$

- and thus the average acceptance rate $\left\langle P_{\text {acc }}\right\rangle$ is
$\begin{aligned}\left\langle\min \left(1, e^{-h}\right)\right\rangle & =\frac{1}{2 \sqrt{\pi\langle\delta H\rangle}}\left(\int_{-\infty}^{0} d h e^{-\frac{(h-\langle\delta H))^{2}}{4(\delta H H)}}+\int_{0}^{\infty} d h e^{-\frac{(h-\langle\delta H))^{2}}{4\langle\delta H\rangle}-h}\right) \\ & =\frac{2}{\sqrt{\pi}} \int_{\frac{1}{2} \sqrt{(\delta H\rangle}}^{\infty} d h e^{-h^{2}}=\operatorname{erfc}\left(\frac{1}{2} \sqrt{\langle\delta H\rangle}\right)\end{aligned}$

SYMPLEGTIC SYMPLECTIC SYMPLEGTIC SYMPLECTIC SYMPLECTIC SYMPLECTIC SYMPLECTICSYMPL
 ednesday, 15 une 2011

A D y
39

Hamiltonian Vector Fields

- Classical mechanics is not specified just by a Hamiltonian H but also by a closed fundamental 2form ω
- For every function (0form) A this defines a Hamiltonian vector field \hat{A} such that $d A=i_{\hat{A}} \omega$
- Which just means that for all X

$$
d A(X)=\omega(\hat{A}, X)
$$

ROWAN HAMILTON

A D Kennedy

Hamiltonian Vector Fields

* To be a little less abstract consider the familiar case where $\omega=d q \wedge d p$ and $d A \equiv \frac{\partial A}{\partial q} d q+\frac{\partial A}{\partial p} d p ; X \equiv X_{q} \frac{\partial}{\partial q}+X_{p} \frac{\partial}{\partial p}$
- SO

$$
\begin{gathered}
d A(X)=\frac{\partial A}{\partial q} X_{q}+\frac{\partial A}{\partial p} X_{p}=\omega(\hat{A}, X)=\hat{A}_{q} X_{p}-\hat{A}_{p} X_{q} \text { ROWANHAMITON } \\
\hat{A}=\hat{A}_{q} \frac{\partial}{\partial q}+\hat{A}_{p} \frac{\partial}{\partial p}=\frac{\partial A}{\partial p} \frac{\partial}{\partial q}-\frac{\partial A}{\partial q} \frac{\partial}{\partial p}
\end{gathered}
$$

Classical Trajectories

* Classical trajectories are then integral curves of the Hamiltonian vector field \hat{H} of the Hamiltonian H

$$
\begin{aligned}
\dot{f} & =\frac{\partial f}{\partial q} \dot{q}+\frac{\partial f}{\partial p} \dot{p}=\hat{H} f \\
& =\frac{\partial H}{\partial p} \frac{\partial f}{\partial q}-\frac{\partial H}{\partial q} \frac{\partial f}{\partial p} \\
\dot{q} & =\frac{\partial H}{\partial p} ; \dot{p}=-\frac{\partial H}{\partial q}
\end{aligned}
$$

* In other words, this vector field is always tangent to the classical trajectory

Symplectic Integrators

- We are interested in finding the classical trajectory in phase space of a system described by the Hamiltonian

$$
H(q, p)=T(p)+S(q)=\frac{1}{2} p^{2}+S(q)
$$

- Define the corresponding Hamiltonian vector fields (with $\omega=d q \wedge d p$) $\hat{T} \equiv T^{\prime}(p) \frac{\partial}{\partial q}$ and $\widehat{S} \equiv-S^{\prime}(q) \frac{\partial}{\partial p}$ so that $\widehat{H}=\hat{T}+\hat{S}$

Symplectic Integrators

- Formally the solution of Hamilton's equations with trajectory length τ is the exponential of the Hamiltonian Hamiltonian vector field, $e^{\tau \hat{H}}$
- Since the kinetic energy T is a function only of p and the potential energy S is a function only of q_{1}, it follows that the action of $e^{\tau \hat{S}}$ and $e^{\tau \hat{\tau}}$ may be evaluated trivially (Taylor's theorem!)

$$
\begin{aligned}
& e^{\tau \hat{T}}: f(q, p) \mapsto f\left(q+\tau T^{\prime}(p), p\right) \\
& e^{\imath \hat{S}}: f(q, p) \mapsto f\left(q, p-\tau S^{\prime}(q)\right)
\end{aligned}
$$

Leapfrog

* The simplest example is the Leapfrog PQP integrator $U_{0}(\delta \tau) \equiv e^{\frac{1}{2} \delta \tau \hat{S}} e^{\delta \tau \hat{T}} e^{\frac{1}{2} \delta \tau \hat{S}}$
* It consists of three steps

$$
\begin{aligned}
& f\left(q_{1}, p_{1}\right)=e^{\frac{1}{2 \delta \delta \hat{s}}} f\left(q_{0}, p_{0}\right)=f\left(q_{0}, p_{0}-S^{\prime}\left(q_{0}\right) \frac{g \tau}{2}\right) \\
& f\left(q_{2}, p_{2}\right)=e^{\delta \hat{\tau}} f\left(q_{1}, p_{1}\right)=f\left(q_{1}+T^{\prime}\left(p_{1}\right) \delta \tau, p^{0}\right) \\
& f\left(q_{3}, p_{3}\right)=e^{\frac{1}{2}+\hat{s} \hat{s}} f\left(q_{2}, p_{2}\right)=f\left(q_{2}, p_{2}-S^{\prime}\left(q_{2}\right) \frac{\frac{\delta \tau}{2}}{2}\right)
\end{aligned}
$$

Langevin Algorithm

* The leapfrog update is
- If we ignore the Metropolis acceptance step (e.g., if we take

$$
q(\delta \tau)=q(0)+p\left(\frac{\delta \tau}{2}\right) \delta \tau
$$ small enough steps)

- Rescale time step $\varepsilon \equiv \frac{1}{2} \delta \tau^{2}$

$$
p\left(\frac{\delta \tau}{2}\right)=p(0)-S^{\prime}(q(0)) \frac{\delta \tau}{2}
$$

$$
\left.p(\delta \tau)=p\left(\frac{\delta \tau}{2}\right)-S^{\prime}(q(\delta \tau)) \frac{\delta \tau}{2}\right)
$$ and initial Gaussian noise (momenta) $p_{s}(0)=\frac{1}{2} \eta(s) \delta \tau$

$$
\frac{q(\delta \tau)-q(0)}{\frac{1}{2} \delta \tau^{2}}=-S^{\prime}(q(0))+\frac{p(0)}{\frac{1}{2} \delta \tau}
$$

* We obtain the Langevin equation

$$
\frac{d q}{d s}=-\frac{\delta S}{\delta q}+\eta
$$

$$
\begin{aligned}
& \text { In equation }\left\langle p_{s}(0)\right\rangle=0 ;\left\langle p_{s}(0) p_{s^{\prime}}(0)\right\rangle=\delta_{s, s^{\prime}} \\
& \langle\eta(s)\rangle=0 ;\left\langle\eta(s) \eta\left(s^{\prime}\right)\right\rangle=2 \frac{\delta_{s, s}}{\varepsilon} \rightarrow 2 \delta\left(s-s^{\prime}\right)
\end{aligned}
$$

Into the Shadow World

* For each symplectic integrator there exists a Hamiltonian H^{\prime} which is exactly conserved
* This may be obtained by replacing the commutators $[\hat{S}, \hat{T}]$ in the BCH expansion of $\ln \left(e^{-\hat{S}} e^{-\hat{t}}\right)$ with the Poisson bracket $\{S, T\}$

Poisson Brackets

- Consider the action of a Hamiltonian vector field on a function (0 -form)

$$
\hat{A} F=d F(\hat{A})=i_{\hat{F}} \omega(\hat{A})=\omega(\hat{F}, \hat{A}) \equiv\{A, F\}
$$

- We have introduced the Poisson bracket of two functions
- These obey the Jacobi identity

$$
\{A,\{B, C\}\}+\{B,\{C, A\}\}+\{C,\{A, B\}\}=0
$$

- This follows from the closure of the fundamental 2-form $d \omega=0$
- It is not trivial: Poisson brackets are not commutators
* Functions form a Lie algebra with PBs as the Lie product

Jacobi Identity

- Invariant definition of exterior derivative $d F(X)=X F$

$$
\begin{aligned}
d \theta(X, Y) & =X \theta(Y)-Y \theta(X)-\theta([X, Y]) \\
d \omega(X, Y, Z) & =X \omega(Y, Z)+Y \omega(Z, X)+Z \omega(X, Y) \\
& -\omega([X, Y], Z)-\omega([Y, Z], X)-\omega([Z, X], Y)
\end{aligned}
$$

- For Hamiltonian vector fields we have

$$
\widehat{X}_{\omega}(\hat{Y}, \hat{Z})=-\widehat{X}\{Y, Z\}=-\{X,\{Y, Z\}\}
$$

$$
\begin{aligned}
\omega([\hat{X}, \hat{Y}], \hat{Z}) & =-\omega(\hat{Z},[\hat{X}, \hat{Y}])=-d Z([\hat{X}, \hat{Y}])=-[\hat{X}, \hat{Y}] Z=-(\widehat{X} \hat{Y}-\hat{Y} \widehat{X}) Z \\
& =-\widehat{X} \hat{Y} Z+\hat{Y} \hat{X} Z=-\widehat{X}\{Y, Z\}+\hat{Y}\{X, Z\}=-\{X,\{Y, Z\}\}+\{Y,\{X, Z\}\}
\end{aligned}
$$

- The condition $d \omega=0$ gives the Jacobi identity

$$
d \omega(\hat{X}, \hat{Y}, \hat{Z})=0=\{X,\{Y, Z\}\}+\{Y,\{Z, X\}\}+\{Z,\{X, Y\}\}
$$

Concrete Poisson Brackets

- To make this more familiar when $\omega=d q \wedge d p$ the Poisson bracket $\{A, B\} \equiv-\omega(\hat{A}, \hat{B})$ becomes

$\omega(\hat{A}, \hat{B})=(d q \wedge d p)\left(\frac{\partial A}{\partial p} \frac{\partial}{\partial q}-\frac{\partial A}{\partial q} \frac{\partial}{\partial p}, \frac{\partial B}{\partial p} \frac{\partial}{\partial q}-\frac{\partial B}{\partial q} \frac{\partial}{\partial p}\right)$

$$
\{A, B\}=\frac{\partial A}{\partial p} \frac{\partial B}{\partial q}-\frac{\partial A}{\partial q} \frac{\partial B}{\partial p}
$$

Hamilton's Equations (again)

- To make this really concrete consider the action of the Hamiltonian Hamiltonian vector field on an arbitrary function f that we saw earlier

$$
\begin{gathered}
\dot{f}=\frac{\partial f}{\partial q} \dot{q}+\frac{\partial f}{\partial p} \dot{p}=\hat{H} f=\{H, f\} \\
\{H, f\}=\frac{\partial H}{\partial p} \frac{\partial f}{\partial q}-\frac{\partial H}{\partial q} \frac{\partial f}{\partial p}
\end{gathered}
$$

Commutators

- So far this is just a fancy (and complicated) way of rewriting Hamilton's equations, but now we derive a surprising new result
* To derive it consider

$$
\begin{aligned}
& {[\hat{A}, \hat{B}] F=(\hat{A} \hat{B}-\hat{B} \hat{A}) F=\hat{A}\{B, F\}-\hat{B}\{A, F\}} \\
& \quad=\{A,\{B, F\}\}-\{B,\{A, F\}\}=\{\{A, B\}, F\}=\{A, B\} F
\end{aligned}
$$

* The commutator of Hamiltonian vector fields is itself a Hamiltonian vector field

Baker-Campbell—Hausdorff (BCH) Formula

- If A and B belong to any (non-commutative) algebra then $e^{\hat{A}} e^{\hat{B}}=e^{\hat{A}+\hat{B}+\hat{\delta}}$, where $\hat{\delta}$ is constructed from commutators of \hat{A} and \hat{B}
- i.e., $\hat{\delta}$ is in the Free Lie Algebra generated by \hat{A} and \hat{B}
- More precisely, $\ln \left(e^{\hat{A}} e^{\hat{B}}\right)=\sum_{n \geq 1} \widehat{c}_{n}$ where $\widehat{c}_{1}=\hat{A}+\widehat{B}$ and

$$
\begin{aligned}
& (n+1) \widehat{C_{n+1}}=-\frac{1}{2}\left[\widehat{\widehat{C}_{n}}, \hat{A}-\hat{B}\right]
\end{aligned}
$$

Symplectic Integrators

- Explicitly, the first few terms are

$$
\begin{aligned}
& \ln \left(e^{\hat{A}} e^{\hat{\theta}}\right)=\{\hat{A}+\hat{B}\}+\frac{1}{2}[\hat{A}, \hat{B}]+\frac{1}{12}\{[\hat{A},[\hat{A}, \hat{B}]]-[\hat{B},[\hat{A}, \hat{B}]]\}-\frac{1}{24}[\hat{B},[\hat{A},[\hat{A}, \hat{B}]]] \\
& +\frac{1}{720}\left\{\begin{array}{l}
-[\hat{A},[\hat{A},[\hat{A},[\hat{A}, \hat{B}]]]]-4[\hat{B},[\hat{A},[\hat{A},[\hat{A}, \hat{B}]]]]-6[[\hat{A}, \hat{B}],[\hat{A},[\hat{A}, \hat{B}]]]] \\
+4[\hat{B},[\hat{B},[\hat{A},[\hat{A}, \hat{B}]]]]-2[\hat{A}, \hat{B}],[\hat{B},[\hat{A}, \hat{B}]]]+[\hat{B},[\hat{B},[\hat{B},[\hat{A}, \hat{B}]]]]])
\end{array}\right.
\end{aligned}
$$

* In order to construct reversible integrators we use symmetric symplectic integrators
- The following identity follows directly from the BCH formula

$$
\begin{aligned}
& \ln \left(e^{\hat{A} / 2} e^{\hat{\theta}} e^{\hat{A} / 2}\right)=\{\hat{A}+\hat{B}\}+\frac{1}{24}\{[\hat{A},[\hat{A}, \widehat{B}]]-2[\hat{B},[\hat{A}, \hat{B}]]\}
\end{aligned}
$$

Symplectic Integrators

- From the BCH formula we find that the PQP symmetric symplectic integrator is given by

$$
\begin{aligned}
& \left(e^{\frac{1}{2} \delta \tau \hat{S}} e^{\delta \tau \hat{T}} e^{\frac{1}{2} \delta \tau \hat{S}}\right)^{\tau / \delta \tau}
\end{aligned}
$$

$$
\begin{aligned}
& =\exp \left[\tau\left(\hat{T}+\widehat{S}-\frac{1}{24}([\hat{S},[\widehat{S}, \widehat{T}]]+2[\hat{T},[\hat{S}, \widehat{T}]]) \delta \tau^{2}+O\left(\delta \tau^{4}\right)\right)\right] \\
& =e^{\tau \hat{H}(\delta \tau)}=e^{\tau \hat{H}+O\left(\delta \tau^{2}\right)}=e^{\tau \hat{H}}+O\left(\delta \tau^{2}\right)
\end{aligned}
$$

- In addition to conserving energy to $O\left(\delta \tau^{2}\right)$ such symmetric symplectic integrators are manifestly area preserving and reversible

Shadow Hamiltonian

* But more significantly the PQP integrator follows the integral curves of $\hat{H}^{\prime}(\delta \tau)$ exactly
- And $H^{\prime}(\delta \tau)$ is constructed from commutators of the Hamiltonian vector fields \widehat{S} and \hat{T}
- Therefore it is the Hamiltonian vector field of the corresponding combination of Poisson brackets $H^{\prime}(\delta \tau)$
* This is called the shadow Hamiltonian

Leapfrog Shadow Hamiltonian

* For the PQP integrator we have

$$
H_{P Q P}^{\prime}(\delta \tau)=T+S+\frac{\delta \tau^{2}}{24}[\{S,\{S, T\}\}-2\{T,\{S, T\}\}]
$$

$$
+\left[\begin{array}{c}
7\{S,\{S,\{S,\{S, T\}\}\}\} \\
+28\{T,\{S,\{S,\{S, T\}\}\}\} \\
5760 \\
+12\{\{S, T\}\{S,\{S, T\}\}\} \\
+32\{T,\{T,\{S,\{S, T\}\}\}\} \\
-16\{\{S, T\}\}\{T,\{S, T\}\} \\
+8\{T,\{T,\{T,\{S, T\}\}\}\}
\end{array}\right]+\cdots
$$

Leapfrog Shadow Hamiltonian

- Evaluating the Poisson brackets with $\omega=d q \wedge d p$ gives

$$
H_{P Q P}^{\prime \prime}(\delta \tau)=H+\frac{\dot{\delta}^{2}}{24}\left\{2 p^{2} S^{\prime \prime}-S^{\prime 2}\right\}
$$

$$
+\frac{\delta^{4}}{720}\left\{-p^{4} S^{(4)}+6 p^{2}\left(S^{\prime \prime \prime \prime \prime}+2 S^{\prime \prime 2}\right)-3 S^{\prime 2} S^{\prime \prime}\right\}+O\left(\delta \tau^{6}\right)
$$

- Note that $H_{P Q P}^{\prime}$ cannot be written as the sum of a p-dependent kinetic term and a q-dependent potential term
* So, sadly, it is not possible to construct an integrator that conserves the Hamiltonian we started with

What use are Shadows?

- An integrator becomes unstable when the BCH (asymptotic) expansion for its shadow fails to converge
${ }^{*}$ In which case there is no (real) conserved shadow Hamiltonian
- Use the shadow to tune an integrator
* Reduce large contributions to the shadow Hamiltonian

6. Optimize the integrator by minimizing $\Delta H \equiv H-H^{\prime}$?

* Not quite, as we shall see later

Gauge Theories

- But first there are a few details that we shouldn't overlook
- Can we compute Poisson brackets and shadow Hamiltonians for gauge fields and fermions?

Inexact Algorithms

* Let us take a small detour to consider what happens the an HMC-like algorithm if we omit the Metropolis step.
* If such an algorithm is ergodic it has a unique fixed point

$$
\begin{aligned}
e^{-\left(S\left(q^{\prime}\right)+\Delta S\left(q^{\prime}\right)\right)} & =\int d q e^{-(S(q)+\Delta S(q)))} \int d p e^{-\frac{1}{2} p^{2}} \delta\left(q^{\prime}-q^{\prime \prime}\right) \\
& =\int d q d p e^{-H(q, p)-\Delta S(q)} \delta\left(q^{\prime}-q^{\prime \prime}\right) \\
& =\int d q^{\prime \prime} d p^{\prime \prime}\left(\operatorname{det} U_{*}\right)^{-1} e^{-(H+\Delta S) \cdot U^{-1}} \delta\left(q^{\prime}-q^{\prime \prime}\right)
\end{aligned}
$$

where the MD evolution is $U:(q, p) \mapsto\left(q^{\prime \prime}, p^{\prime \prime}\right)$ and the Jacobian is $\operatorname{det} \frac{\partial\left(q^{\prime \prime}, p^{\prime \prime}\right)}{\partial(q, p)}=\operatorname{det} U_{*}=\operatorname{tr} \ln U_{*}$

- We assume that the momenta a completely refreshed from a Gaussian heatbath before each trajectory
- Momentum distribution is not Gaussian at the end of a trajectory

Inexact Algorithms

* If we define the quantities
$\bar{\delta}: \Omega \mapsto \Omega \circ U^{-1}-\Omega \circ F \circ U \circ F$ violation of reversibility $\delta: \Omega \mapsto \Omega \circ U \circ F-\Omega \circ F$ change in Ω over a trajectory
then we obtain $\left\langle e^{-(\delta+\bar{\delta})(H+\Delta S)-\operatorname{tr} \ln U_{*}}\right\rangle_{p}=1$
- This may be expanded as an asymptotic series in the integration step size $\delta \tau$ to obtain an expression for ΔS
- This shows that ΔS is a power series in $\delta \tau$ up to terms like $e^{-C / \delta \tau}$, where the constant C is not necessarily real
- The form of ΔS is not known in closed form for long trajectories

Review

Symplectic 2-form

Hamiltonian vector field

Equations of motion

Poisson bracket

Flat Manifold

$$
\begin{aligned}
& \omega: d \omega=0 \\
& \hat{H}=\frac{\partial H}{\partial p} \frac{\partial}{\partial q} \text { Darboux theorem: } \\
& \dot{q}=\frac{\partial H}{\partial p} \quad \text { All manifolds are } \\
& \text { locally flat } \\
& \{A, B\}=\frac{\partial A}{\partial p} \frac{\partial \bar{B}}{\partial q}-\frac{\partial q}{\partial p}=-\omega(\hat{A}, \hat{B})
\end{aligned}
$$

Lie Group Manifolds

- A Lie Group is a differential manifold with a globally well-defined smooth multiplication $h: g \mapsto h g$
- This induces a smooth map on 0-forms (functions) $h_{*}: f \mapsto f \circ h$, i.e., $h_{*} f(g)=f(h g)$
- A left-invariant 0-form satisfies $f=h_{*} f$ for any h_{r} so it is specified by its value at the origin $f(1)=g_{*} f(1)=f(g)$ - a constant, not very interesting
- Similarly, we have smooth induced map on vector fields (linear differential operators) $h^{*}: V \mapsto V \circ h_{*}$
* A left-invariant vector field satisfies $v=h^{*} v(\forall h)$ $h^{*} v(f)=v\left(h_{*} f\right)=v(f \circ h)$

Lie Group Manifolds

- An frame of vectors $\left\{e_{j}\right\}$ at the origin can therefore be extended to a frame of left-invariant vector fields over the whole group $e_{i}(h)=h^{*} e_{i}(0)$
* For a classical matrix group this is quite intuitive: each element g of the group is associated with the frame which is obtained from that at the origin by the action of g
- While there is a globally well-defined basis of left-invariant frame vector fields, but there are no globally well-defined coordinates
* Their commutators satisfy $\left[e_{i}, e_{j}\right]=\sum_{k} c_{i j}^{k} e_{k}$ with coefficients called structure constants

Maurer-Cartan Equations

* The dual left invariant forms $\left\{\theta^{i}\right\}$ with $\theta^{j}\left(e_{j}\right)=\delta_{j}^{j}$ satisfy the Maurer-Cartan equations $d \theta^{i}=-\frac{1}{2} \sum_{j k} c_{j k}^{i} \theta^{j} \wedge \theta^{k}$

$$
\begin{aligned}
d \theta^{j}\left(e_{j}, e_{k}\right) & =e_{j} \theta^{i}\left(e_{k}\right)-e_{k} \theta^{i}\left(e_{i}\right)-\theta^{j}\left(\left[e_{j}, \epsilon\right.\right. \\
& =e_{j} \delta_{k}^{i}-e_{k} \delta_{j}^{i}-\theta^{i}\left(c_{j k}^{i} e_{\ell}\right)=-c_{j k}^{i} \\
& =-\frac{1}{2} \sum_{j^{\prime}, k^{\prime}} c_{j k^{\prime}}^{j}, \theta^{j^{\prime}} \wedge \theta^{k^{\prime}}\left(e_{j}, e_{k}\right)
\end{aligned}
$$

- The Maurer-Cartan forms also provide the groupinvariant Haar measure $d \Omega \equiv \theta_{1} \wedge \theta_{2} \wedge \ldots \wedge \theta_{n}$

Fundamental 2-form

* We can invent any Classical Mechanics we want...
* So we may therefore define the closed fundamental 2-form ω which globally defines an invariant Poisson bracket by

$$
\begin{aligned}
\omega \equiv-d \sum_{i} \theta^{i} p^{i} & =\sum_{i}\left(\theta^{i} \wedge d p^{i}-p^{i} d \theta^{i}\right) \\
& =\sum_{i}\left(\theta^{i} \wedge d p^{i}+\frac{1}{2} p^{i} c_{j k}^{i} \theta^{j} \wedge \theta^{k}\right)
\end{aligned}
$$

Hamiltonian Vector Field

* We may now follow the usual procedure to find the equations of motion
- Introduce a Hamiltonian function (0 -form) H on the cotangent bundle (phase space) over the group manifold
- Define a vector field \hat{H} such that $d H=i_{\hat{H}} \omega$

$$
\hat{H}=\sum_{i}\left(\frac{\partial H}{\partial p^{\prime}} e_{i}+\left[\sum_{j k} c_{j i}^{k} p^{k} \frac{\partial H}{\partial p^{j}}-e_{i}(H)\right] \frac{\partial}{\partial p^{i}}\right)
$$

Poisson Brackets

* For any Hamiltonian vector field

$$
\hat{A}=\sum_{i}\left(\frac{\partial A}{\partial p^{\prime}} e_{i}+\left[\sum_{j k} c_{j i}^{k} p^{k} \frac{\partial A}{\partial p^{j}}-e_{i}(A)\right] \frac{\partial}{\partial p^{\prime}}\right)
$$

- So for $H(q, p)=T(p)+S(q)$ we have vector fields

$$
\hat{S}=-\sum_{i} e_{i}(S) \frac{\partial}{\partial p^{i}}
$$

$$
\begin{aligned}
\hat{T} & =\sum_{i}\left(\frac{\partial T}{\partial p^{i}} e_{i}+\left[\sum_{j k} c_{j i}^{k} p^{k} \frac{\partial T}{\partial p^{j}}\right] \frac{\partial}{\partial p^{\prime}}\right) \\
& =\sum_{i}\left(p^{i} e_{i}+\sum_{j k} c_{j j}^{k} p^{k} p^{j} \frac{\partial}{\partial p^{\prime}}\right) \text { if } T(p)=\frac{p^{2}}{2}
\end{aligned}
$$

More Poisson Brackets

* We thus compute the lowest-order Poisson bracket

$$
\begin{aligned}
\{S, T\} & =-\omega(\hat{S}, \hat{T}) \\
& =-\left(\theta^{i} \wedge d p^{i}+\frac{1}{2} p^{i} c_{j k}^{j} \theta^{j} \wedge \theta^{k}\right)(\hat{S}, \hat{T})=-p^{i} e_{i}(S)
\end{aligned}
$$

* and the Hamiltonian vector corresponding to it

$$
\begin{aligned}
\widehat{S, T\}} & =\sum_{i}\left(\frac{\partial\{S, T\}}{\partial p^{i}} e_{i}+\left[\sum_{j k} c_{j i}^{k} p^{k} \frac{\partial\{S, T\}}{\partial p^{j}}-e_{i}(\{S, T\})\right] \frac{\partial}{\partial p^{i}}\right) \\
& =-e_{i}(S) e_{i}+\left[-C_{j i}^{k} p^{k} e_{j}(S)+p^{j} e_{i} e_{j}(S)\right] \frac{\partial}{\partial p^{i}}
\end{aligned}
$$

Even More Poisson Brackets

$$
\begin{aligned}
\{S,\{S, T\}\} & =e_{i}(S) e_{i}(S) \\
\{T,\{S, T\}\} & =-p^{i} p^{j} e_{i} e_{j}(S) \\
\left\{T_{,}\{T,\{S,\{S, T\}\}\}\right\} & =2 p^{i} p^{j}\left[e_{i} e_{j} e_{k}(S) e_{k}(S)+e_{i} e_{k}(S) e_{j} e_{k}(S)\right] \\
\{\{S, T\},\{T,\{S, T\}\}\} & =C_{j k}^{i} p^{i} p^{i} e_{j}(S)\left[e_{k} e_{\ell}(S)+e_{\ell} e_{k}(S)\right]+ \\
& +p^{i} p^{j}\left[e_{k}(S) e_{k} e_{i} e_{j}(S)-\left[e_{k} e_{i}(S)+e_{i} e_{k}(S)\right] e_{k} e_{j}(S)\right] \\
\{T,\{S,\{S,\{S, T\}\}\}\} & =0 \\
\{\{S, T\},\{S,\{S, T\}\}\} & =-2 e_{i}(S) e_{j}(S) e_{i} e_{j}(S) \\
\{T,\{T,\{T,\{S, T\}\}\}\} & =-p^{i} p^{j} p^{k} p^{i} e_{i} e_{j} e_{k} e_{\ell}(S) \\
\{S,\{S,\{S,\{S, T\}\}\}\} & =0
\end{aligned}
$$

Computing Poisson Brackets

- These are quite complicated (some might say disgusting) objects to compute on the lattice
- Even for the simplest Wilson gauge action
* They consists sums of complicated lattice loops with momenta inserted in various places
* Fortunately there is a recursive way of computing them which is tractable even for more complicated gauge actions
- It involves inserting previously computed Lie-algebra-valued fields living on links into the loops in the action using a "tower" algorithm

Fermion Poisson Brackets

- Fermions are easy to include in the formalism: we only need a few extra linear equation solves

$$
\begin{gathered}
S_{F}(U)=\phi^{\dagger} \mathcal{M}^{-1}(U) \phi=\operatorname{Tr}\left[\mathcal{M}^{-1}(U) \phi \otimes \phi^{\dagger}\right] \\
\frac{\partial \mathcal{M}^{-1}}{\partial U}=-\mathcal{M}^{-1} \frac{\partial \mathcal{M}}{\partial U} \mathcal{M}^{-1}
\end{gathered}
$$

Tuning Your Integrator

- For any (symmetric) symplectic integrator the conserved Hamiltonian is constructed from the same Poisson brackets
A procedure for tuning such integrators is
- Measure the Poisson brackets during an HMC run
- Optimize the integrator (number of pseudofermions, step-sizes, order of integration scheme, etc.) offline using these measured values

What to Tune

- As I said a while ago, minimizing $\langle\Delta H\rangle \equiv\left\langle H-H^{\prime}\right\rangle$ is not a good choice
- It is much better to minimize the variance of ΔH
- This is a function of two sets of quantities
- The ensemble-averaged Poisson brackets
Q The integrator parameters

Why Minimize the Variance?

- As the system wanders through phase space H^{\prime} is constant, so $\delta H=H_{f}-H_{i}=\delta \Delta H$
- We hypothesize that the distribution of ΔH is essentially sampled independently and randomly at the start and end of each equilibrium trajectory
- Therefore we want to minimize the variance of this distribution

Simplest Integrators

Integrator	Update Steps	Shadow Hamiltonian
$P Q P$	$e^{S / 2} e^{T} e^{\frac{S}{S} / 2}$	$T+S-\frac{\varepsilon^{2}}{24}(\{S,\{S, T\}\}+2\{T,\{S, T\}\})$
$Q P Q$	$e^{\frac{T_{\theta}}{2}} e^{S_{\varepsilon}} e^{\frac{T_{\theta}}{2}}$	$T+S+\frac{\varepsilon^{2}}{24}(2\{S,\{S, T\}\}+\{T,\{S, T\}\})$
Omelyan SST	$e^{\frac{S_{\theta}}{6}} e^{\frac{T_{\theta}}{2}} e^{\frac{2 S_{\varepsilon}}{3}} e^{\frac{T_{\theta}}{2}} e^{\frac{S_{\varepsilon}}{6}}$	$T+S+\frac{\varepsilon^{2}}{72}\{S,\{S, T\}\}$
Omelyan TST	$e^{\frac{(3-\sqrt{3}) S_{\theta}}{6}} e^{\frac{T_{\theta}}{2}} e^{\frac{S_{\theta}}{\sqrt{3}}} e^{\frac{T_{\theta}}{2}} e^{\frac{\left(3-\sqrt{3} S_{\theta}\right.}{6}}$	$T+S+\frac{\sqrt{3}-2}{24} \varepsilon^{2}\{T,\{S, T\}\}$

Campostrini Integrators

2. Campostrini found an ingenious way of constructing integrators with errors of arbitrarily high order

* Start with an integrator with errors of order n in the integration step size $X_{n}(\varepsilon) \equiv e^{\varepsilon H(\varepsilon)}=e^{\varepsilon \widehat{H}}\left[1+\varepsilon^{n} \widehat{\Delta}+O\left(\varepsilon^{n+2}\right)\right]$
* Construct the "wiggle" sandwiching a backward step of this integrator between two forward ones

$$
X_{n}(\varepsilon) X_{n}(-\sigma \varepsilon) X_{n}(\varepsilon)=e^{\varepsilon(2-\sigma) \hat{H}}\left[1+\varepsilon^{n}\left(2-\sigma^{n}\right) \hat{\Delta}+O\left(\varepsilon^{n+2}\right)\right]
$$

- Eliminate the leading order error by choosing $\sigma=\sqrt[n]{2}$ and adjust the step size by setting $\delta \tau=\varepsilon(2-\sigma)$ to obtain $X_{n+2}(\delta \tau)=X_{n}(\varepsilon) X_{n}(-\sigma \varepsilon) X_{n}(\varepsilon)=e^{\delta \tau \hat{H}}\left[1+O\left(\delta \tau^{n+2}\right)\right]$

Campostrini Integrators

Integrator

Integrator	Campostrini
Update Steps	
Shadow Hamiltonian	$\left(\begin{array}{l} (-40 \sqrt[3]{4}+40 \sqrt[3]{2}+48)\{\{,\{S,\{S,\{S, T\}\}\}+(20 \sqrt[3]{2}+32)\{T,\{T,\{S,\{S, T\}\}\} \\ +(60 \sqrt[3]{4}+80 \sqrt[3]{2}+104)\{\{S, T\},\{,\{S, T\}\}\}+(-20 \sqrt[3]{4}+8)\{T,\{S,\{S,\{S, T\}\}\} \\ +(180 \sqrt[3]{4}+240 \sqrt[3]{2}+312)\{\{S, T\},\{S,\{S, T\}\}\}+(5 \sqrt[3]{2}+8)\{T,\{T,\{T,\{S, T\}\}\}\} \end{array}\right)$

Force-Gradient Integrators

* An interesting observation is that the Poisson bracket $\{S,\{S, T\}\}$ depends only of q
* We may therefore evaluate the integrator $e^{\{S,\{S, T\}\} \delta \tau^{3}}$ explicitly
* The force for this integrator involves second derivatives of the action
© Using this type of step we can construct efficient Force-Gradient (Hessian) integrators

Force-Gradient Integrators

Update Steps

$$
e^{\frac{T_{\theta}}{6}} e^{\frac{3 S_{\varepsilon}}{8}} e^{\frac{T_{\epsilon}}{3}}
$$

$$
e^{\frac{48 \hat{S}_{\varepsilon}-\{S,\{S, T\}\} \varepsilon^{3}}{192}}
$$

$$
\times e^{\frac{\hat{T}_{\varepsilon}}{3}} e^{\frac{3 \hat{S}_{\varepsilon}}{8}} e^{\frac{\hat{T}_{\varepsilon}}{6}}
$$

$$
e^{\frac{\hat{S}_{\varepsilon}}{6}} e^{\frac{\hat{T}_{\varepsilon}}{2}}
$$

Force-Gradient $2 \times e^{\frac{48 \mathcal{S}_{\varepsilon}-\left\{\left\{,\{\{S, T\}\} c^{3}\right.\right.}{72}}$

$$
\times e^{\frac{\hat{T}_{\varepsilon}}{2}} e^{\frac{\hat{S}_{\varepsilon}}{6}}
$$

Force-Gradient $2:$	$e^{\frac{\hat{S}_{\varepsilon}}{6}} e^{\frac{\hat{T}_{\varepsilon}}{2}}$
$\times e^{\frac{\left.48 \hat{S}_{\varepsilon}-\sqrt{S,\{S, T\}}\right\} \varepsilon^{3}}{72}}$	
$\times e^{\frac{\hat{T}_{\varepsilon}}{2}} e^{\frac{\hat{S}_{\varepsilon}}{6}}$	

Shadow Hamiltonian

$$
\begin{gathered}
T+S \\
\left(\begin{array}{l}
2259\{S,\{S,\{S,\{S, T\}\}\}\}+4224\{T,\{T,\{S,\{S, T\}\}\}\} \\
+768\{\{S, T\},\{T,\{S, T\}\}\}+5616\{T,\{S,\{S,\{S, T\}\}\}\} \\
+3024\{\{S, T\},\{S,\{S, T\}\}\}+896\{T,\{T,\{T,\{S, T\}\}\}\}
\end{array}\right. \\
\hline
\end{gathered}
$$

6635520
$T+S$
$41\{S,\{S,\{S,\{S, T\}\}\}\}+126\{T,\{T,\{S,\{S, T\}\}\}\}$ $+72\{\{S, T\},\{T,\{S, T\}\}\}+84\{T,\{S,\{S,\{S, T\}\}\}\}$ $+36\{\{S, T\},\{S,\{S, T\}\}\}+54\{T,\{T,\{T,\{S, T\}\}\}\}\}_{\varepsilon} 4$ 155520

Multiple timescales

- Split Hamiltonian into pieces $H(q, p)=T(p)+S_{1}(q)+S_{2}(q)$

थ $\widehat{T} \equiv T^{\prime}(p) \frac{\partial}{\partial q}$ and $\widehat{S}_{i} \equiv-S_{i}^{\prime}(q) \frac{\partial}{\partial p}$, so $\widehat{H}=\hat{T}+\widehat{S}_{1}+\widehat{S}_{2}$

* Introduce a symmetric symplectic integrator of the

* If $\frac{\left|\widehat{S}_{1}\right|}{2 n_{1}} \approx \frac{\left|\widehat{S}_{2}\right|}{2 n_{2}} \approx|\hat{P}|$ then the instability in the integrator is tickled equally by each sub-step
*This helps if the most expensive force computation does not correspond to the largest force

Pseudofermions

- Direct simulation of Grassmann fields is not feasible
- The problem is not that of manipulating anticommuting values in a computer
${ }^{5}$ It is that $e^{-S_{F}}=e^{-\bar{\psi} M_{V}}$ is not positive, and thus we get poor importance sampling
*We therefore integrate out the fermion fields to obtain the determinant $\int d \psi d \bar{\psi} e^{-\bar{\psi} M_{\psi}} \propto \operatorname{det}(M)$
- ψ and $\bar{\psi}$ always occur quadratically
© The overall sign of the exponent is unimportant

Pseudofermions

* Any operator Ω can be expressed solely in terms of the bosonic fields

$$
\Omega^{\prime}(\phi)=\left.\Omega\left(\phi, \frac{\delta}{\delta \psi}, \frac{\delta}{\delta \bar{\psi}}\right) e^{-\bar{\psi} M(\phi) \psi}\right|_{\psi=\bar{\psi}=0}
$$

${ }^{*}$ E. g., the fermion propagator is

$$
G_{\psi}(x, y)=\langle\psi(x) \bar{\psi}(y)\rangle=M^{-1}(x, y)
$$

Pseudofermions

- Including the determinant as part of the observable to be measured is not feasible $\langle\Omega\rangle=\frac{\langle\operatorname{det} M(\phi) \Omega(\phi)\rangle_{S_{B}}}{\langle\operatorname{det} M(\phi)\rangle_{S_{B}}}$
- The determinant is extensive in the lattice volume, thus again we get poor importance sampling
- Represent the fermion determinant as a bosonic Gaussian integral with a non-local kernel $\operatorname{det} M(\phi) \propto \int d \bar{\chi} d \chi e^{-\bar{x} M^{-1}(\phi) x}$
- The fermion kernel must be positive definite (all its eigenvalues must have positive real parts) otherwise the bosonic integral will not converge
- The new bosonic fields are called pseudofermions

Pseudofermions

* It is usually convenient to introduce two flavours of fermion and to write $(\operatorname{det} M(\phi))^{2}=\operatorname{det}\left(M(\phi) M^{\dagger}(\phi)\right) \propto \int d \bar{\chi} d \chi e^{-\bar{x}\left(M^{+} M\right)^{-1} x}$
- This not only guarantees positivity, but also allows us to generate the pseudofermions from a global heatbath by applying M^{\dagger} to a random Gaussian distributed field
* The equations for motion for the boson (gauge) fields are
$\dot{\phi}=\pi$
$\dot{\pi}=-\frac{\partial S_{B}(\phi)}{\partial \phi}-\chi^{\dagger} \frac{\partial}{\partial \phi}\left(M^{\dagger} M\right)^{-1} \chi=-\frac{\partial S_{B}(\phi)}{\partial \phi}+\left[\left(M^{\dagger} M\right)^{-1} \chi\right]^{\dagger} \frac{\partial}{\partial \phi}\left(M^{\dagger} M\right)\left[\left(M^{\dagger} M\right)^{-1} \chi\right]$
* The evaluation of the pseudofermion action and the corresponding force then requires us to find the solution of a (large) set of linear equations $\left(M^{+} M\right)^{-1} \chi=\psi$

Pseudofermions

* It is not necessary to carry out the inversions required for the equations of motion exactly
- There is a trade-off between the cost of computing the force and the acceptance rate of the Metropolis MDMC step
- The inversions required to compute the pseudofermion action for the accept/reject step does need to be computed exactly, however
* We usually take "exactly" to by synonymous with "to machine precision"

Reversibility

- Are HMC trajectories reversible and area preserving in practice?
* The only fundamental source of irreversibility is the rounding error caused by using finite precision floating point arithmetic
* For fermionic systems we can also introduce irreversibility by choosing the starting vector for the iterative linear equation solver time-asymmetrically
* We do this if we to use a Chronological Inverter, which takes (some extrapolation of) the previous solution as the starting vector
- Floating point arithmetic is not associative
* It is more natural to store compact variables as scaled integers (fixed point)
* Saves memory
* Does not solve the precision problem

Reversibility

- Data for SU(3) gauge theory and QCD with heavy quarks show that rounding errors are amplified exponentially
- The underlying continuous time equations of motion are chaotic
- Ляпунов exponents characterise the divergence of nearby trajectories
- The instability in the integrator occurs when δH » 1
- Zero acceptance rate anyhow

Reversibility

© In QCD the Ляпунов exponents appear to scale with β as the system approaches the continuum limit $\beta \rightarrow \infty$

- $v \xi=$ constant
* This can be interpreted as saying that the Ляпунов ехроnent characterises the chaotic nature of the continuum classical equations of motion, and is not a lattice artefact
Q Therefore we should not have to worry about reversibility breaking down as we approach the continuum limit
Q Caveat. data is only for small lattices, and is not conclusive

Reversibility

- Data for QCD with lighter dynamical quarks
- Instability occurs close to region in $\delta \tau$ where acceptance rate is near one
* May be explained as a few "modes" becoming unstable because of large fermionic force
* Integrator goes unstable if too poor an approximation to the fermionic force is used

$16^{3} \times 32$ lä̌ice, $\kappa=0.1355, \beta=5.2 c_{\text {SWW }}=2.0171$

Polynomial approximation

What is the best polynomial approximation $p(x)$ to a continuous function $f(x)$ for x in $[0,1]$?

- Best with respect to the appropriate norm

$$
\|p-f\|_{n}=\left(\int_{0}^{1} d x|p(x)-f(x)|^{n}\right)^{1 / n}
$$

where $n \geq 1$

Weierstraß' theorem

- Taking $\mathrm{n} \rightarrow \infty$ this is the minimax norm

$$
\|p-f\|_{\infty}=\min _{p} \max _{0 \leq x \leq 1}|p(x)-f(x)|
$$

Weierstraß: Any continuous function can be arbitrarily well approximated by a polynomial

Бернштейне polynomials

- The explicit solution is provided by Бернштейне polynomials

$$
p_{n}(x) \equiv \sum_{k=0}^{n} f\left(\frac{k}{n}\right)\binom{n}{k} x^{n}(1-x)^{n-k}
$$

Чебышев's theorem

- Чeбbышes: There is always a unique polynomial of any degree d which minimises

$$
\|p-f\|_{\infty}=\max _{0 \leqslant x \leq 1}|p(x)-f(x)|
$$

- The error $|p(x)-f(x)|$ reaches its maximum at exactly $d+2$ points on the unit interval

Чебышев's theorem: Necessity

* Suppose $p-f$ has less than $d+2$ extrema of equal magnitude
v Then at most $d+1$ maxima exceed some magnitude
- This defines a "gap"
- We can construct a polynomial q of degree d which has the opposite sign to $p-f$ at each of these maxima (Lagrange interpolation)
* And whose magnitude is smaller than the "gap"
- The polynomial $p+q$ is then a better approximation than p to f

Чебышев's theorem: Sufficiency

C. Suppose there is a polynomial $\left\|p^{\prime}-f\right\|_{\infty} \leq\|p-f\|_{\infty}$

- Then $\left|p^{\prime}\left(x_{i}\right)-f\left(x_{i}\right)\right| \leq\left|p\left(x_{i}\right)-f\left(x_{i}\right)\right|$ at each of the $d+2$ extrema

2. Therefore $p^{\prime}-p$ must have $d+1$ zeros on the unit interval

- Thus $p^{\prime}-p=0$ as it is a polynomial of degree d

Чебышев polynomials

- Convergence is often exponential in d
* The best approximation of degree $d-1$ over $[-1,1]$ to x^{d} is

$$
p_{d-1}(x)=x^{d}-\left(\frac{1}{2}\right)^{d-1} T_{d}(x)
$$

* Where the Чебышев polynomials are

$$
T_{d}(x)=\cos \left(d \cos ^{-1}(x)\right)
$$

* The notation is an old transliteration of Чебышев !
* The error is $\left\|x^{d}-p_{d}(x)\right\|_{\infty}=\left(\frac{1}{2}\right)^{d-1}\left\|T_{d}(x)\right\|_{\infty}=2 e^{-d \ln 2}$

Чебышев rational functions

- Чебышев's theorem is easily extended to rational approximations
- Rational functions with nearly equal degree numerator and denominator are usually best
* Convergence is still often exponential
- Rational functions usually give a much better approximation

* A simple (but somewhat slow) numerical algorithm for finding the optimal Чебышев rational approximation was given by Ремез

Чебышев rationals: Example

* A realistic example of a rational approximation is

$$
\frac{1}{\sqrt{x}} \approx 0.3904603901 \frac{(x+2.3475661045)(x+0.1048344600)(x+0.0073063814)}{(x+0.4105999719)(x+0.0286165446)(x+0.0012779193)}
$$

* This is accurate to within almost 0.1% over the range $[0.003,1]$
- Using a partial fraction expansion of such rational functions allows us to use a multishift linear equation solver, thus reducing the cost significantly.
* The partial fraction expansion of the rational function above is

$$
\frac{1}{\sqrt{x}} \approx 0.3904603901+\frac{0.0511093775}{x+0.0012779193}+\frac{0.1408286237}{x+0.0286165446}+\frac{0.5964845033}{x+0.4105999719}
$$

Q This appears to be numerically stable.

Polynomials versus rationals

- Золотарев's formula has L_{∞} error $\Delta \leq e^{\frac{n}{n s}}$
- Optimal L_{2} approximation with weight $\frac{1}{\sqrt{1-x^{2}}}$
is

$$
\sum_{j=0}^{n} \frac{(-)^{j} 4}{(2 j+1) \pi} T_{2 j+1}(x)
$$

* This has L_{2} error of $O(1 / n)$
* Optimal L_{∞} approximation cannot be too much better (or it would lead to a better L_{2} approximation)

Non-linearity of CG solver

- Suppose we want to solve $A^{2} x=b$ for Hermitian A by CG
* It is better to solve $A x=y, A y=b$ successively
* Condition number $\kappa\left(A^{2}\right)=\kappa(A)^{2}$
* Cost is thus $2 \kappa(A)<\kappa\left(A^{2}\right)$ in general
- Suppose we want to solve $A x=b$
*. Why don't we solve $A^{1 / 2} x=y, A^{1 / 2} y=b$ successively?
- The square root of A is uniquely defined if $A>0$
* This is the case for fermion kernels
- All this generalises trivially to $n^{\text {th }}$ roots
* No tuning needed to split condition number evenly
* How do we apply the square root of a matrix?

Rational matrix approximation

- Functions on matrices

Q Defined for a Hermitian matrix by diagonalisation

- $H=U D U^{-1}$
- $f(H)=f\left(U D U^{-1}\right)=U f(D) U^{-1}$

Q Rational functions do not require diagonalisation

- $\alpha H^{m}+\beta H^{n}=U\left(\alpha D^{m}+\beta D^{n}\right) U^{-1}$
- $H^{-1}=U D^{-1} U^{-1}$
- Rational functions have nice properties
- Cheap (relatively)
- Accurate

No Free Lunch Theorem

- We must apply the rational approximation with each CG iteration
- $M^{1 / n} \approx r(M)$
*. The condition number for each term in the partial fraction expansion is approximately $\kappa(M)$
- So the cost of applying $M^{1 / n}$ is proportional to $\kappa(M)$
- Even though the condition number $\kappa\left(M^{1 / n}\right)=\kappa(M)^{1 / n}$
- And even though $\kappa(r(M))=\kappa(M)^{1 / n}$
- So we don't win this way...

Pseudofermions

- We want to evaluate a functional integral including the fermionic determinant det M
* We write this as a bosonic functional integral over a pseudofermion field with kernel M^{-1}

$$
\operatorname{det} M \propto \int d \phi^{*} d \phi e^{-\phi^{*} M^{-1} \phi}
$$

Multipseudofermions

2. We are introducing extra noise into the system by using a single pseudofermion field to sample this functional integral

- This noise manifests itself as fluctuations in the force exerted by the pseudofermions on the gauge fields
* This increases the maximum fermion force
* This triggers the integrator instability
* This requires decreasing the integration step size
- A better estimate is $\operatorname{det} M=\left[\operatorname{det} M^{1 / n}\right]^{n}$

$$
\operatorname{det} M^{\frac{1}{n}} \propto \int d \phi^{*} d \phi e^{-\phi^{-\frac{1}{n}} \phi}
$$

Hasenbusch's method

- Start with the Wilson fermion kernel $M=1-\kappa H$

Q Introduce the quantity $M^{\prime}=1-\kappa^{\prime} H$

- Use the (associative) identity $M=M^{\prime} M^{1-1} M$
* Introduce separate pseudofermions for each determinant $\operatorname{det} M=\operatorname{det} M^{\prime} \operatorname{det}\left(M^{\prime-1} M\right)$
* Adjust κ^{\prime} to minimise the cost
- Easily generalises
* More than two pseudofermions
- Wilson-clover action

Violation of NFL Theorem

- Let's try using our $n^{\text {th }}$ root trick to implement multipseudofermions
- Condition number $\kappa(r(M))=\kappa(M)^{1 / n}$
- So maximum force is reduced by a factor of $n_{\kappa}(M)^{(1 / n)-1}$
- This is a good approximation if the condition number is dominated by a few isolated tiny eigenvalues
* This is so in the case of interest
- Cost reduced by a factor of $n_{\kappa}(M)^{(1 / n)-1}$
© Optimal value $n_{\text {opt }} \approx \ln \kappa(M)$
C So optimal cost reduction is $(e \ln \kappa) / \kappa$
* This works!

Rational Hybrid Monte Carlo

- RHMC algorithm for fermionic kernel $\left(\mathcal{M}^{+} \mathcal{M}\right)^{\frac{1}{2 n}}$
* Generate pseudofermion from Gaussian heatbath

$$
\begin{gathered}
P(\xi) \propto e^{-\frac{1}{2} \xi^{\dagger} \xi} \quad \chi=\left(\mathcal{M}^{\dagger} \mathcal{M}\right)^{\frac{1}{4 n} \xi} \\
P(\chi) \propto \int_{-\infty}^{\infty} d \xi e^{-\frac{1}{2} \xi^{\dagger} \xi} \delta\left(\chi-\left(\mathcal{M}^{\dagger} \mathcal{M}\right)^{\left.\frac{1}{4 n} \xi\right) \propto e^{-\frac{1}{2} \chi^{\dagger}\left(\mathcal{M}^{\dagger} \mathcal{M}\right)^{-\frac{1}{2 n}} \chi}} .\right.
\end{gathered}
$$

- Use accurate rational approximation $r(x) \approx \sqrt[4]{x}$
- Use less accurate approximation for MD, $\tilde{r}(x) \approx \sqrt[2 n]{x}$
- $\tilde{r}(x) \neq r(x)^{2}$, so there are no double poles
- Use accurate approximation for Metropolis acceptance step

Rational Hybrid Monte Carlo

- Reminders
- Apply rational approximations using their partial fraction expansions
Q. Denominators are all just shifts of the original fermion kernel
*. All poles of optimal rational approximations are real and positive for cases of interest (Miracle \#1)
- Only simple poles appear (by construction!)
* Use multishift solver to invert all the partial fractions using a single Krylov space
© Cost is dominated by Krylov space construction, at least for O (20) shifts
- Result is numerically stable, even in 32-bit precision
- All partial fractions have positive coefficients (Miracle \#2)
* MD force term is of the usual form for each partial fraction
- Applicable to any kernel

Multipseudofermions with multiple timescales

Shift $[\ln (\beta)]$

$$
\frac{1}{\sqrt{x}} \approx 0.3904603901+\frac{0.0511093775}{x+0.0012779193}+\frac{0.1408286237}{x+0.0286165446}+\frac{0.5964845033}{x+0.4105999719}
$$

L_{2} versus L_{∞} Force Norms

Conclusions (RHMC)

* Advantages of RHMC
- Exact

No step-size errors; no step-size extrapolations

* Significantly cheaper than the R algorithm
- Allows easy implementation of Hasenbusch (multipseudofermion) acceleration
* Further improvements possible
- Such as multiple timescales for different terms in the partial fraction expansion
* Disadvantages of RHMC
- Costly for FG integrators (numerous right hand sides)

