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Introduction

» Sought for is the solution of
Ax = b, (1)

where A € C"™" non-singular and x, b € C"

» Often A is sparse (as in QCD...)
» How to solve (1)7

1. Directly
2. lteratively

Solvers, Matthias Bolten 4/46



Introduction

Direct methods

v

Usually based on factorization of system matrix A
Well-known methods:

» A= LU: LU factorization (Gaussian elimination)

» A= LDL": LDL factorization

» A= LL*: Cholesky factorization (A hermitian, positive
(semi-)definite)

v

v

Usually expensive (cf. O(n?) for dense matrices)

v

Methods exploiting sparsity exist, reducing complexity

v

Inexact methods used as preconditioners

v

Also include special solvers, e.g. using FFTs

v

Too expensive for many applications. . .

Solvers, Matthias Bolten 5/46
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[terative methods

» Start with initial guess x(%)

» Construct sequence {x(")}i‘;0 of approximate solutions
» Two classes:
» Stationary methods
» Non-stationary methods
» Stationary methods characterized by iteration matrix M
» Examples for stationary methods:
» Jacobi method (M = | — D71A)
» Gauss-Seidel methods (M = [ — (D — L)7tA)
» Successive over-relaxation (SOR, M(w) = —w(D — wl)"tA)
» Symmetric SOR (SSOR, M(w) =...)
» Non-stationary methods: Krylov-subspace methods

Solvers, Matthias Bolten 6/46



Krylov subspace methods
Preconditioning

Krylov subspace methods

v

Non-stationary iterative methods

» Approximation of solution in Krylov subspace:

Ki(A, b) = (b, Ab, A%b, ..., A*"1p) C C"

v

Krylov matrix defined by

K, — [b’Ab‘A%‘ o ‘Akflb]

v

K has reduced QR factorization
Kk = QiR

» Basis Q of K| created by Arnoldi iteration

Solvers, Matthias Bolten 7/46
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Preconditioning

Arnoldi iteration |

Suppose, to pass the time while marooned on a desert
island, you challenged yourself to devise an algorithm to
reduce a nonhermitian matrix to Hessenberg form by or-
thogonal similarity transformations, proceeding column by
column from a prescribed first column q1. To your surprise
you could solve this problem in an hour and still have time
to gather coconuts for dinner. The method you would
come up with goes by the name of the Arnoldi iteration.

(Lloyd N. Trefethen, Numerical Linear Algebra, SIAM, Philadelphia, 1997)

Solvers, Matthias Bolten 8/46
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Arnoldi iteration Il

» Complete orthogonal similarity transform given by
A= QHQ" & AQ = QH

» Let Q, € C"™*k consist of the first k columns of Q
» Define Hj as upper-left section of H

hi1 E h1.k
ha1 hop

he k=1 hick
hei1k |

» Then AQ, = Qk+1I:Ik (Arnoldi relation)

Solvers, Matthias Bolten 9/46
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Arnoldi iteration IlI

» k-th column given by (n+ 1)-term recurrence:
Aqk = h1kqr + -+ b Qi + Mgtk Q1

Algorithm (Arnoldi iteration)

b = arbitrary, q; = b/||b||
for k=1,2,... do
v = Aqk
forj=1,...,ido
hjx = qjv
v=v—hjg
end for
higae = ||v||
Gk+1 = V/hiy1k
end for ’

Solvers, Matthias Bolten 10/46
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GMRES

» GMRES computes x(¥) = Kic(k) € K, (k) e Ck sit.

|AKct) — b|| = minimum

» Set x(K) = Q,y(¥) and use Arnoldi relation to reduce (1) to
IAQky¥) — b|| = minimum
& || Qa1 Hiy™ — b|| = minimum
» Properties of Q11 finally yield
|y — ||b|le1]| = minimum
» Problem is reduced to (k4 1) x k matrix least squares problem
» Work further reduced by updating QR factorization

Solvers, Matthias Bolten 11/46



Preconditioning Summary

Restarted GMRES

Size of least squares problem grows with number of iterations
Size of Qi also grows, increased memory requirement
Approach to limit both grows: Restarting after m iterations
Downside: Method is not guaranteed to converge anymore

Algorithm (restarted GMRES, GMRES(m))
for j=0,1,... do
rUm = p— AxUm)
gu = 1™ /1|
for k=1,...,mdo
Step k of Arnoldi iteration
Find y to minimize ||Hxy — ||r||ed]|
Um k) = 5 Uom) 4 Qv
end for
end for )

Solvers, Matthias Bolten 12/46
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WUPPERTAL Preconditioning

Lanzcos iteration |

» For hermitian matrices Hessenberg matrix H, becomes
tridiagonal matrix Ty:

ar P
B1 a2 o
Ty = B2 o3
Br—-1
Bk—1

» (k + 1)-term recurrence reduces to 3-term recurrence
» Arnoldi iteration reduces to Lanczos iteration
» GMRES reduces to MINRES

Solvers, Matthias Bolten 13/46
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Lanzcos iteration |l

Algorithm (Lanczos iteration)

Bo =0,q0 =0, b = arbitrary, g1 = b/||b||
for k=1,2,... do
v = Aqk
K = qyv
V=V — Brk_19k—1 — Okqk
Bk = lIvll
k1 = v/ Bx
end for ”

Solvers, Matthias Bolten 14/46
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Conjugate gradients (CG)

» Can be interpreted as an optimization of the functional
o(x) =1/2x*Ax — x*b
» Minimizes A-norm of the error (instead of 2-norm of residual)
> Error satisfies [|ex |/ [leolla < 2((v/& — 1)/(v/F + 1))¥
Algorithm (CG iteration)

X0 — 0, F0 — 0, p(O) =0
for k=1,2,... do
= ((r(k—l))*r(k—l))/((p(k—l))*Ap(k—l))
MO RPNy
P — pk=1) _ o plk=1)
B = (W)= ) /() rD)
o) = 0 4 g, k=)
end for

y

Solvers, Matthias Bolten 15/46




Biorthogonalization
Preconditioning Summar

Biorthogonalization

» CG for nonhermitian matrices using normal equation
Ax =b < A*Ax = A™b
» Squared condition number leads to slow convergence
» Alterative: Tridiagonal biorthogonalization
A=VTVland A =V * TV ) L =wrw!
—~—
=W
where W*V = V*W = |
» Columns of V and W span IC(A, vi) and IC(A*, wq)
» Leads to BiCG and variants (including BiCGstab, QMR,...)

Solvers, Matthias Bolten 16/46
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Summary

» Krylov subspace methods are fast solvers

» They are easy to implement

> They are easy to parallelize

» Efficiency depends on efficiency of matrix vector multiplication
» Methods with 3-term recurrence need fixed amount of memory
» In exact arithmetic solution is obtained in n steps

» Convergence rate depends on the eigenvalues

» Preconditioning necessary in many cases

Solvers, Matthias Bolten 17/46
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Preconditioning

» Given a nonsingular M € C"™ " (1) is equivalent to

M~TAx = M~ 1p

v

Convergence of iterative solver now depends on M~1A

v

M should be chosen such that convergence rate is improved
(optimal: M = A)

Linear systems with system matrix M should be easy to solve
This is called (left) preconditioning

Right preconditioning: Solve AM~'y = b, then Mx = y
Hermitian preconditioning: M = CC*, (1) transformed to

(CTLAC™)C*x = C71b

Solvers, Matthias Bolten 18/46
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Diagonal scaling, Jacobi and Gauss-Seidel-type

v

Simple preconditioner: Scale A by M = diag(A) like in Jacobi
» Easy to implement

» Often very effective

» More general: Scaling with M = diag(c) for some vector
ceCr

» Extension: Apply Gauss-Seidel, SOR or SSOR

Solvers, Matthias Bolten 19/46
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Incomplete factorizations

» Gaussian elimination produces LU factorization
A=LU

» Even for sparse A L and U are usually not as sparse

» Incomplete factorization obtained by allowing nonzeros only,
where A was nonzero

» Same is possible for Cholesky factorization

» Extension possible by introducing a drop tolerance, multiple
levels, ...

» Not as easy to implement

» Hard to parallelize

Solvers, Matthias Bolten 20/46
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Deflation

» Convergence often decelerated by a few eigenvalues
» Given that the eigenvectors are known, they can be deflated

» For ¢ (left) orthonormal eigenvectors u; corresponding to
eigenvalues ); this leads to left preconditioner

» Can be combined with other preconditioners
» Can be combined with subspace receycling

» Efficiency limited by growing number of “critical” eigenvalues

Solvers, Matthias Bolten 21/46
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Outlook

» Other notable preconditioners:

» Domain decomposition (local solution on subdomains)
» Multigrid (see K. Kahl's lecture on friday)

» Mixed-precision

>

» Choice of right preconditioner difficult
» Some need flexible Krylov methods

Solvers, Matthias Bolten
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The Wilson fermion matrix |

0 Y
200& N
» M=1—kD \
4001 N A
» M c Crxn \
. . 600
» Nearest neighbor coupling X N
on 4-dimensional torus ool N
. . . A\
» 12 variables per grid point \
1000
» n=12-n1-ny-n3-ny N
1200 \
0 200 460 660 860 10‘00 12b0
nz=11664

25/46
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The Wilson fermion matrix Il

We have
4
(M) =t — 5 [ D (1 =) © Un(x)) ¥oxte,
pn=1
4
+Z( ) ® UM (x — eﬂ)) U e,
p=1
Here:
» U,(x) € SU(3)
> Y c (C4><4

» | £y, is projector on 2-dimensional subspace

Solvers, Matthias Bolten 26/46
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~vs-symmetry of the Wilson fermion matrix

FsM = M,

where [5 is a simple permutation,

M5 =1® (75 ® h),

0010 10 0 O
|0 001 or 01 0 O
B=l100 0 00 -1 0
0100 00 0 -1

Consequences:

> ) € spec(M) = ) € spec(M)
» unsymmetric Lanczos process with [ instead of M"
» Q =TsM is hermitian (and maximally indefinite)

Solvers, Matthias Bolten
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Odd-even symmetry of D

» Grid points x are even or

odd ( = red or green). @ ? @ &6 & o
» odd-even-ordering yields e-0-0 ®© 0 O
0 D ?

D= o¢ @ 6 & 6 0 ©

D., 0 {
® ®© 6 0-0-0

» Consequence: 4
@ &6 & 6 @ ©

p € spec(D) = —pu € spec(D),

e ®© 6 ® 6 @

A € spec(M) = 2 — \ € spec(M)

Solvers, Matthias Bolten 28/46



The Wilson fermion mati 1 fermion matrix

‘mion matrix

\lIJV':IJIPVPEERRs'l!;f he o E r Speﬁm: of{ t,hf Wilson fermion matrix

Spectrum of the Wilson fermion matrix

» M is positive real for 0 < Kk < Kerit
> k close to ket is interesting: relative quark mass mg becomes

small,
1

Kerit

3
Q
Il
|
N
|

0.6 T
04 |
02|

0+
0.2 +
0.4 |

_0.6 1 . I
0 02 04 06 08 1 12 14 16 18 2

spec(M) for 4* grid (realistic configuration)

Solvers, Matthias Bolten 6




The Wilson fermion matrix 1 fermion
St nion matrix

/% BERGISCHE_
% UNIVERSITAT

Odd-e
um n fermion matri

P S
WUPPERTAL Gutlo Soramm &

8 6 -4 -2 0 2 4 6 8

spec(D) for cold (U,(x) = 1) and hot (U,(x) random)
configurations

Solvers, Matthias Bolten



The Wilson fermion matr
7 BERGISCHE_ Solvers
%/ UNIVERSITAT Preconditioners

WUPPERTAL e o

Solvers

The whole “zoo” of solvers is used:
» “minimal residual” = GMRES(1)
» CGN
» BiCG
» QMR
» BiCGstab
» GMRES(k)
» MINRES for @

Solvers, Matthias Bolten 31/46
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A recurring theme: Shifted systems

Often solution of
(I =kD)y =9

is sought for several values of k.

Observation: Krylov subspaces independent of .

Potential: Solve
» for several k at the same time with

> just one matrix vector multiplication per step for all systems.

Solvers, Matthias Bolten 32/46



Solvers
Shifted systems

Shifted methods

» Shifted CG

Shifted QMR
Shifted Chebyshev
Shifted BiCG
Shifted FOM
Shifted GMRES(k)
» Shifted BiCGstab

» Shifted BiCGstab(¢)

vV vV v Vv

v

Sample Theorem [Frommer, Glassner 98, Frommer 03]:
Perform true GMRES(k) for largest k < k.

%

shifted method converges faster for all other values of k.

Solvers, Matthias Bolten
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Example: Shifted BiCGstab

BICGSIab(1) sold: seed, dashed: shifted BICGStab(1) sold: seed, dashed: shifted

o 100 200 300 400 500 0 20 40 60 8 100 120 140 160 180

k1 = 0.180, k> = 0.176 k1 = 0.176, ko = 0.170
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Preconditioners

» Preconditioning accepted technique and widely used
» Used techniques:

» Odd-even preconditioning

» SSOR
Domain decomposition

Multi-level domain decomposition
Multigrid

vy v VvYyy

» Preconditioners vary widely in
» Ease of implementation
» Presence of setup phase
» Computational cost
» Efficiency

(as it is always the case...)

Solvers, Matthias Bolten 35/46
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Odd-even preconditioning

For odd-even ordering we obtain
/ —#KDoe Yo _ | Po
—kDeo / e Pe
/ —kDoe Yo Po :|
= = s
|: 0 /- H2DeoDoe :| |: Ye ] |: Ve + KDeoo
SO
Metye = Pe; Vo = po + KDoete

where
Me = | — k2DeoDoe, Be = Pe + kDeopo.

Solvers, Matthias Bolten 36/46
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The odd-even reduced system

» Odd-even reduced system Met)e = Qe is y5-symmetric

» Improves convergence speed by a factor of 2

0.6 T T T T T T T T T
04 r
0.2

0
02 F
04 F

_0-6 1 1 1 1 1 1 1 1 1
0 02 04 06 08 1 12 14 16 18 2

spec(M.) for a 4* lattice with 3 = 5.0 and x = .150.
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Block SSOR preconditioning

The system
M = ¢
is preconditioned as

VitMVyth =@, ¢ = Vi, = Vo

Let M =1 — L — U be the decomposition of M into its diagonal,
strictly lower triangular matrix —L and strictly upper triangular
matrix —U. For w # 0 the block SSOR preconditioner is defined by

1 1\ 7} 1
Vlz(—I—L) (-/) Vo= —1—U.
w w w

Solvers, Matthias Bolten 38/46
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Domain decomposition
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The overlap operator
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Approximation for sign(Q)b in Krylov subspace
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Stopping criterion
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Rational approximations
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