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Introduction

I Sought for is the solution of

Ax = b, (1)

where A ∈ Cn×n non-singular and x , b ∈ Cn

I Often A is sparse (as in QCD. . . )
I How to solve (1)?

1. Directly
2. Iteratively
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Direct methods

I Usually based on factorization of system matrix A
I Well-known methods:

I A = LU: LU factorization (Gaussian elimination)
I A = LDLT : LDL factorization
I A = LL∗: Cholesky factorization (A hermitian, positive

(semi-)definite)

I Usually expensive (cf. O(n3) for dense matrices)

I Methods exploiting sparsity exist, reducing complexity

I Inexact methods used as preconditioners

I Also include special solvers, e.g. using FFTs

I Too expensive for many applications. . .
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Iterative methods

I Start with initial guess x (0)

I Construct sequence {x (k)}∞k=0 of approximate solutions
I Two classes:

I Stationary methods
I Non-stationary methods

I Stationary methods characterized by iteration matrix M
I Examples for stationary methods:

I Jacobi method (M = I − D−1A)
I Gauss-Seidel methods (M = I − (D − L)−1A)
I Successive over-relaxation (SOR, M(ω) = I − ω(D − ωL)−1A)
I Symmetric SOR (SSOR, M(ω) = . . . )

I Non-stationary methods: Krylov-subspace methods
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Krylov subspace methods

I Non-stationary iterative methods

I Approximation of solution in Krylov subspace:

Kk(A, b) = 〈b,Ab,A2b, . . . ,Ak−1b〉 ⊆ Cn

I Krylov matrix defined by

Kk =
[
b
∣∣∣Ab
∣∣∣A2b

∣∣∣ . . . ∣∣∣Ak−1b
]

I Kk has reduced QR factorization

Kk = QkRk

I Basis Qk of Kk created by Arnoldi iteration
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Arnoldi iteration I

Suppose, to pass the time while marooned on a desert
island, you challenged yourself to devise an algorithm to
reduce a nonhermitian matrix to Hessenberg form by or-
thogonal similarity transformations, proceeding column by
column from a prescribed first column q1. To your surprise
you could solve this problem in an hour and still have time
to gather coconuts for dinner. The method you would
come up with goes by the name of the Arnoldi iteration.

(Lloyd N. Trefethen, Numerical Linear Algebra, SIAM, Philadelphia, 1997)
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Arnoldi iteration II

I Complete orthogonal similarity transform given by

A = QHQ∗ ⇔ AQ = QH

I Let Qk ∈ Cn×k consist of the first k columns of Q

I Define H̃k as upper-left section of H

H̃k =


h1,1 · · · h1,k

h2,1 h2,2

. . .
. . .

...
hk,k−1 hk,k

hk+1,k


I Then AQk = Qk+1H̃k (Arnoldi relation)
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Arnoldi iteration III

I k-th column given by (n + 1)-term recurrence:

Aqk = h1,kq1 + · · ·+ hk,kqk + hk+1,kqk+1

Algorithm (Arnoldi iteration)

b = arbitrary, q1 = b/‖b‖
for k = 1, 2, . . . do

v = Aqk

for j = 1, . . . , i do
hj,k = q∗

j v
v = v − hj,kqj

end for
hk+1,k = ‖v‖
qk+1 = v/hk+1,k

end for
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GMRES

I GMRES computes x (k) = Kkc(k) ∈ Kk , c
(k) ∈ Ck s.t.

‖AKkc(k) − b‖ = minimum

I Set x (k) = Qky (k) and use Arnoldi relation to reduce (1) to

‖AQky (k) − b‖ = minimum

⇔ ‖Qk+1H̃ky (k) − b‖ = minimum

I Properties of Qk+1 finally yield

‖H̃ky − ‖b‖e1‖ = minimum

I Problem is reduced to (k + 1)× k matrix least squares problem

I Work further reduced by updating QR factorization
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Restarted GMRES

I Size of least squares problem grows with number of iterations
I Size of Qk also grows, increased memory requirement
I Approach to limit both grows: Restarting after m iterations
I Downside: Method is not guaranteed to converge anymore

Algorithm (restarted GMRES, GMRES(m))

for j = 0, 1, . . . do
r (j·m) = b − Ax (j·m)

q1 = r (j·m)/‖r (j·m)‖
for k = 1, . . . ,m do

Step k of Arnoldi iteration
Find y to minimize ‖H̃ky − ‖r‖e1‖
x (j·m+k) = x (j·m) + Qky

end for
end for
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Lanzcos iteration I

I For hermitian matrices Hessenberg matrix Hk becomes
tridiagonal matrix Tk :

Tk =


α1 β1

β1 α2 β2

β2 α3
. . .

. . .
. . . βk−1

βk−1 αk


I (k + 1)-term recurrence reduces to 3-term recurrence

I Arnoldi iteration reduces to Lanczos iteration

I GMRES reduces to MINRES
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Lanzcos iteration II

Algorithm (Lanczos iteration)

β0 = 0, q0 = 0, b = arbitrary, q1 = b/‖b‖
for k = 1, 2, . . . do

v = Aqk

αk = q∗kv
v = v − βk−1qk−1 − αkqk

βk = ‖v‖
qk+1 = v/βk

end for
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Conjugate gradients (CG)

I Can be interpreted as an optimization of the functional

ϕ(x) = 1/2x∗Ax − x∗b

I Minimizes A-norm of the error (instead of 2-norm of residual)

I Error satisfies ‖ek‖A/‖e0‖A ≤ 2((
√
κ− 1)/(

√
κ+ 1))k

Algorithm (CG iteration)

x (0) = 0, r (0) = 0, p(0) = 0
for k = 1, 2, . . . do
αk = ((r (k−1))∗r (k−1))/((p(k−1))∗Ap(k−1))
x (k) = x (k−1) + αkp

(k−1)

r (k) = r (k−1) − αkp
(k−1)

βk = ((r (k))∗r (k))/((r (k−1))∗r (k−1))
p(k) = r (k) + βkp

(k−1)

end for
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Biorthogonalization

I CG for nonhermitian matrices using normal equation

Ax = b ⇔ A∗Ax = A∗b

I Squared condition number leads to slow convergence

I Alterative: Tridiagonal biorthogonalization

A = VTV−1 and A∗ = V−∗︸︷︷︸
=:W

T ∗(V−∗)−1 = WT ∗W−1

where W ∗V = V ∗W = I

I Columns of V and W span K(A, v1) and K(A∗,w1)

I Leads to BiCG and variants (including BiCGstab, QMR,. . . )

Solvers, Matthias Bolten 16/46



Introduction
Direct methods

Iterative methods
Krylov subspace methods

Preconditioning

Krylov subspace methods
Arnoldi and GMRES
Lanzcos and CG
Biorthogonalization
Summary

AI

Summary

I Krylov subspace methods are fast solvers

I They are easy to implement

I They are easy to parallelize

I Efficiency depends on efficiency of matrix vector multiplication

I Methods with 3-term recurrence need fixed amount of memory

I In exact arithmetic solution is obtained in n steps

I Convergence rate depends on the eigenvalues

I Preconditioning necessary in many cases
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Preconditioning

I Given a nonsingular M ∈ Cn×n (1) is equivalent to

M−1Ax = M−1b

I Convergence of iterative solver now depends on M−1A

I M should be chosen such that convergence rate is improved
(optimal: M = A)

I Linear systems with system matrix M should be easy to solve

I This is called (left) preconditioning

I Right preconditioning: Solve AM−1y = b, then Mx = y

I Hermitian preconditioning: M = CC ∗, (1) transformed to

(C−1AC−∗)C ∗x = C−1b
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Diagonal scaling, Jacobi and Gauss-Seidel-type

I Simple preconditioner: Scale A by M = diag(A) like in Jacobi

I Easy to implement

I Often very effective

I More general: Scaling with M = diag(c) for some vector
c ∈ Cn

I Extension: Apply Gauss-Seidel, SOR or SSOR

Solvers, Matthias Bolten 19/46



Introduction
Direct methods

Iterative methods
Krylov subspace methods

Preconditioning

Preconditioning
Scaling, Jacobi and GS-type
Incomplete factorizations
Deflation
Outlook

AI

Incomplete factorizations

I Gaussian elimination produces LU factorization

A = LU

I Even for sparse A L and U are usually not as sparse

I Incomplete factorization obtained by allowing nonzeros only,
where A was nonzero

I Same is possible for Cholesky factorization

I Extension possible by introducing a drop tolerance, multiple
levels, . . .

I Not as easy to implement

I Hard to parallelize
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Deflation

I Convergence often decelerated by a few eigenvalues

I Given that the eigenvectors are known, they can be deflated

I For ` (left) orthonormal eigenvectors uj corresponding to
eigenvalues λj this leads to left preconditioner

M = I −
∑̀
j=1

λjvjv
∗
j

I Can be combined with other preconditioners

I Can be combined with subspace receycling

I Efficiency limited by growing number of “critical” eigenvalues
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Outlook

I Other notable preconditioners:
I Domain decomposition (local solution on subdomains)
I Multigrid (see K. Kahl’s lecture on friday)
I Mixed-precision
I . . .

I Choice of right preconditioner difficult

I Some need flexible Krylov methods
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The Wilson fermion matrix I

I M = I − κD

I M ∈ Cn×n

I Nearest neighbor coupling
on 4-dimensional torus

I 12 variables per grid point

I n = 12 · n1 · n2 · n3 · n4

0 200 400 600 800 1000 1200

0

200

400

600

800

1000

1200

nz = 11664
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The Wilson fermion matrix II

We have

(Mψ)x = ψx − κ

 4∑
µ=1

((I − γµ)⊗ Uµ(x))ψx+eµ

+
4∑

µ=1

(
(I + γµ)⊗ UH

µ (x − eµ)
)
ψx−eµ

 .

Here:

I Uµ(x) ∈ SU(3)

I γµ ∈ C4×4

I I ± γµ is projector on 2-dimensional subspace
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γ5-symmetry of the Wilson fermion matrix

Γ5M = MHΓ5,

where Γ5 is a simple permutation,

Γ5 = I ⊗ (γ5 ⊗ I3),

γ5 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 or


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 .
Consequences:

I λ ∈ spec(M)⇒ λ̄ ∈ spec(M)

I unsymmetric Lanczos process with Γ5 instead of MH

I Q = Γ5M is hermitian (and maximally indefinite)
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Odd-even symmetry of D

I Grid points x are even or
odd ( = red or green).

I odd-even-ordering yields

D =

[
0 Doe

Deo 0

]
I Consequence:

µ ∈ spec(D)⇒ −µ ∈ spec(D),

λ ∈ spec(M)⇒ 2− λ ∈ spec(M)
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Spectrum of the Wilson fermion matrix

I M is positive real for 0 ≤ κ < κcrit

I κ close to κcrit is interesting: relative quark mass mq becomes
small,

mq =
1

2

(
1

κ
− 1

κcrit

)
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spec(M) for 44 grid (realistic configuration)
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Spectrum of D
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Solvers

The whole “zoo” of solvers is used:

I “minimal residual” = GMRES(1)

I CGN

I BiCG

I QMR

I BiCGstab

I GMRES(k)

I MINRES for Q
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A recurring theme: Shifted systems

Often solution of
(I − κD)ψ = ϕ

is sought for several values of κ.

Observation: Krylov subspaces independent of κ.

Potential: Solve

I for several κ at the same time with

I just one matrix vector multiplication per step for all systems.
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Shifted methods

I Shifted CG

I Shifted QMR

I Shifted Chebyshev

I Shifted BiCG

I Shifted FOM

I Shifted GMRES(k)

I Shifted BiCGstab

I Shifted BiCGstab(`)

Sample Theorem [Frommer, Glässner 98, Frommer 03]:
Perform true GMRES(k) for largest κ < κc
→
shifted method converges faster for all other values of κ.
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Example: Shifted BiCGstab
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κ1 = 0.180, κ2 = 0.176
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κ1 = 0.176, κ2 = 0.170
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Preconditioners

I Preconditioning accepted technique and widely used
I Used techniques:

I Odd-even preconditioning
I SSOR
I Domain decomposition
I Multi-level domain decomposition
I Multigrid
I . . .

I Preconditioners vary widely in
I Ease of implementation
I Presence of setup phase
I Computational cost
I Efficiency

(as it is always the case. . . )
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Odd-even preconditioning

For odd-even ordering we obtain[
I −κDoe

−κDeo I

] [
ψo

ψe

]
=

[
ϕo

ϕe

]
⇐⇒

[
I −κDoe

0 I − κ2DeoDoe

] [
ψo

ψe

]
=

[
ϕo

ϕe + κDeoϕo

]
,

so
Meψe = ϕ̃e , ψo = ϕo + κDoeψe

where
Me = I − κ2DeoDoe , ϕ̃e = ϕe + κDeoϕo .
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The odd-even reduced system

I Odd-even reduced system Meψe = ϕ̃e is γ5-symmetric

I Improves convergence speed by a factor of 2
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spec(Me) for a 44 lattice with β = 5.0 and κ = .150.
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Block SSOR preconditioning

The system
Mψ = ϕ

is preconditioned as

V−1
1 MV−1

2 ψ̃ = ϕ̃, ϕ̃ = V−1
1 ϕ, ψ̃ = V2ψ.

Let M = I − L− U be the decomposition of M into its diagonal,
strictly lower triangular matrix −L and strictly upper triangular
matrix −U. For ω 6= 0 the block SSOR preconditioner is defined by

V1 =

(
1

ω
I − L

)(
1

ω
I

)−1

,V2 =
1

ω
I − U.
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Domain decomposition
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The overlap operator
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Approximation for sign(Q)b in Krylov subspace
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Numerical results
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Stopping criterion
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Rational approximations
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