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Motivation

 Only p and π are stable (under strong
interactions).

Even lowest ‘states’ in other channels decay 
  (ρ, N*,...) hadronically.

 For many ‘particles’ the classification is
uncertain (multiplet, ‘molecular’ bound state, 
glueball)
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Hadron propagators and spectral function
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Example for hadron correlation function
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Hadron propagators and spectral function

  Finite volume: Energy levels are discrete

  Energy values: masses of hadrons

  Dynamical quarks: hadronic intermediate  

states, more levels expected
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Hadron propagators and spectral function

  Finite volume: Energy levels are discrete

  Energy values: masses of hadrons

  Dynamical quarks: hadronic intermediate  

states, more levels expected

How to extract several energy levels from 
correlation functions?
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Hadron propagators and spectral function

  Finite volume: Energy levels are discrete

  Energy values: masses of hadrons

  Dynamical quarks: hadronic intermediate  

states, more levels expected

How to extract several energy levels from 
correlation functions?

How to interpret the (hopefully) observed 
values?
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1. Motivation: Why bother?

2. What do we need?

3. Example 1: Hadron excitations 
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Overview
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What do we need?

 Gauge configurations (with dynamical quarks)

 Quark propagators

 Hadron interpolators and propagators

 A method to extract higher energy levels

 Interpretation of the obtained energy levels
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How to get energy levels...

A fit to several exponentials is usually unstable!

Maximum entropy method Sasaki (05)Thursday, June 16, 2011
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Bayesian analysis (stepwise reduction of        
exponential with biased estimators):

   minimize

Mathur(05), Lee(03), 
Juge(06), Zanotti(03), 
Melnichouk(03)

F = χ2 + λφ

   where     is a stabilizing function(prior)φ
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How to get energy levels...

A fit to several exponentials is usually unstable!

Bayesian analysis (stepwise reduction of        
exponential with biased estimators):

   minimize

Mathur(05), Lee(03), 
Juge(06), Zanotti(03), 
Melnichouk(03)

F = χ2 + λφ

   where     is a stabilizing function(prior)φ

Maximum entropy method

Maximum entropy method Sasaki (05)

Sasaki (05)

Variational method (Michael, Lüscher/Wolff) Burch (03/06)
Basak (05)
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Use several interpolators

Compute all cross-correlations

Solve the generalized eigenvalue 
problem:

The eigenvalues give the energy levels 
(masses):

The eigenvectors are “fingerprints” of 
the state and allow to identify the 
“composition” of the state

Disentangle the states

Cij(t) = �Xi(t)X†
j (0)�

Xi

C(t) u(n) = λ(n) C(t0)u(n)

λ(n)(t) ∝ e−t En
�
1 +O(e−t∆En)

�
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Use several interpolators

Compute all cross-correlations

Solve the generalized eigenvalue 
problem:

The eigenvalues give the energy levels 
(masses):

The eigenvectors are “fingerprints” of 
the state and allow to identify the 
“composition” of the state

Disentangle the states

Cij(t) = �Xi(t)X†
j (0)�

Xi

C(t) u(n) = λ(n) C(t0)u(n)

λ(n)(t) ∝ e−t En
�
1 +O(e−t∆En)

�

“Variational method”

(Lüscher/Wolff; Michael)

Lüscher,Wolff: NPB339(90)222
Michael, NPB259(85)58
See also Blossier et al., JHEP0904(09)094

Thursday, June 16, 2011



C. B. Lang (c) 2011

Hadron operators

We need several hadron interpolators to allow a good
representation of the hadronic states!

• Several Dirac structures, e.g

uγ5d, uγtγ5d, . . .

N (i) = �abc Γ(i)
1 ua

�
uT

b Γ(i)
2 dc − dT

b Γ(i)
2 uc

�

∆µ = �abcua(u
T
b Cγµuc)

(projected to definite parity)

Γ(i)
1 Γ(i)

2

i = 1 1 Cγ5
i = 2 γ5 C
i = 3 i Cγ4γ5

Pion
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Quark sources

Different quark source shapes:
• Point
• Wall
• Stochastic
• Separable sources (see: distillation)

• Spatially smeared quarks (Jacobi smearing)

• Derivative sources
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N�

n=0

κn
H

n
S0

H(�n, �m ) =
3�

j=1

�
Uj(�n, 0) δ(�n+ ĵ , �m )

+Uj(�n−ĵ , 0)† δ(�n− ĵ , �m )
�

�∇i(�x, �y) = Ui(�x, 0)δ�x+î,�y

− Ui(�x− î, 0)†δ�x−î,�y

S∂i = �∇iS
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Separable sources

LapH smearing and distillation Peardon et al. PRD80(09)054506

ūxS
†(x, x�)Dx�,y�ΓS(y�, y)dy

e.g. meson:
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Separable sources

LapH smearing and distillation Peardon et al. PRD80(09)054506

ūxS
†(x, x�)Dx�,y�ΓS(y�, y)dy

N�

i
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†
i (x

�)
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gi(y
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e.g. meson:
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�
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�ū gi g†i DΓ gj g
†
j d d̄ gk g

†
k DΓ gn g

†
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Separable sources

LapH smearing and distillation Peardon et al. PRD80(09)054506

ūxS
†(x, x�)Dx�,y�ΓS(y�, y)dy

N�

i

gi(x)g
†
i (x
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i

gi(y
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e.g. meson:

�M(0)M(t)� =
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�ū gi g†i DΓ gj g
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j d d̄ gk g

†
k DΓ gn g

†
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=
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ijkn

φij(0) τjk(0, t) φkn(t) τni(t, 0)
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Separable sources

LapH smearing and distillation Peardon et al. PRD80(09)054506

ūxS
†(x, x�)Dx�,y�ΓS(y�, y)dy

N�

i

gi(x)g
†
i (x

�)
N�

i

gi(y
�)g†i (y)

e.g. meson:

=
�

ijkn

φij(0) τjk(0, t) φkn(t) τni(t, 0)

�M(0)M(t)� =
�

ijkn

� g†i DΓ gj g
†
j d d̄ gk g

†
k DΓ gn g

†
n u ū gi �
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Laplacian Heaviside smearing

e.g. spectral representation of Gaussian

Perambulator: Propagator from source i to sink j
Distillation operator: Spectral representation in terms of 
eigenvectors of the 3D Laplacian

S(x, y) =
N�

i

cigi(x)g
†
i (x

�)

ci = 1, N = 3N3
s → S(x, x�) = δ(x− x�)

S(x, x�) = exp(σ�∇2)

or, for
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Laplacian Heaviside smearing

e.g. spectral representation of Gaussian

Perambulator: Propagator from source i to sink j
Distillation operator: Spectral representation in terms of 
eigenvectors of the 3D Laplacian

S(x, y) =
N�

i

cigi(x)g
†
i (x

�)

S(x, x�) = exp(σ�∇2)

or, for ci = 1, N = 32, 64, 96 →
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Nv=32   s=w  (wide)
Nv=64   s=m  (middle)
Nv=96   s=n  (narrow)
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Plus/minus

All hadron-hadron correlators (and 3-point functions) can be 
constructed from the perambulators.

Needs many (NxNT) Dirac operator inversions 
(perambulators)! 

High flexibility for interpolator structure: Γ, �∇i, exp(i �p · �x)

Volume scaling! Stochastic dilution?

Thursday, June 16, 2011
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Example 1: Baryons and mesons

Simulation with 2 sea quarks:

 Chirally improved (approximate GW) action  
+ stout smearing
 Lüscher-Weisz gauge action
HMC: Hasenbusch preconditioning 

       (2 pseudofermions), chron. inverter, 
       mixed prec. inverter

 3(7) ensembles of 200-300 configurations
 163x32 (size 2.4 fm)
 Pion masses 260..540 MeV

 (Gattringer, 
PRD63(2001)114501)

Gattringer et al. PRD 79 (2009) 054501
Engel et al. PRD 82 (2010) 034505

see, e.g., also other collab.s: 
Edwards et al., arXiv:1104.5152
and citations in the review 
Lin, arXiv:1106.1608
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0-+: π(140), π’ (1300)

Ground state and excited pion state, including partially 
quenched data

Engel et al. PRD 82 (2010) 034505
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Attention: Signals from the future!
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Multi-operator (variational) analysis at small pion masses:
the back-running pion limits the observation range for the excited state!

Similar effects for combinations of mesons running forward and backward, 
cf. Prelovsek et al., Phys. Rev. D82 (2010) 094507

Possible cures: larger time-size, modified boundary conditions, ...
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1--:  ρ(770),   ρ ‘(1450)

No decay yet (p-wave)

More contamination with 
higher excitations, thus t0=2 
is preferable. 

Optimal combination chosen 
for each data set.

2nd excitation ρ(1720) signal 
is seen for some 
combinations of interpolators

Challenge: Where is the ππ 
state?

Engel et al. PRD 82 (2010) 034505

Thursday, June 16, 2011



C. B. Lang (c) 2011

1/2+: N(940), N(1440), N(1710)
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Similar to quenched results! 
Two excitations (higher one 

vague), too high up! Challenge: 
Roper? 

(cf. Mahbub et al. arXiv:1011.5724v1 ?)

Preliminary: Only dynamical points, 
common set of interpolators, results 

compatible
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The Roper puzzle
Action and configurations

Analysis
Mass spectrum

Mesons
Baryons

1
2

+
: N(940), N(1440)P11, N(1710)P11
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Two excitations (higher one vague), too
high up! Roper?
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Quenched results (Burch et al., PRD 74
(2006) 014504);
cf., Mahbub arXiv:0905.3616

Christian B. Lang Excited hadrons in nf = 2 QCD

Level crossing (from + - + -  to + + - -)?
Nucleon, positive parity
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1/2-: N(1535), N(1650)
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Two states seen, but not 
clearly resolvable; lower 
level dominated by χ2

Challenge: Is one level a 
πN in s-wave signal?
 
(pro/con: eigenvectors are stable for 
A,B,C: no level crossing, no change of 
splitting towards higher valence 
masses? But: gA?)

Engel et al. PRD 82 (2010) 034505
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Baryon summary
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Challenge

Why do we not see the meson-meson 
and meson-baryon intermediate states?
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Challenge

Why do we not see the meson-meson 
and meson-baryon intermediate states?

We need to include these in the set of
hadron interpolators!

see also: Bulava et al. 
PRD82(10)014507
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Challenge

Why do we not see the meson-meson 
and meson-baryon intermediate states?

(a)

(b)

(c)

(e)(d)

These involve (partially) 
disconnected contractions!

We need to include these in the set of
hadron interpolators!

see also: Bulava et al. 
PRD82(10)014507
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1. Motivation: Why bother?

2. What do we need?

3. Example 1: Hadron excitations 

4. Example 2: Rho decay

Overview
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Example 2: Rho decay CBL,Mohler,Prelovsek, 
arXiv:1105.5636

Study ππ→ρ→ππ scattering (p wave)

Nf=2, improved Wilson fermions; 
     280 configurations from A. Hasenfratz et al.
     (Thanks! See Hasenfratz et al., PRD78(08)014515,054511)

Up to 18 interpolators

Non-zero momentum states

Determine p-wave phase shift also:
Aoki et al., PoS LAT10(10)108
Feng et al., PoS LAT10(10)104
Frison et al. PoS LAT10(10)139
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Interpolators

4

bers IG(JPC) = 1−(0−+) of the pion, we construct
a matrix C(t)ij of lattice interpolating fields contain-
ing both quark-antiquark and meson-meson (in our case
pion-pion) interpolators

C(t)ij =
∑

n

e−tEn
〈

0|Oi|n
〉〈

n|O†
j |0

〉

. (17)

For this matrix, the generalized eigenvalue problem

C(t)!ψ(n) = λ(n)(t)C(t0)!ψ
(n) (18)

is solved for each time slice. For the eigenvalues λ(n)(t)
one obtains

λ(n)(t) ∝ e−t En
(

1 +O
(

e−t∆En
))

, (19)

so that each eigenvalue is dominated by a single energy
at large time separations. This method is called the vari-
ational method [24–27]. For a detailed discussion of the
energy difference ∆En, which is in general given by the
difference between the energy level in consideration and
the closest neighboring level, please refer to [27].
We calculate the eigenvector components of the regular

eigenvector problem

C(t0)
− 1

2C(t)C(t0)
− 1

2 !ψ(n) ′ = λ(n)(t)!ψ(n) ′ . (20)

In addition to the eigenvalues, the eigenvectors provide
useful information and can serve as a fingerprint for a
given state. To track the eigenvalue corresponding to a
given energy over the full range of time separations, the
eigenvalues have to be sorted, either by their magnitude
or by scalar products of their eigenvectors. In the pres-
ence of backwards running contributions caused by the
finite time extent of the lattice, a combination of both
methods works well: the eigenvalues are sorted by mag-
nitude at low time separations and by scalar products at
larger time separation. For our analysis we choose this
method.

C. Interpolators

For the ρ channel we employ fifteen quark-antiquark
interpolators and one pion-pion interpolator with JPC =
1−− and |I, I3〉 = |1, 0〉 in the variational basis for each of
the three choices for P as given in (2). All previous sim-
ulations aimed at determining the ρ meson width used
at most one quark-antiquark and one pion-pion inter-
polator and extracted the two lowest energy levels from
a 2 × 2 variational basis. This may not be reliable if
the third energy level is nearby and does not allow test-
ing whether the resulting two levels are robust against
the choice of interpolators. A larger basis enables us
to exploit the dependence of the extracted energies on
the choice of the interpolators. It also indicates whether
the lowest two states can be reliably extracted using our
quark-antiquark interpolators alone, or whether the pion-
pion interpolators are required in the variational basis.
The 15 different quark-antiquark interpolators Os

type
(type = 1, .., 5, s = n,m,w) differ in type (Dirac and
color structure) and width of the smeared quarks qs. We
use three different smearing widths s = n, m, w (narrow,
middle, wide) for individual quarks and all quarks in a
given interpolator have the same width s in this simula-
tion. (Choosing different quark widths within an inter-
polator is a straightforward generalization and one just
needs to pay attention that the resulting C-parity is cor-
rect.) The details on the smearing are given in Subsect.
II E. The interpolator O6 is the ππ interpolator whose
structure is explained at the end of this subsection. Our
sixteen ρ interpolators are:

Os
1(t) =

∑

x,i

1√
2
ūs(x) Aiγi e

iPx us(x) − {us ↔ ds} (s = n,m,w) ,

Os
2(t) =

∑

x,i

1√
2
ūs(x) γtAiγi e

iPx us(x) − {us ↔ ds} (s = n,m,w) ,

Os
3(t) =

∑

x,i,j

1√
2
ūs(x)

←−
∇j Aiγi e

iPx −→
∇jus(x) − {us ↔ ds} (s = n,m,w) ,

Os
4(t) =

∑

x,i

1√
2
ūs(x) Ai

1
2 [e

iPx −→
∇i −

←−
∇ ie

iPx]us(x) − {us ↔ ds} (s = n,m,w) ,

Os
5(t) =

∑

x,i,j,k

1√
2
εijl ūs(x) Aiγjγ5 1

2 [e
iPx−→∇ l −

←−
∇ le

iPx]us(x)− {us ↔ ds} (s = n,m,w) ,

Os=n
6 (t) = 1√

2
[π+(p1)π

−(p2)− π−(p1)π
+(p2)] , π±(pi) =

∑

x

q̄n(x)γ5τ
±eipixqn(x) . (21)
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Interpolators

4

bers IG(JPC) = 1−(0−+) of the pion, we construct
a matrix C(t)ij of lattice interpolating fields contain-
ing both quark-antiquark and meson-meson (in our case
pion-pion) interpolators

C(t)ij =
∑

n

e−tEn
〈

0|Oi|n
〉〈

n|O†
j |0

〉

. (17)

For this matrix, the generalized eigenvalue problem

C(t)!ψ(n) = λ(n)(t)C(t0)!ψ
(n) (18)

is solved for each time slice. For the eigenvalues λ(n)(t)
one obtains

λ(n)(t) ∝ e−t En
(

1 +O
(

e−t∆En
))

, (19)

so that each eigenvalue is dominated by a single energy
at large time separations. This method is called the vari-
ational method [24–27]. For a detailed discussion of the
energy difference ∆En, which is in general given by the
difference between the energy level in consideration and
the closest neighboring level, please refer to [27].
We calculate the eigenvector components of the regular

eigenvector problem

C(t0)
− 1

2C(t)C(t0)
− 1

2 !ψ(n) ′ = λ(n)(t)!ψ(n) ′ . (20)

In addition to the eigenvalues, the eigenvectors provide
useful information and can serve as a fingerprint for a
given state. To track the eigenvalue corresponding to a
given energy over the full range of time separations, the
eigenvalues have to be sorted, either by their magnitude
or by scalar products of their eigenvectors. In the pres-
ence of backwards running contributions caused by the
finite time extent of the lattice, a combination of both
methods works well: the eigenvalues are sorted by mag-
nitude at low time separations and by scalar products at
larger time separation. For our analysis we choose this
method.

C. Interpolators

For the ρ channel we employ fifteen quark-antiquark
interpolators and one pion-pion interpolator with JPC =
1−− and |I, I3〉 = |1, 0〉 in the variational basis for each of
the three choices for P as given in (2). All previous sim-
ulations aimed at determining the ρ meson width used
at most one quark-antiquark and one pion-pion inter-
polator and extracted the two lowest energy levels from
a 2 × 2 variational basis. This may not be reliable if
the third energy level is nearby and does not allow test-
ing whether the resulting two levels are robust against
the choice of interpolators. A larger basis enables us
to exploit the dependence of the extracted energies on
the choice of the interpolators. It also indicates whether
the lowest two states can be reliably extracted using our
quark-antiquark interpolators alone, or whether the pion-
pion interpolators are required in the variational basis.
The 15 different quark-antiquark interpolators Os

type
(type = 1, .., 5, s = n,m,w) differ in type (Dirac and
color structure) and width of the smeared quarks qs. We
use three different smearing widths s = n, m, w (narrow,
middle, wide) for individual quarks and all quarks in a
given interpolator have the same width s in this simula-
tion. (Choosing different quark widths within an inter-
polator is a straightforward generalization and one just
needs to pay attention that the resulting C-parity is cor-
rect.) The details on the smearing are given in Subsect.
II E. The interpolator O6 is the ππ interpolator whose
structure is explained at the end of this subsection. Our
sixteen ρ interpolators are:

Os
1(t) =

∑

x,i

1√
2
ūs(x) Aiγi e

iPx us(x) − {us ↔ ds} (s = n,m,w) ,

Os
2(t) =

∑

x,i

1√
2
ūs(x) γtAiγi e

iPx us(x) − {us ↔ ds} (s = n,m,w) ,

Os
3(t) =

∑

x,i,j

1√
2
ūs(x)

←−
∇j Aiγi e

iPx −→
∇jus(x) − {us ↔ ds} (s = n,m,w) ,

Os
4(t) =

∑

x,i

1√
2
ūs(x) Ai

1
2 [e

iPx −→
∇i −

←−
∇ ie

iPx]us(x) − {us ↔ ds} (s = n,m,w) ,

Os
5(t) =

∑

x,i,j,k

1√
2
εijl ūs(x) Aiγjγ5 1

2 [e
iPx−→∇ l −

←−
∇ le

iPx]us(x)− {us ↔ ds} (s = n,m,w) ,

Os=n
6 (t) = 1√

2
[π+(p1)π

−(p2)− π−(p1)π
+(p2)] , π±(pi) =

∑

x

q̄n(x)γ5τ
±eipixqn(x) . (21)

... include   ππ   operator
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Interpolators

4

bers IG(JPC) = 1−(0−+) of the pion, we construct
a matrix C(t)ij of lattice interpolating fields contain-
ing both quark-antiquark and meson-meson (in our case
pion-pion) interpolators

C(t)ij =
∑

n

e−tEn
〈

0|Oi|n
〉〈

n|O†
j |0

〉

. (17)

For this matrix, the generalized eigenvalue problem

C(t)!ψ(n) = λ(n)(t)C(t0)!ψ
(n) (18)

is solved for each time slice. For the eigenvalues λ(n)(t)
one obtains

λ(n)(t) ∝ e−t En
(

1 +O
(

e−t∆En
))

, (19)

so that each eigenvalue is dominated by a single energy
at large time separations. This method is called the vari-
ational method [24–27]. For a detailed discussion of the
energy difference ∆En, which is in general given by the
difference between the energy level in consideration and
the closest neighboring level, please refer to [27].
We calculate the eigenvector components of the regular

eigenvector problem

C(t0)
− 1

2C(t)C(t0)
− 1

2 !ψ(n) ′ = λ(n)(t)!ψ(n) ′ . (20)

In addition to the eigenvalues, the eigenvectors provide
useful information and can serve as a fingerprint for a
given state. To track the eigenvalue corresponding to a
given energy over the full range of time separations, the
eigenvalues have to be sorted, either by their magnitude
or by scalar products of their eigenvectors. In the pres-
ence of backwards running contributions caused by the
finite time extent of the lattice, a combination of both
methods works well: the eigenvalues are sorted by mag-
nitude at low time separations and by scalar products at
larger time separation. For our analysis we choose this
method.

C. Interpolators

For the ρ channel we employ fifteen quark-antiquark
interpolators and one pion-pion interpolator with JPC =
1−− and |I, I3〉 = |1, 0〉 in the variational basis for each of
the three choices for P as given in (2). All previous sim-
ulations aimed at determining the ρ meson width used
at most one quark-antiquark and one pion-pion inter-
polator and extracted the two lowest energy levels from
a 2 × 2 variational basis. This may not be reliable if
the third energy level is nearby and does not allow test-
ing whether the resulting two levels are robust against
the choice of interpolators. A larger basis enables us
to exploit the dependence of the extracted energies on
the choice of the interpolators. It also indicates whether
the lowest two states can be reliably extracted using our
quark-antiquark interpolators alone, or whether the pion-
pion interpolators are required in the variational basis.
The 15 different quark-antiquark interpolators Os

type
(type = 1, .., 5, s = n,m,w) differ in type (Dirac and
color structure) and width of the smeared quarks qs. We
use three different smearing widths s = n, m, w (narrow,
middle, wide) for individual quarks and all quarks in a
given interpolator have the same width s in this simula-
tion. (Choosing different quark widths within an inter-
polator is a straightforward generalization and one just
needs to pay attention that the resulting C-parity is cor-
rect.) The details on the smearing are given in Subsect.
II E. The interpolator O6 is the ππ interpolator whose
structure is explained at the end of this subsection. Our
sixteen ρ interpolators are:

Os
1(t) =

∑

x,i

1√
2
ūs(x) Aiγi e

iPx us(x) − {us ↔ ds} (s = n,m,w) ,

Os
2(t) =

∑

x,i

1√
2
ūs(x) γtAiγi e

iPx us(x) − {us ↔ ds} (s = n,m,w) ,

Os
3(t) =

∑

x,i,j

1√
2
ūs(x)

←−
∇j Aiγi e

iPx −→
∇jus(x) − {us ↔ ds} (s = n,m,w) ,

Os
4(t) =

∑

x,i

1√
2
ūs(x) Ai

1
2 [e

iPx −→
∇i −

←−
∇ ie

iPx]us(x) − {us ↔ ds} (s = n,m,w) ,

Os
5(t) =

∑

x,i,j,k

1√
2
εijl ūs(x) Aiγjγ5 1

2 [e
iPx−→∇ l −

←−
∇ le

iPx]us(x)− {us ↔ ds} (s = n,m,w) ,

Os=n
6 (t) = 1√

2
[π+(p1)π

−(p2)− π−(p1)π
+(p2)] , π±(pi) =

∑

x

q̄n(x)γ5τ
±eipixqn(x) . (21)

... include   ππ   operator

... and three quark widths (s, m, w) CBL,Mohler,Prelovsek, 
arXiv:1105.5636
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Energy levels and phase shift

288 11 Hadron structure

Fig. 11.2. This figure illustrates the behavior of the wave function: Outside the
interaction region it is an unperturbed plane wave which picks up an extra phase
shift in the interaction region (indicated by the arrow)

may be deduced from (11.90). If the functional form δ(kn) were known, one
could use this relation to find the quantized values of the momentum in this
finite volume. On the other hand, given the momentum spectrum from some
measurement, (11.90) allows the determination of the phase shift δ(kn) for
each kn.

The momenta can be obtained from the energy values of the two parti-
cle states which are accessible in the simulation. For given L one computes
the discrete levels W0,W1,W2, . . . and from these the values of kn using the
dispersion relation

Wn = 2
√

m2 + k2
n . (11.91)

The technical problem lies in the precise determination of the single-particle
mass and of the energy levels Wn.

For the determination of the energy spectrum one has to use techniques
like the variational method (discussed in Sect. 6.3.3) considering correlation
functions of a sufficiently large number of interpolators with the correct quan-
tum numbers, capable of representing the space of scattering states [33, 34],
including the coupled single-particle channels. Usually several of the lowest
energy eigenmodes can be determined with sufficient reliability. Varying the
spatial size L of the system allows one to cover different values of the momen-
tum. In [34] a simple 2D system was studied which couples a heavier and two
lighter bosons on the lattice, with mass and coupling parameters allowing for a
decay like in the ρ → ππ system. Figure 11.3 demonstrates the expected phe-
nomenon of level-crossing avoidance, which leads to a resonating phase shift.

One has to respect carefully the limitations of the approach: The interac-
tion region and the single-particle correlation length ought to be smaller than
the spatial volume, in particular mL" 1. The relation is applicable only be-
low the first inelastic threshold. Polarization effects due to virtual particles
running around the torus should be under control. Lattice artifacts will turn
up for large values of k.

In the physical 4D situation the relationship between phase shift, lattice
size, and momentum becomes somewhat more complicated:

δ(k) = φ

(
kL

2π

)
modπ with tan(−φ(q)) =

qπ3/2

Z00(1; q2)
, φ(0) = 0 .

(11.92)

eikL+2iδ(k) = 1
knL+ 2δ(kn) = 2nπ

10 30 50

0.5

1.0
(a)

L

W

10 30 50

L

(b)

–1.0

Wn = 2
�

m2 + k2n

tan δ(q) =
π3/2q

Z00(1; q2)

2D example: Gattringer/CBL, NP B391 (1993) 463

Lüscher, CMP 105(86) 153,
NP B354 (91) 531, NP B 364 (91) 237
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Energy levels and phase shift

288 11 Hadron structure

Fig. 11.2. This figure illustrates the behavior of the wave function: Outside the
interaction region it is an unperturbed plane wave which picks up an extra phase
shift in the interaction region (indicated by the arrow)

may be deduced from (11.90). If the functional form δ(kn) were known, one
could use this relation to find the quantized values of the momentum in this
finite volume. On the other hand, given the momentum spectrum from some
measurement, (11.90) allows the determination of the phase shift δ(kn) for
each kn.

The momenta can be obtained from the energy values of the two parti-
cle states which are accessible in the simulation. For given L one computes
the discrete levels W0,W1,W2, . . . and from these the values of kn using the
dispersion relation

Wn = 2
√

m2 + k2
n . (11.91)

The technical problem lies in the precise determination of the single-particle
mass and of the energy levels Wn.

For the determination of the energy spectrum one has to use techniques
like the variational method (discussed in Sect. 6.3.3) considering correlation
functions of a sufficiently large number of interpolators with the correct quan-
tum numbers, capable of representing the space of scattering states [33, 34],
including the coupled single-particle channels. Usually several of the lowest
energy eigenmodes can be determined with sufficient reliability. Varying the
spatial size L of the system allows one to cover different values of the momen-
tum. In [34] a simple 2D system was studied which couples a heavier and two
lighter bosons on the lattice, with mass and coupling parameters allowing for a
decay like in the ρ → ππ system. Figure 11.3 demonstrates the expected phe-
nomenon of level-crossing avoidance, which leads to a resonating phase shift.

One has to respect carefully the limitations of the approach: The interac-
tion region and the single-particle correlation length ought to be smaller than
the spatial volume, in particular mL" 1. The relation is applicable only be-
low the first inelastic threshold. Polarization effects due to virtual particles
running around the torus should be under control. Lattice artifacts will turn
up for large values of k.

In the physical 4D situation the relationship between phase shift, lattice
size, and momentum becomes somewhat more complicated:

δ(k) = φ

(
kL

2π

)
modπ with tan(−φ(q)) =

qπ3/2

Z00(1; q2)
, φ(0) = 0 .

(11.92)
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knL+ 2δ(kn) = 2nπ
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Energy levels and phase shift

Only 2 (3?) levels can be determined reliably for 
given volume!

Use different momenta (“moving frame”)!

Rummukainen, Gottlieb: NP B 450(95) 397
Kim, Sharpe: NP B 727 (05) 218
Feng, Jansen, Renner: PoS LAT10 (10) 104
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Rho momenta

Relativistic 
distortion

�p = (0, 0, 0) (units2π/L)

�p = (0, 0, 1)

�p = (1, 1, 0)
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Rho momenta

Relativistic 
distortion

�p = (0, 0, 0) (units2π/L)

�p = (0, 0, 1)

�p = (1, 1, 0)

Symmetry 
group

Irrep
for ρ

Oh T−
1

D4d A−
2

D2d B−
1
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Energy levels give phase shift values

E, mπ → ECM → q → δ(q)

tan δ(q) =
γπ3/2q3

q2Z �d
00(1; q

2)−
�

1
5 Z �d

20(1; q
2) + i

�
3
10 (Z �d

22(1; q
2)− Z �d

22̄(1; q
2))

tan δ(q) =
γπ3/2q3

q2Z �d
00(1; q

2) +
�

4
5 Z �d

20(1; q
2)

(0,0,1) :

(1,1,0) :
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Recipe

E, mπ → ECM → q → δ(q)

 Up to 6 pion interpolators, var. analysis → pion mass

 Up to 18 ρ interpolators,var. analysis →energy levels E

 - the distillation method allows to include                            

 Compute ECM and q

 Compute from q the values of the phase shift

 Repeat for each momentum set → total of 6 energy 

values

(a)

(b)

(c)

(e)(d)
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“P+A - trick”

M−1
P+A(tf , ti) =

�
1
2 [M

−1
P (tf , ti) +M−1

A (tf , ti)] tf ≥ ti
1
2 [M

−1
P (tf , ti)−M−1

A (tf , ti)] tf < ti

P

A
=

Period doubling for
valence sector

Sasaki et al., PRD65(02)074503 
Detmold et al., PRD78(08)054514
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Pion diagonal correlators:   A vs. P+A
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Tests - how many do we need?

Lowest two levels
(for selected 
submatrices)

t0=4
fit range 7-10
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Lowest two energy levels

Bands: Fit range for λ(t)  -  2 exp fits
----- noninteracting π π energy
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Lowest two energy levels

Bands: Fit range for λ(t)  -  2 exp fits
----- noninteracting π π energy
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ππ→ππ  scattering amplitude

0.1 0.15 0.2 0.25 0.3 0.35 0.4
s

-0.2

-0.1

0

0.1

0.2

(p
*3 /s1/

2 ) c
ot

 
2/d.o.f. = 7.42/3
2/d.o.f. = 8.42/3
2/d.o.f. = 12.91/3
2/d.o.f. = 11.01/3

a1 =
−
√
sΓ(s)

s−m2
ρ + i

√
sΓ(s)

= eiδ(s) sin δ(s) (s = E2
CM )

√
sΓ(s) cot δ(s) = m2

ρ − s

with Γ(s) =
p3

s

g2ρππ
6π
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Phase shift

0.1 0.15 0.2 0.25 0.3 0.35 0.4
s

0

50

100

150

1

gρππ = 5.13(20)

mπ = 266(3)(3) MeV

mρ = 792(7)(8) MeV

gρππ,exp = 5.96

gρππ = 6.77(67)

mπ = 290 MeV

mρ = 980 MeV

Feng et al. (ETMC)
PoS LAT10(10)104

gρππ = 5.24(51)

mπ = 410 MeV

mρ = 891 MeV

Aoki et al. (PACS-CS)
PoS LAT10(10)108

gρππ = 5.5(2.9)/6.6(3.4)

mπ = 200/340 MeV

Frison et al. (BMW)
PoS LAT10(10)139

CBL,Mohler,Prelovsek, 
arXiv:1105.5636
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Summary

One needs to bring together 
several sophisticated tools:

Dynamical fermions
Many hadron interpolators
Variational analysis
Momentum states
Methods for disconnected graphs
Phase shift methods

There is a lot to do:

Volume study
Further hadronic channels (like scalar
meson or meson-baryon states)
Method improvement (more levels)
Extension to inelastic region (e.g. 
Rusetsky et al.(09), Bernard et al.(10))

First results are being 
obtained:

Excited hadrons, lowest levels
Meson decay
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Thanks to my collaborators in related projects:

T. Burch, G. Engel, C. Gattringer, L. Ya Glozman, C. Hagen, 
M. Limmer, T. Maurer, D. Mohler, S. Prelovsek, A. Schäfer 
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