STRONGnet Summer School 2011 ZiF Bielefeld, June 14-25, 2011, Bielefeld

Lattice QCD at nonzero baryon number density

Christian Schmidt

FIAS Frankfurt Institute for Advanced Studies

and

STRONGnet Summer School 2011 ZiF Bielefeld, June 14-25, 2011, Bielefeld

QGP

Overview:

***** Introduction and motivation thermodynamics of quarks and gluons

Lattice

Hadron-

gas

- PQCD, effective theories **★** Lattice QCD at high T and nonzero density The sign problem, avoiding it, lattice methods for small
- ★ Results from the Taylor expansion method Hadronic fluctuations and heavy ion collisions, the critical point

LB

Summary

The phase diagram

The phase diagram

Key questions

- What are the phases of strongly interacting matter and what role do they play in the cosmos ?
- What does QCD predict for the properties of strongly interacting matter ?
- What governs the transition from Quark and Gluons into Hadrons ?

The QCD phase diagram

Key questions

- What are the phases of strongly interacting matter and what role do they play in the cosmos ?
- What does QCD predict for the properties of strongly interacting matter ?
- What governs the transition from Quark and Gluons into Hadrons ?

Places to find QGP ?

- In the early universe
- In the laboratory: RHIC, LHC, FAIR
- In the cores of neutron stars ?

QGP at RHIC (I)

Gold-Gold collisions at $\sqrt{s}=130,200~{ m GeV}/A$

 \longrightarrow estimated temperature: $T_0 pprox (1.5-2)T_c$ \longrightarrow estimated energy density: $\epsilon_0 pprox (5-15) {
m GeV/fm}^3$ QGP at RHIC (II)

(schematic picture)

QGP at RHIC (III)

elliptic flow

What are the properties of the QGP at RHIC ?

- hydrodynamic models are very successful in the description of the RHIC data
- viscosity extremely small
 - \rightarrow perfect liquid?
- dens medium, away-side jet is strongly/completely suppressed

HIC at RHIC (IV)

• The resonance gas is describing the observed hadron-spectrum

QCD on the lattice

discretize space time and hence all "paths" of quarks and gluons

Lattice QCD (at $T, \mu > 0$)

discretize space time and hence all "paths" of quarks and gluons

at nonzero chemical potential μ :

$$A_0
ightarrow A_0 - i \mu$$

or equivalently:

 $egin{array}{ll} U_0(x) &
ightarrow e^{a\mu} U_0(x) \ U_0^\dagger(x) &
ightarrow e^{-a\mu} U_0^\dagger(x) \end{array}$

Hasenfratz, Karsch, PLB 125 (1983) 308.

• the QCD partition function:

$$egin{aligned} Z(V,T,ar{\mu}) &= \int \mathcal{D}A \; \mathcal{D}ar{\psi} \; \mathcal{D}\psi \; \exp\{-S_E\} \ S_E &= ar{\psi}_x M_{x,y} \psi_y + S_G \ M_{x,y} \; &= \; am \; \delta_{x,y} + rac{1}{2} \sum_{\mu=1}^3 \gamma_\mu \left\{ U_\mu(x) \; \delta_{x+a\hat{\mu},y} - U^\dagger_\mu(y) \; \delta_{x-a\hat{\mu},y}
ight\} \ &+ rac{1}{2} \gamma_4 \left\{ e^{aar{\mu}} \; U_4(x) \; \delta_{x+a\hat{4},y} - e^{-aar{\mu}} \; U^\dagger_4(y) \; \delta_{x-a\hat{4},y}
ight\} \end{aligned}$$

• geometry of space time:

 $N_s^3 imes N_t$ (4d - torus)

note:

- only closed loops participate to the partition function
- only loops that wind around the torus in time direction $\mathcal W$ -times pick up a μ -dependence:

 $\exp\{\mathcal{W}\mu/T\}$

→ alternatively (gauge-transformation):
 • choose a fixed time-slice on which all temporal links get a factor exp{±µ/T}

• integration over fermion fields

$$egin{aligned} Z(V,T,oldsymbol{\mu}) &= & \int \mathcal{D}A\mathcal{D}\psi\mathcal{D}ar{\psi}\,\exp\{S_F(A,\psi,ar{\psi})-eta S_G(A)\}\ &= & \int \mathcal{D}A\,\det[M](A,oldsymbol{\mu})\exp\{-eta S_G(A)\} \end{aligned}$$

complex for $\mu > 0$

propabilistic interpretation necessary for Monte Carlo!

complex action can potentially be handled by the Langevin Algorithm \rightarrow see talk by G.Aarts

The sign problem

• properties of the fermion matrix and eigen-spectrum

$M^\dagger M$ is

- positive definite
- block diagonal in parity (even-odd) space, use even-odd preconditioning
- ullet regulated by the mass: $\lambda_{
 m min}=m^2$

 $M^\dagger M$ is

- not block diagonal in parity (even-odd) space
- \bullet not regulated, zero-modes possible for sufficiently large μ

The sign problem

0.8

0.6

0.4

0.2

0.0

• factorization of the fermion determinant into modulus and phase

 $\det[M] \equiv |\det[M]| \exp\{i\phi\}$

consider the phase quenched ensemble:

 $egin{aligned} \left< \mathcal{O} \right>(\mu) &= rac{\left< \mathcal{O} \cos(\phi) \right>_{|\det M(\mu)|}}{\left< \cos(\phi) \right>_{|\det M(\mu)|}} o rac{0}{0} \end{aligned}$

→ the signal gets lost due to the sign problem

in the microscopic limit of QCD: $\left(m_{\pi}^{2} \ll \frac{1}{\sqrt{V}}, \mu^{2} \ll \frac{1}{\sqrt{V}}\right)$ $\left(\cos(\phi)\right) = \left(1 - \frac{4\mu^{2}}{m_{\pi}^{2}}\right)^{N_{f}+1}$ Splittorff, Verbaarschot, PRL98 (2007) 031601. \longrightarrow the sign problem is not severe for

 $\mu < m_\pi/2$

QCD-like theories

• dense two color matter: $\, U_\mu(x) \in SU(2) \,$

the 2-flavor action:

$$S_F = \bar{\psi}_1 M(\mu) \psi_1 + \bar{\psi}_2 M(\mu) \psi_2 + J \bar{\psi}_1 (C \gamma_5) \tau_2 \bar{\psi}_2^{tr} + \bar{J} \psi_2^{tr} (C \gamma_5) \tau_2 \psi_1$$

→ diquark source terms to regulate eigenvalues and to study spontaneous symmetry breaking

symmetries:

 $\gamma_5 M(\mu) \gamma_5 = M^{\dagger}(-\mu)$ $KM(\mu) K^{-1} = M^*(\mu)$

with
$$K\equiv C\gamma_5 au_2$$

- \rightarrow for the latter equality we use the Pauli-Gürsey symmetry: $au_2 U_\mu(x) au_2 = U^*_\mu(x)$
- \longrightarrow it implies that det $M(\mu)$ is real but not necessary positive

some lattice studies:

- Hands, Montvay, Scorzato, Skullerud, EPJC 22 (2001) 451
- Kogut, Toublan, Sinclair, PRD 68 (2003) 054507
- Hands, Kim, Skullerud, PRD 81 (2010) 091502
- Hands, Kenny, Kim, Skullerud, EPJA 47 (2011) 60

QCD-like theories

• dense two color matter:
$$\, U_{\mu}(x) \in SU(2) \,$$

the 2-flavor action with change of variables

$$S_F = (ar{\psi}ar{\phi}) \left(egin{array}{cc} M(\mu) & J\gamma_5 \ -ar{J}\gamma_5 & M(-\mu) \end{array}
ight) \left(egin{array}{cc} \psi \ \phi \end{array}
ight) = ar{\Psi}\mathcal{M}\Psi$$

with
$$ar{\phi}=-\psi_2^{tr}C au_2$$
 and $\phi=C^{-1} au_2ar{\psi}_2^{tr}$

symmetries:

$$\gamma_5 M(\mu) \gamma_5 = M^{\dagger}(-\mu)$$

 $KM(\mu) K^{-1} = M^*(\mu)$

with
$$K\equiv C\gamma_5 au_2$$

consider:

$$\mathcal{M}^{\dagger}\mathcal{M} = \left(egin{array}{c} M^{\dagger}(\mu)M(\mu) + |J|^2 & \ M^{\dagger}(-\mu)M(-\mu) + |ar{J}|^2 \end{array}
ight) \ ext{ with } ar{J} = J^* \end{array}$$

 \longrightarrow block-diagonal in ψ, ϕ and regulated by J^*J \longrightarrow use ψ, ϕ -preconditioning, take square root analytically some lattice studies:

- Hands, Montvay, Scorzato, Skullerud, EPJC 22 (2001) 451
- Kogut, Toublan, Sinclair, PRD 68 (2003) 054507
- Hands, Kim, Skullerud, PRD 81 (2010) 091502
- Hands, Kenny, Kim, Skullerud, EPJA 47 (2011) 60

QCD-like theories

ullet dense two color matter: $\,U_\mu(x)\in SU(2)$

some results for the chiral and diquark condenstates using a quark-meson-diquark model with proper-time RG flow

> Nils Strodthoff, St.Goar, March 16, 2011

short-comings / differences:

- color-neutral bound states of two quark: bosonic baryons
- •enhanced symmetry (Pauli-Gürsey) $SU(N_f)_L imes SU(N_f)_R o SU(2N_F)$
- more complex symmetry breaking pattern (5 pseudo Goldstone bosons: 3 pions + 2 diquarks)

QCD with imaginary μ or iso-spin μ_I

- ullet iso-spin chemical potential: $\mu_u = -\mu_d$
 - •fermion matrix acting on the iso-spin doublet has real determinant
 - introduce source term with quantum numbers of the pion condenstate
 - •find variables in which $\mathcal{M}^{\dagger}\mathcal{M}$ is block-diagonal, use preconditioning Kogut, Sinclair, PRD 66 (2002) 034505
- pure imaginary chemical potential:
 - determinant is real, use standard HMC
 - •partition function is periodic in $\,{
 m Im}\mu/T$ with periodicity of $\,2\pi T/3$
 - complex phase structure in the complex plane Roberge, Weiss, NPB 275 (1986) 734
 - critical behavior connected to the Roberge-Weiss transition may govern also QCD thermodynamics at $\operatorname{Re}(\mu) > 0$ D'Elia, Massimo and Di Renzo, Francesco and Lombardo, PRD 76 (2007) 114509 de Forcrand, Philipsen PRL 105 (2010) 152001

Extrapolation methods

- imaginary chemical potential:
 - •perform HMC for $\mu^2 < 0$
 - •extrapolate to $\mu^2 > 0$ by fitting data to an a appropriate Ansatz and perform analytic continuation
 - note: fitting range is limited by the periodicity of the partition function

some lattice studies:

Phillipsen, Forcrand, JHEP 0811 (2008) 012; Phillipsen, Forcrand, JHEP 0701 (2007) 077; Phillipsen, Forcrand, NPB 673 (2003) 170; D'Elia et al., PRD 76 (2007) 114509; D'Elia et al., PRD 70 (2004) 074509 ; D'Elia et al., PRD 67(2003)014505 .

• reweighting:

$$egin{aligned} &\langle \mathcal{O}
angle_{eta,\mu} = rac{\langle \mathcal{O} R
angle_{eta',0}}{\langle R
angle_{eta',0}}, \quad R = rac{\det M(\mu)}{\det M(0)} \exp\{-\Delta S_G\} \end{aligned}$$

re-weighting method by Budapest-Wuppertal group:

• reweighting:

$$egin{aligned} &\langle \mathcal{O}
angle_{eta,\mu} = rac{\langle \mathcal{O} R
angle_{eta',0}}{\langle R
angle_{eta',0}}, \quad R = rac{\det M(\mu)}{\det M(0)} \exp\{-\Delta S_G\} \end{aligned}$$

re-weighting method by Budapest-Wuppertal group:

Fodor, Katz, JHEP 0404 (2004) 050; Fodor, Katz, JHEP 0203 (2002) 014 ; Fodor, Katz, PLB 534 (2002) 87.

$$\mathcal{Z}_\mathcal{O}(x,\mu) = \int dU \left| \det M(\mu) \right| \exp\{-S_G\} \ \delta(x-\mathcal{O})$$

<u>Attempts to improve the re-weighting:</u>

- modify the Monte-Carlo sampling in order to get a precise tail of the distribution
 - simulate at a fixed value of \mathcal{O} (DOS)
 - introduce an additional weight function (Wang-Landau sampling)

re-weight not only from the $(\mu = 0)$ -ensemble but also from the phase quenched ensemble

 \rightarrow much larger parameter space

even more FARMING

- Taylor expansion:
 - start from Taylor expansion of the pressure,

$$\frac{p}{T^4} = \frac{1}{VT^3} \ln Z(V, T, \mu_u, \mu_d, \mu_s) = \sum_{i,j,k} c_{i,j,k}^{u,d,s} \left(\frac{\mu_u}{T}\right)^i \left(\frac{\mu_d}{T}\right)^j \left(\frac{\mu_s}{T}\right)^k$$

calculate expansion coefficients for fixed temperature

Extrapolation methods

• formulate all operators in term of space-time, color (and spin) traces:

$$\begin{split} \frac{\partial(\ln \det M)}{\partial \mu} &= \mathcal{D}_{1} = \operatorname{Tr}\left(M^{-1}\frac{\partial M}{\partial \mu}\right) \\ \frac{\partial^{2}(\ln \det M)}{\partial \mu^{2}} &= \mathcal{D}_{2} = \operatorname{Tr}\left(M^{-1}\frac{\partial^{2}M}{\partial \mu^{2}}\right) - \operatorname{Tr}\left(M^{-1}\frac{\partial M}{\partial \mu}M^{-1}\frac{\partial M}{\partial \mu}\right) \\ \frac{\partial^{3}(\ln \det M)}{\partial \mu^{3}} &= \mathcal{D}_{3} = \operatorname{Tr}\left(M^{-1}\frac{\partial^{3}M}{\partial \mu^{3}}\right) - 3\operatorname{Tr}\left(M^{-1}\frac{\partial M}{\partial \mu}M^{-1}\frac{\partial^{2}M}{\partial \mu^{2}}\right) \\ &+ 2\operatorname{Tr}\left(M^{-1}\frac{\partial M}{\partial \mu}M^{-1}\frac{\partial M}{\partial \mu}M^{-1}\frac{\partial M}{\partial \mu}\right) \\ \frac{\partial^{4}(\ln \det M)}{\partial \mu^{4}} &= \mathcal{D}_{4} = \operatorname{Tr}\left(M^{-1}\frac{\partial^{4}M}{\partial \mu^{4}}\right) - 4\operatorname{Tr}\left(M^{-1}\frac{\partial M}{\partial \mu}M^{-1}\frac{\partial^{3}M}{\partial \mu^{3}}\right) \\ &- 3\operatorname{Tr}\left(M^{-1}\frac{\partial^{2}M}{\partial \mu^{2}}M^{-1}\frac{\partial^{2}M}{\partial \mu^{2}}\right) + 12\operatorname{Tr}\left(M^{-1}\frac{\partial M}{\partial \mu}M^{-1}\frac{\partial M}{\partial \mu}M^{-1}\frac{\partial^{2}M}{\partial \mu^{2}}\right) \\ &- 6\operatorname{Tr}\left(M^{-1}\frac{\partial M}{\partial \mu}M^{-1}\frac{\partial M}{\partial \mu}M^{-1}\frac{\partial M}{\partial \mu}M^{-1}\frac{\partial M}{\partial \mu}\right) \end{split}$$

• evaluate all traces by noisy estimators:

$$\operatorname{Tr}\left(\frac{\partial^{n_1}M}{\partial\mu^{n_1}}M^{-1}\frac{\partial^{n_2}M}{\partial\mu^{n_2}}\cdots M^{-1}\right) = \lim_{N\to\infty}\frac{1}{N}\sum_{k=1}^N \eta_k^{\dagger}\frac{\partial^{n_1}M}{\partial\mu^{n_1}}M^{-1}\frac{\partial^{n_2}M}{\partial\mu^{n_2}}\cdots M^{-1}\eta_k$$
with N random vectors, satisfying $\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N \eta_{n,i}^*\eta_{n,j} = \delta_{i,j}$

• construct expansion coefficients from $\mathcal{D}_n^u, \mathcal{D}_n^d, \mathcal{D}_n^s$, with unbiased estimators $c_{2,0,0}^{u,d,s} = \frac{1}{2} \frac{N_{\tau}}{N_{\tau}^3} \left(\langle \mathcal{D}_2^u \rangle + \left\langle \left(\mathcal{D}_1^u \right)^2 \right\rangle \right)$

• Taylor expansion coefficients are the moments of hadronic fluctuations

Main ingredients:

- fast solver for the linear equation Ax = b, with A being a large and sparse matrix.
 - Iterative Krylov Subspace Methods are well suited for parallelization.
 - relatively large systems can be handled on massive parallel machines
- ullet stochastic estimator of ${
 m Tr}A$

• use noise reduction techniques expansion coefficients with respect to μ_X are connected to the moments of the n_X -distribution

• higher order moments are getting more and more sensitive to the tail of the distribution

Analyzing the critical behavior:

scaling field (chiral limit): $1 (T - T)^{2}$

$$t = \frac{1}{t_0} \left(\frac{T - T_c}{T_c} + \kappa \left(\frac{\mu_B}{T} \right)^2 \right)$$

free energy: $f = A_{\pm} |t|^{2-\alpha} + \text{regular}$

critical exponent: -0.15 < lpha < -0.11

$$\begin{split} \chi_2^B &\sim \mp 2A_{\pm}(2-\alpha)\kappa \left|t\right|^{1-\alpha} + \text{regular} \\ \chi_4^B &\sim -12A_{\pm}(2-\alpha)(1-\alpha)\kappa^2 \left|t\right|^{-\alpha} + \text{regular} \longrightarrow \text{kink (chiral limit)} \\ \chi_6^B &\sim \mp 120A_{\pm}(2-\alpha)(1-\alpha)(-\alpha)\kappa^3 \left|t\right|^{-1-\alpha} + \text{regular} \longrightarrow \begin{array}{c} \text{divergent} \\ \text{divergent} \\ \text{(chiral limit)} \\ \end{split}$$

Analyzing the critical behavior:

scaling field (chiral limit): $1 (T - T_{a})^{2}$

$$t = \frac{1}{t_0} \left(\frac{I - I_c}{T_c} + \kappa \left(\frac{\mu_B}{T} \right) \right)$$

free energy: $f = A_{\pm} |t|^{2-\alpha} + \text{regular}$

critical exponent: -0.15 < lpha < -0.11

$$\begin{split} \chi_2^B &\sim \mp 2A_{\pm}(2-\alpha)\kappa \left|t\right|^{1-\alpha} + \text{regular} \\ \chi_4^B &\sim -12A_{\pm}(2-\alpha)(1-\alpha)\kappa^2 \left|t\right|^{-\alpha} + \text{regular} \longrightarrow \text{kink (chiral limit)} \\ \chi_6^B &\sim \mp 120A_{\pm}(2-\alpha)(1-\alpha)(-\alpha)\kappa^3 \left|t\right|^{-1-\alpha} + \text{regular} \longrightarrow \begin{array}{c} \text{divergent} \\ \text{divergent} \\ \text{(chiral limit)} \\ \end{split}$$

hadron resonance gas

$$\begin{aligned} \ln Z(T,V,\mu_{B},\mu_{S},\mu_{Q}) &= \sum_{i\in hadrons} \ln Z_{m_{i}}(T,V,\mu_{B},\mu_{S},\mu_{Q}) \\ &\sum_{i\in mesons} \ln Z_{m_{i}}^{B}(T,V,\mu_{S},\mu_{Q}) + \sum_{i\in baryons} \ln Z_{m_{i}}^{F}(T,V,\mu_{B},\mu_{S},\mu_{Q}) \end{aligned}$$
mesons:

$$\frac{p_{i}}{T^{4}} &= \frac{d_{i}}{\pi^{2}} \left(\frac{m_{i}}{T}\right)^{2} \sum_{l=1}^{\infty} (+1)^{l+1} l^{-2} K_{2}(lm_{i}/T) \cosh(lS_{i}\mu_{S}/T + lQ_{i}\mu_{Q}/T) \end{aligned}$$
baryons:

$$\frac{p_{i}}{T^{4}} &= \frac{d_{i}}{\pi^{2}} \left(\frac{m_{i}}{T}\right)^{2} \sum_{l=1}^{\infty} (-1)^{l+1} l^{-2} K_{2}(lm_{i}/T) \cosh(lB_{i}\mu_{B}/T + lS_{i}\mu_{S}/T + lQ_{i}\mu_{Q}/T) \end{aligned}$$

Boltzmann
approximation
ratios are
independent of
spectrum and
volume

$$\rightarrow possibly large
parts of cut-off
effects cancel

 Boltzmann
 3 ratios:
$$\frac{\chi_4^B}{\chi_2^B} = \kappa \sigma^2 = \frac{B^4}{B^2} = 1$$

$$\frac{\chi_3^B}{\chi_2^B} = S\sigma = \frac{B^3}{B^2} \tanh(\mu_B/T)$$

$$\frac{\chi_2^B}{\chi_1^B} = \sigma^2/N_B = \frac{B^2}{B^1} \coth(\mu_B/T)$$$$

sixth order fluctuations

[Cleymans et al., Phys. Rev. C 63 (2006) 034905]

[HRG: Karsch, Redlich, PLB 695 (2011)]

[STAR data: Aggarwal et al, PRL (2010) 022302]

• net-proton number fluctuations can be described by the HRG solid lines: $\mu_Q \neq 0, \mu_S \neq 0$ dashed lines: $\mu_Q = 0, \mu_S = 0$

- •fluctuations increase for small \sqrt{s}
- sensitive to truncation of the series due to close radius of convergence

[HRG: Karsch, Redlich, PLB 695 (2011)]

[STAR data: Aggarwal et al, PRL (2010) 022302]

• net-proton number fluctuations can be described by the HRG solid lines: $\mu_Q \neq 0, \mu_S \neq 0$ dashed lines: $\mu_Q = 0, \mu_S = 0$

- •fluctuations increase for small \sqrt{s}
- sensitive to truncation of the series due to close radius of convergence

[HRG: Karsch, Redlich, PLB 695 (2011)]

[STAR data: Aggarwal et al, PRL (2010) 022302]

• net-proton number fluctuations can be described by the HRG solid lines: $\mu_Q \neq 0, \mu_S \neq 0$ dashed lines: $\mu_Q = 0, \mu_S = 0$

- •fluctuations increase for small \sqrt{s}
- sensitive to truncation of the series due to close radius of convergence

The critical endpoint

method for locating of the CEP:

- determine largest temperature where all coefficients are positive $\rightarrow T^{CEP}$
- determine the radius of convergence at this temperature $\rightarrow \mu^{CEP}$

second non-trivial estimate of $T^{\rm CEP}$ by c_{10}

 $p = c_0 + c_2 \left(\mu_B / T \right)^2 + c_4 \left(\mu_B / T \right)^4 + \cdots$

 $\chi_B = 2c_2 + 12c_4 \left(\mu_B/T\right)^2 + 30c_6 \left(\mu_B/T\right)^4 + \cdots$

$$ho_n(p)=\sqrt{c_n/c_{n+2}}$$

$$\rho = \lim_{n \to \infty} \rho_n$$

The critical endpoint

1.2

method for locating of the CEP:

- determine largest temperature where all coefficients are positive $\rightarrow T^{CEP}$
- determine the radius of convergence at this temperature $\rightarrow \mu^{CEP}$

 $p = c_0 + c_2 (\mu_B/T)^2 + c_4 (\mu_B/T)^4 + \cdots$

 $\chi_B = 2c_2 + 12c_4 \left(\mu_B/T\right)^2 + 30c_6 \left(\mu_B/T\right)^4 + \cdots$

The critical endpoint

method for locating of the CEP:

- determine largest temperature where all coefficients are positive $\rightarrow T^{CEP}$
- determine the radius of convergence at this temperature $\rightarrow \mu^{CEP}$

first non-trivial estimate of $T^{
m CEP}$ by c_8 second non-trivial estimate of $T^{
m CEP}$ by c_{10}

$$p = c_0 + c_2 \left(\mu_B/T\right)^2 + c_4 \left(\mu_B/T\right)^4 + \cdots$$

 $\chi_B = 2c_2 + 12c_4 \left(\mu_B/T\right)^2 + 30c_6 \left(\mu_B/T\right)^4 + \cdots$

 radius of convergence is consistent with critical line in the chiral limit
 O. Kaczmarek, et al., PRD 83 (2011) 014504

Summary

- Some QCD-like theories such as two color QCD, as well as QCD with pure imaginary chemical potential or isospin chemical potential can be simulated without a sign problem.
- A bunch of extrapolation techniques exist that can be used to obtain results for small chemical potentials (μ/T).
- The expansion coefficients of the pressure are connected the hadronic fluctuations, which can be compared to experimental data from heavy ion collisions.
- The Taylor expansion naturally provides a method to locate the critical point of QCD by an analysis of the radius of convergence.

Back Up

phase boundary for small chemical potentials

Following the critical line:

- Three parameters (T_c, t_0, h_0) have been fixed by the magnetic equation of state $M=h^{1/\delta}f_G(z)$
- Determine κ_q by a scaling analysis of the mixed susceptibility

$$\chi_m = \frac{\partial^2 M}{(\partial \mu/T)^2} = \frac{2\kappa_q}{t_0 T_c} h^{(\beta-1)/\beta\delta} f'_G(z) \propto \chi_t$$

 \Rightarrow one fit parameter: κ_q

phase boundary for small chemical potentials

Comparison with the freeze-out line:

 Statistical models are very successful in describing particle abundances observed in heavy ion collision; use a parametrization of the freeze-out curve

 \Rightarrow curvature of the freeze-out curve seems to be larger

 open issues: continuum limit, strangeness conservation, nonzero electric charge