## Lattice QCD at nonzero baryon number density

## Christian Schmidt



FIAS Frankfurt Institute for Advanced Studies and

## Overview:



* Introduction and motivation thermodynamics of quarks and gluons
$\star$ Lattice QCD at high $T$ and nonzero density The sign problem, avoiding it, lattice methods for small
$\star$ Results from the Taylor expansion method Hadronic fluctuations and heavy ion collisions, the critical point
* Summary

$\longrightarrow$ determined by the Equation of State
$\longrightarrow$ exciting: critical Phenomena

$$
\begin{aligned}
& \text { e.g. critical } \\
& \text { opalescence: }
\end{aligned}
$$



## Key questions

- What are the phases of strongly interacting matter and what role do they play in the cosmos ?
- What does QCD predict for the properties of strongly interacting matter?
- What governs the transition from Quark and Gluons into Hadrons ?



## Key questions

- What are the phases of strongly interacting matter and what role do they play in the cosmos ?
- What does QCD predict for the properties of strongly interacting matter?
- What governs the transition from Quark and Gluons into Hadrons ?


## Places to find QGP ?

- In the early universe
- In the laboratory: RHIC, LHC, FAIR
- In the cores of neutron stars ?


Gold-Gold collisions at $\sqrt{s}=130,200 \mathrm{GeV} / A$

$\longrightarrow$ estimated temperature:
$\longrightarrow$ estimated energy density:
$T_{0} \approx(1.5-2) T_{c}$
$\epsilon_{0} \approx(5-15) \mathrm{GeV} / \mathrm{fm}^{3}$

## (schematic picture)


elliptic flow

jet quenching


What are the properties of the QGP at RHIC ?

- hydrodynamic models are very successful in the description of the RHIC data
- viscosity extremely small $\rightarrow$ perfect liquid?
- dens medium, away-side jet is strongly/completely suppressed
- The resonance gas is describing the observed hadron-spectrum

$$
\begin{aligned}
\ln Z\left(T, V, \mu_{B}, \mu_{S}, \mu_{Q}\right)= & \sum_{i \in \text { hadrons }} \ln Z_{m_{i}}\left(T, V, \mu_{B}, \mu_{S}, \mu_{Q}\right) \\
& \sum_{i \in \text { mesons }} \ln Z_{m_{i}}^{B}\left(T, V, \mu_{S}, \mu_{Q}\right)+\sum_{i \in \text { baryons }} \ln Z_{m_{i}}^{F}\left(T, V, \mu_{B}, \mu_{S}, \mu_{Q}\right)
\end{aligned}
$$

$\longrightarrow$ produced matter is thermalized?


Andronic, Braun-Munzinger, Stachel, PLB 673 (2009) 142.

lattice spacing $a$

discretize space time and hence all ,,paths" of quarks and gluons
lattice spacing $a$

discretize space time and hence all ,,paths" of quarks and gluons
at nonzero chemical potential $\mu$ :

$$
A_{0} \rightarrow A_{0}-i \mu
$$

or equivalently:

$$
\begin{aligned}
& U_{0}(x) \rightarrow e^{a \mu} U_{0}(x) \\
& U_{0}^{\dagger}(x) \rightarrow e^{-a \mu} U_{0}^{\dagger}(x)
\end{aligned}
$$

Hasenfratz, Karsch, PLB I25 (1983) 308.

- the QCD partition function:

$$
\begin{aligned}
Z(V, T, \bar{\mu})= & \int \mathcal{D} A \mathcal{D} \bar{\psi} \mathcal{D} \psi \exp \left\{-S_{E}\right\} \\
S_{E}= & \bar{\psi}_{x} M_{x, y} \psi_{y}+S_{G} \\
M_{x, y}= & a m \delta_{x, y}+\frac{1}{2} \sum_{\mu=1}^{3} \gamma_{\mu}\left\{U_{\mu}(x) \delta_{x+a \hat{\mu}, y}-U_{\mu}^{\dagger}(y) \delta_{x-a \hat{\mu}, y}\right\} \\
& +\frac{1}{2} \gamma_{4}\left\{e^{a \bar{\mu}} U_{4}(x) \delta_{x+a \hat{4}, y}-e^{-a \bar{\mu}} U_{4}^{\dagger}(y) \delta_{x-a \hat{4}, y}\right\}
\end{aligned}
$$

- geometry of space time: $N_{s}^{3} \times N_{t}$ (4d - torus)

note:
- only closed loops participate to the partition function
- only loops that wind around the torus in time direction $\mathcal{W}$-times pick up a $\boldsymbol{\mu}$-dependence:

```
                                    exp{\mathcal{W}\mu/T}
```

$\longrightarrow$ alternatively (gauge-transformation): - choose a fixed time-slice on which all temporal links get a factor $\exp \{ \pm \mu / T\}$

- integration over fermion fields

$$
\begin{aligned}
Z(V, T, \mu)= & \int \mathcal{D} A \mathcal{D} \psi \mathcal{D} \bar{\psi} \exp \left\{S_{F}(A, \psi, \bar{\psi})-\boldsymbol{\beta} S_{G}(A)\right\} \\
& =\int \mathcal{D} A \operatorname{det}[M](A, \mu) \exp \left\{-\boldsymbol{\operatorname { d S }} \boldsymbol{S}_{G}(A)\right\} \\
& \text { complex for } \mu>0 \quad \begin{array}{l}
\text { propabilistic interpretation } \\
\text { necessary for Monte Carlo! }
\end{array}
\end{aligned}
$$

complex action can potentially be handled by the Langevin Algorithm
$\longrightarrow$ see talk by G.Aarts

- properties of the fermion matrix and eigen-spectrum

$M^{\dagger} M$ is
- positive definite
- block diagonal in parity (even-odd) space, use even-odd preconditioning
- regulated by the mass: $\lambda_{\text {min }}=m^{2}$
$M^{\dagger} M$ is
- not block diagonal in parity (even-odd) space
- not regulated, zero-modes possible for sufficiently large $\mu$
- factorization of the fermion determinant into modulus and phase

$$
\operatorname{det}[M] \equiv|\operatorname{det}[M]| \exp \{i \phi\}
$$

consider the phase quenched ensemble:

$$
\langle\mathcal{O}\rangle(\mu)=\frac{\langle\mathcal{O} \cos (\phi)\rangle_{|\operatorname{det} M(\mu)|}}{\langle\cos (\phi)\rangle_{|\operatorname{det} M(\mu)|}} \rightarrow \frac{\mathbf{0}}{\mathbf{0}}
$$

$\longrightarrow$ the signal gets lost due to the sign problem
in the microscopic limit of QCD:
$\left(m_{\pi}^{2} \ll \frac{1}{\sqrt{V}}, \quad \mu^{2} \ll \frac{1}{\sqrt{V}}\right)$

$$
\langle\cos (\phi)\rangle=\left(1-\frac{4 \mu^{2}}{m_{\pi}^{2}}\right)^{N_{f}+1}
$$

Splittorff, Verbaarschot, PRL98 (2007) 03160 I.
$\longrightarrow$ the sign problem is not severe for

$$
\mu<m_{\pi} / 2
$$




Allton et al., PRD7I (2005) 054508.

- dense two color matter: $U_{\mu}(x) \in S U(2)$
the 2-flavor action:

$$
\begin{aligned}
S_{F}= & \bar{\psi}_{1} M(\mu) \psi_{1}+\bar{\psi}_{2} M(\mu) \psi_{2} \\
& +J \bar{\psi}_{1}\left(C \gamma_{5}\right) \tau_{2} \bar{\psi}_{2}^{t r}+\bar{J} \psi_{2}^{t r}\left(C \gamma_{5}\right) \tau_{2} \psi_{1}
\end{aligned}
$$

$\longrightarrow$ diquark source terms to regulate eigenvalues and to study spontaneous symmetry breaking
symmetries:

$$
\begin{aligned}
\gamma_{5} M(\mu) \gamma_{5} & =M^{\dagger}(-\mu) \\
K M(\mu) K^{-1} & =M^{*}(\mu)
\end{aligned}
$$

$$
\text { with } K \equiv C \gamma_{5} \tau_{2}
$$

$\longrightarrow$ for the latter equality we use the Pauli-Gürsey symmetry: $\tau_{2} U_{\mu}(x) \tau_{2}=U_{\mu}^{*}(x)$
$\longrightarrow$ it implies that $\operatorname{det} M(\mu)$ is real but not necessary positive
some lattice studies:

- Hands, Montvay, Scorzato, Skullerud, EPJC 22 (200I) 45I
- Kogut, Toublan,Sinclair, PRD 68 (2003) 054507
- Hands, Kim, Skullerud, PRD 8I (20I0) 091502
- Hands, Kenny, Kim, Skullerud, EPJA 47 (20II) 60
- dense two color matter: $U_{\mu}(x) \in S U(2)$
the 2 -flavor action with change of variables

$$
S_{F}=(\bar{\psi} \bar{\phi})\left(\begin{array}{cc}
M(\mu) & J \gamma_{5} \\
-\bar{J} \gamma_{5} & M(-\mu)
\end{array}\right)\binom{\psi}{\phi}=\bar{\Psi} \mathcal{M} \Psi
$$

with $\bar{\phi}=-\psi_{2}^{t r} C \tau_{2}$ and $\phi=C^{-1} \tau_{2} \bar{\psi}_{2}^{t r}$
some lattice studies:

- Hands, Montvay, Scorzato, Skullerud, EPJC 22 (200I) 45I
- Kogut, Toublan,Sinclair, PRD 68 (2003) 054507
- Hands, Kim, Skullerud, PRD 8I (20I0) 091502
- Hands, Kenny, Kim, Skullerud, EPJA 47 (20II) 60
symmetries:

$$
\begin{aligned}
\gamma_{5} M(\mu) \gamma_{5} & =M^{\dagger}(-\mu) \\
K M(\mu) K^{-1} & =M^{*}(\mu)
\end{aligned}
$$

$$
\text { with } K \equiv C \gamma_{5} \tau_{2}
$$

consider:

$$
\mathcal{M}^{\dagger} \mathcal{M}=\left(\begin{array}{lr}
M^{\dagger}(\mu) M(\mu)+|J|^{2} & \\
& M^{\dagger}(-\mu) M(-\mu)+|\bar{J}|^{2}
\end{array}\right)
$$

$\longrightarrow$ block-diagonal in $\psi, \phi$ and regulated by $J^{*} J$
$\longrightarrow$ use $\psi, \phi$-preconditioning, take square root analytically

- dense two color matter: $U_{\mu}(x) \in S U(2)$
$\langle\bar{q} q\rangle /\langle\bar{q} q\rangle_{0}$ $\langle q q\rangle /\langle\bar{q} q\rangle_{0}$
some results for the chiral and diquark condenstates using a quark-meson-diquark model with proper-time RG flow

Nils Strodthoff, St.Goar, March 16, 2011
short-comings / differences:

- color-neutral bound states of two quark: bosonic baryons
- enhanced symmetry (Pauli-Gürsey) $S U\left(N_{f}\right)_{L} \times S U\left(N_{f}\right)_{R} \rightarrow S U\left(2 N_{F}\right)$
$\bullet$ more complex symmetry breaking pattern (5 pseudo Goldstone bosons: 3 pions + 2 diquarks)


Nils Strodthoff, St. Goar 20I I


## QCD with imaginary $\mu$ or iso-spin $\mu_{I}$

- iso-spin chemical potential: $\boldsymbol{\mu}_{\boldsymbol{u}}=-\mu_{\boldsymbol{d}}$
- fermion matrix acting on the iso-spin doublet has real determinant
- introduce source term with quantum numbers of the pion condenstate
- find variables in which $\mathcal{M}^{\dagger} \mathcal{M}$ is block-diagonal, use preconditioning Kogut, Sinclair, PRD 66 (2002) 034505
- pure imaginary chemical potential:
- determinant is real, use standard HMC
- partition function is periodic in $\operatorname{Im} \mu / T$ with periodicity of $2 \pi T / 3$
- complex phase structure in the complex plane

Roberge,Weiss, NPB 275 (1986) 734

- critical behavior connected to the Roberge-Weiss transition may govern also QCD thermodynamics at $\operatorname{Re}(\mu)>0$
D'Elia, Massimo and Di Renzo, Francesco and Lombardo, PRD 76 (2007) II4509 de Forcrand, Philipsen PRL 105 (2010) I5200I
- imaginary chemical potential:
- perform HMC for $\boldsymbol{\mu}^{2}<0$
- extrapolate to $\boldsymbol{\mu}^{2}>0$ by fitting data to an a appropriate Ansatz and perform analytic continuation
- note: fitting range is limited by the periodicity of the partition function
two color QCD

some lattice studies:
Phillipsen, Forcrand, JHEP 08II (2008) 0I2; D‘Elia et al., PRD 76 (2007) II4509;
Phillipsen, Forcrand, JHEP 070I (2007) 077;
D‘Elia et al., PRD 70 (2004) 074509 ;
Phillipsen, Forcrand, NPB 673 (2003) I70;
D‘Elia et al., PRD 67(2003)014505.
- reweighting:

$$
\langle\mathcal{O}\rangle_{\beta, \mu}=\frac{\langle\mathcal{O} R\rangle_{\beta^{\prime}, 0}}{\langle R\rangle_{\beta^{\prime}, 0}}, \quad R=\frac{\operatorname{det} M(\mu)}{\operatorname{det} M(0)} \exp \left\{-\Delta S_{G}\right\}
$$

re-weighting method by Budapest-Wuppertal group:

- exact determination of the determinant respectively all eigenvalues is required ( $\propto V^{2}$ )
- no efficient parallel algorithms
- small system sizes
$\rightarrow$ use only a few powerful nodes per system, distribute lattice parameters on nodes: FARMING
- overlap problem:
- exponentially small tails of the distribution need to be determined very precisely - applicability range shrinks with volume
$\rightarrow$ very high statistics required

- reweighting:
$\langle\mathcal{O}\rangle_{\beta, \mu}=\frac{\langle\mathcal{O} R\rangle_{\beta^{\prime}, 0}}{\langle\boldsymbol{R}\rangle_{\beta^{\prime}, 0}}, \quad \boldsymbol{R}=\frac{\operatorname{det} M(\mu)}{\operatorname{det} M(0)} \exp \left\{-\Delta S_{G}\right\}$
re-weighting method by Budapest-Wuppertal group:
- exact determination of the determinant respectively all eigenvalues is required ( $\propto V^{2}$ )
- no efficient parallel algorithms
- small system sizes
$\rightarrow$ use only a few powerful nodes per system, distribute lattice parameters on nodes: FARMING
- overlap problem:
- exponentially small tails of the distribution need to be determined very precisely
- applicability range shrinks with volume
$\rightarrow$ very high statistics required


Fodor, Katz, JHEP 0404 (2004) 050; Fodor, Katz, JHEP 0203 (2002) 014 ;
Fodor, Katz, PLB 534 (2002) 87.

$$
\mathcal{Z}_{\mathcal{O}}(x, \mu)=\int d U|\operatorname{det} M(\mu)| \exp \left\{-S_{G}\right\} \delta(x-\mathcal{O})
$$

## Attempts to improve the re-weighting:

- modify the Monte-Carlo sampling in order to get a precise tail of the distribution
- simulate at a fixed value of $\mathcal{O}$ (DOS)
- introduce an additional weight function (Wang-Landau sampling)
re-weight not only from the ( $\mu=0$ )-ensemble but also from the phase quenched ensemble

$\rightarrow$ much larger parameter space
$\rightarrow$ even more FARMING

- Taylor expansion:
- start from Taylor expansion of the pressure,

$$
\frac{p}{T^{4}}=\frac{1}{V T^{3}} \ln Z\left(V, T, \mu_{u}, \mu_{d}, \mu_{s}\right)=\sum_{i, j, k} c_{i, j, k}^{u, d, s}\left(\frac{\mu_{u}}{T}\right)^{i}\left(\frac{\mu_{d}}{T}\right)^{j}\left(\frac{\mu_{s}}{T}\right)^{k}
$$

- calculate expansion coefficients for fixed temperature
- no sign problem:
all simulations are done at $\boldsymbol{\mu}=\mathbf{0}$

$$
\begin{aligned}
c_{i, j, k}^{u, d, s} \equiv & \frac{1}{i!j!k!} \frac{1}{V T^{3}} \\
& \left.\cdot \frac{\partial^{i} \partial^{j} \partial^{k} \ln Z}{\partial\left(\frac{\mu_{u}}{T}\right)^{i} \partial\left(\frac{\mu_{d}}{T}\right)^{j} \partial\left(\frac{\mu_{s}}{T}\right)^{k}}\right|_{\mu_{u, d, s}=0}
\end{aligned}
$$

- method is straight forward:
all terms can be generated automatically
Allton et al., PRD66:074507,2002;
Allton et al., PRD68:014507,2003;
Allton et al., PRD7I:054508,2005.



## Extrapolation methods

- formulate all operators in term of space-time, color (and spin) traces:

$$
\begin{aligned}
\frac{\partial(\ln \operatorname{det} M)}{\partial \mu}=\mathcal{D}_{1}= & \operatorname{Tr}\left(M^{-1} \frac{\partial M}{\partial \mu}\right) \\
\frac{\partial^{2}(\ln \operatorname{det} M)}{\partial \mu^{2}}=\mathcal{D}_{2}= & \operatorname{Tr}\left(M^{-1} \frac{\partial^{2} M}{\partial \mu^{2}}\right)-\operatorname{Tr}\left(M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial M}{\partial \mu}\right) \\
\frac{\partial^{3}(\ln \operatorname{det} M)}{\partial \mu^{3}}=\mathcal{D}_{3}= & \operatorname{Tr}\left(M^{-1} \frac{\partial^{3} M}{\partial \mu^{3}}\right)-3 \operatorname{Tr}\left(M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial^{2} M}{\partial \mu^{2}}\right) \\
& +2 \operatorname{Tr}\left(M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial M}{\partial \mu}\right) \\
\frac{\partial^{4}(\ln \operatorname{det} M)}{\partial \mu^{4}}=\mathcal{D}_{4}= & \operatorname{Tr}\left(M^{-1} \frac{\partial^{4} M}{\partial \mu^{4}}\right)-4 \operatorname{Tr}\left(M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial^{3} M}{\partial \mu^{3}}\right) \\
& -3 \operatorname{Tr}\left(M^{-1} \frac{\partial^{2} M}{\partial \mu^{2}} M^{-1} \frac{\partial^{2} M}{\partial \mu^{2}}\right)+12 \operatorname{Tr}\left(M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial^{2} M}{\partial \mu^{2}}\right) \\
& -6 \operatorname{Tr}\left(M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial M}{\partial \mu}\right)
\end{aligned}
$$

- evaluate all traces by noisy estimators:

$$
\operatorname{Tr}\left(\frac{\partial^{n_{1}} M}{\partial \mu^{n_{1}}} M^{-1} \frac{\partial^{n_{2}} M}{\partial \mu^{n_{2}}} \cdots M^{-1}\right)=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N} \eta_{k}^{\dagger} \frac{\partial^{n_{1}} M}{\partial \mu^{n_{1}}} M^{-1} \frac{\partial^{n_{2}} M}{\partial \mu^{n_{2}}} \cdots M^{-1} \eta_{k}
$$

with $N$ random vectors, satisfying $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \eta_{n, i}^{*} \eta_{n, j}=\delta_{i, j}$

- construct expansion coefficients from $\mathcal{D}_{n}^{u}, \mathcal{D}_{n}^{d}, \mathcal{D}_{n}^{s}$, with unbiased estimators

$$
c_{2,0,0}^{u, d, s}=\frac{1}{2} \frac{N_{\tau}}{N_{\sigma}^{3}}\left(\left\langle\mathcal{D}_{2}^{u}\right\rangle+\left\langle\left(\mathcal{D}_{1}^{u}\right)^{2}\right\rangle\right)
$$

- Taylor expansion coefficients are the moments of hadronic fluctuations

$$
\begin{array}{r}
2 c_{2}^{X}=\frac{1}{V T^{3}}\left\langle N_{X}^{2}\right\rangle \quad 24 c_{4}^{X}=\frac{1}{V T^{3}}\left(\left\langle N_{X}^{4}\right\rangle-3\left\langle N_{X}^{2}\right\rangle^{2}\right) \\
X=B, Q, S, I, \ldots
\end{array}
$$

## Main ingredients:

- fast solver for the linear equation $\boldsymbol{A x}=\boldsymbol{b}$, with $\boldsymbol{A}$ being a large and sparse matrix.
- Iterative Krylov Subspace Methods are well suited for parallelization.
$\longrightarrow$ relatively large systems can be handled on massive parallel machines
- stochastic estimator of $\operatorname{Tr} A$
- use noise reduction techniques
expansion coefficients with respect to $\boldsymbol{\mu}_{\boldsymbol{X}}$ are connected to the moments of the $\boldsymbol{n}_{\boldsymbol{X}}$-distribution
- higher order moments are getting more and more sensitive to the tail of the distribution

```
high statistics required
```



$$
\boldsymbol{n t h} \text {-moment: }
$$

$$
m_{n}=\int d x x^{n} p(x)
$$



Analyzing the critical behavior:
scaling field (chiral limit):

$$
t=\frac{1}{t_{0}}\left(\frac{T-T_{c}}{T_{c}}+\kappa\left(\frac{\mu_{B}}{T}\right)^{2}\right)
$$

free energy:
$f=A_{ \pm}|t|^{2-\alpha}+$ regular
critical exponent:
$-0.15<\alpha<-0.11$
$\chi_{2}^{B} \sim \mp 2 A_{ \pm}(2-\alpha) \kappa|t|^{1-\alpha}+$ regular
$\chi_{4}^{B} \sim-12 A_{ \pm}(2-\alpha)(1-\alpha) \kappa^{2}|t|^{-\alpha}+$ regular $\longrightarrow$ kink (chiral limit)
$\chi_{6}^{B} \sim \mp 120 A_{ \pm}(2-\alpha)(1-\alpha)(-\alpha) \kappa^{3}|t|^{-1-\alpha}+$ regular $\rightarrow$


Analyzing the critical behavior:
scaling field (chiral limit):

$$
t=\frac{1}{t_{0}}\left(\frac{T-T_{c}}{T_{c}}+\kappa\left(\frac{\mu_{B}}{T}\right)^{2}\right)
$$

free energy:
$f=A_{ \pm}|t|^{2-\alpha}+$ regular
critical exponent:
$-0.15<\alpha<-0.11$
$\chi_{2}^{B} \sim \mp 2 A_{ \pm}(2-\alpha) \kappa|t|^{1-\alpha}+$ regular
$\chi_{4}^{B} \sim-12 A_{ \pm}(2-\alpha)(1-\alpha) \kappa^{2}|t|^{-\alpha}+$ regular $\longrightarrow$ kink (chiral limit)
$\chi_{6}^{B} \sim \mp 120 A_{ \pm}(2-\alpha)(1-\alpha)(-\alpha) \kappa^{3}|t|^{-1-\alpha}+$ regular $\rightarrow$

## hadron resonance gas

$$
\begin{aligned}
\ln Z\left(T, V, \mu_{B}, \mu_{S}, \mu_{Q}\right)= & \sum_{i \in \text { hadrons }} \ln Z_{m_{i}}\left(T, V, \mu_{B}, \mu_{S}, \mu_{Q}\right) \\
& \sum_{i \in \text { mesons }} \ln Z_{m_{i}}^{B}\left(T, V, \mu_{S}, \mu_{Q}\right)+\sum_{i \in \text { baryons }} \ln Z_{m_{i}}^{F}\left(T, V, \mu_{B}, \mu_{S}, \mu_{Q}\right)
\end{aligned}
$$

mesons:

$$
\frac{p_{i}}{T^{4}}=\frac{d_{i}}{\pi^{2}}\left(\frac{m_{i}}{T}\right)^{2} \sum_{l=1}^{\infty}(+1)^{l+1} l^{-2} K_{2}\left(l m_{i} / T\right) \cosh \left(l S_{i} \mu_{S} / T+l Q_{i} \mu_{Q} / T\right)
$$

baryons:

$$
\frac{p_{i}}{T^{4}}=\frac{d_{i}}{\pi^{2}}\left(\frac{m_{i}}{T}\right)^{2} \sum_{l=1}^{\infty}(-1)^{l+1} l^{-2} K_{2}\left(l m_{i} / T\right) \cosh \left(l B_{i} \mu_{B} / T+l S_{i} \mu_{S} / T+l Q_{i} \mu_{Q} / T\right)
$$

| Boltzmann approximation <br> ratios are independent of spectrum and volume possibly large parts of cut-off effects cancel | 3 ratios: $\begin{aligned} & \frac{\chi_{4}^{B}}{\chi_{2}^{B}}=\kappa \sigma^{2}=\frac{B^{4}}{B^{2}}=1 \\ & \frac{\chi_{3}^{B}}{\chi_{2}^{B}}=S \sigma=\frac{B^{3}}{B^{2}} \tanh \left(\mu_{B} / T\right) \\ & \frac{\chi_{2}^{B}}{\chi_{1}^{B}}=\sigma^{2} / N_{B}=\frac{B^{2}}{B^{1}} \operatorname{coth}\left(\mu_{B} / T\right) \end{aligned}$ |
| :---: | :---: |

- sixth order fluctuations


[CS, arXiv: I 007.5 I64]
- sensitive to relevant quantum numbers in the medium
- divergent at the critical point

$$
\begin{aligned}
& T\left(\mu_{B}\right)= 0.166 \mathrm{GeV} \\
&-0.139 \mathrm{GeV}^{-1} \mu_{B}^{2} \\
&-0.053 \mathrm{GeV}^{-3} \mu_{B}^{4} \\
& \mu_{B}(\sqrt{s})=\frac{1.308 \mathrm{GeV}}{1+0.273 \mathrm{GeV}^{-1} \sqrt{s}}
\end{aligned}
$$

## Lattice vs. Experiment:


[HRG: Karsch, Redlich, PLB 695 (201 I)]
[STAR data: Aggarwal et al, PRL (2010) 022302]

- net-proton number fluctuations can be described by the HRG solid lines: $\mu_{Q} \neq 0, \mu_{S} \neq 0$ dashed lines: $\mu_{Q}=0, \mu_{S}=0$

- fluctuations increase for small $\sqrt{s}$
- sensitive to truncation of the series due to close radius of convergence


## Lattice vs. Experiment:


[HRG: Karsch, Redlich, PLB 695 (201 I)]
[STAR data: Aggarwal et al, PRL (2010) 022302]

- net-proton number fluctuations can be described by the HRG solid lines: $\mu_{Q} \neq 0, \mu_{S} \neq 0$ dashed lines: $\mu_{Q}=0, \mu_{S}=0$

- fluctuations increase for small $\sqrt{s}$
- sensitive to truncation of the series due to close radius of convergence


## Lattice vs. Experiment:


[HRG: Karsch, Redlich, PLB 695 (201 I)]
[STAR data: Aggarwal et al, PRL (2010) 022302]

- net-proton number fluctuations can be described by the HRG solid lines: $\mu_{Q} \neq 0, \mu_{S} \neq 0$ dashed lines: $\mu_{Q}=0, \mu_{S}=0$

- fluctuations increase for small $\sqrt{s}$
- sensitive to truncation of the series due to close radius of convergence


## method for locating of the CEP:

- determine largest temperature where all coefficients are positive $\rightarrow T^{\text {CEP }}$
- determine the radius of convergence at this temperature $\quad \rightarrow \mu^{\mathrm{CEP}}$

first non-trivial estimate of $T^{\text {CEP }}$ by $c_{8}$ second non-trivial estimate of $T^{\mathrm{CEP}}$ by $c_{10}$

$$
\begin{gathered}
p=c_{0}+c_{2}\left(\mu_{B} / T\right)^{2}+c_{4}\left(\mu_{B} / T\right)^{4}+\cdots \\
\chi_{B}=2 c_{2}+12 c_{4}\left(\mu_{B} / T\right)^{2}+30 c_{6}\left(\mu_{B} / T\right)^{4}+\cdots \\
8 \\
8
\end{gathered}
$$

## method for locating of the CEP:

- determine largest temperature where all coefficients are positive $\rightarrow T^{\text {CEP }}$
- determine the radius of convergence at this temperature
$\rightarrow \mu^{\mathrm{CEP}}$

first non-trivial estimate of $T^{\text {CEP }}$ by $c_{8}$ second non-trivial estimate of $T^{\text {CEP }}$ by $c_{10}$


## method for locating of the CEP:

- determine largest temperature where all coefficients are positive $\rightarrow T^{\text {CEP }}$
- determine the radius of convergence at this temperature $\quad \rightarrow \mu^{\mathrm{CEP}}$

first non-trivial estimate of $T^{\text {CEP }}$ by $c_{8}$ second non-trivial estimate of $T^{\text {CEP }}$ by $c_{10}$

- radius of convergence is consistent with critical line in the chiral limit
O. Kaczmarek, et al., PRD 83 (201I) 014504
- Some QCD-like theories such as two color QCD, as well as QCD with pure imaginary chemical potential or isospin chemical potential can be simulated without a sign problem.
- A bunch of extrapolation techniques exist that can be used to obtain results for small chemical potentials ( $\mu / T$ ).
- The expansion coefficients of the pressure are connected the hadronic fluctuations, which can be compared to experimental data from heavy ion collisions.
- The Taylor expansion naturally provides a method to locate the critical point of QCD by an analysis of the radius of convergence.

Back Up

## Following the critical line:

- Three parameters ( $T_{c}, t_{0}, h_{0}$ ) have been fixed by the magnetic equation of state $M=h^{1 / \delta} f_{G}(z)$
- Determine $\kappa_{q}$ by a scaling analysis of the mixed susceptibility

$$
\chi_{m}=\frac{\partial^{2} M}{(\partial \mu / T)^{2}}=\frac{2 \kappa_{q}}{t_{0} T_{c}} h^{(\beta-1) / \beta \delta} f_{G}^{\prime}(z) \propto \chi_{t}
$$

$\Rightarrow$ one fit parameter: $\kappa_{q}$


$\Rightarrow$ obtain from p4-action, $N_{\tau}=8,4: \kappa_{q}=0.059(6)$
Kaczmarek et al, PRD 83 (2011) 014504

## Comparison with the freeze-out line:

- Statistical models are very successful in describing particle abundances observed in heavy ion collision; use a parametrization of the freeze-out curve

$\Rightarrow$ curvature of the freeze-out curve seems to be larger
- open issues: continuum limit, strangeness conservation, nonzero electric charge

