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Overview:

* Results from the Taylor expansion method
Hadronic fluctuations and heavy ion collisions, the critical point

* Summary



The phase diagram
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The phase diagram

Key gquestions

* What are the phases of strongly
interacting matter and what role
do they play in the cosmos !

* What does QCD predict for the
properties of strongly interacting
matter ?

* What governs the transition from
Quark and Gluons into Hadrons ?
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The QCD-phase diagram

Key questions = & RHIC@BNL
QCD
* What are the phases of strongly
interacting matter and what role
do they play in the cosmos ! quark-gluon-plasma

* What does QCD predict for the

properties of strongly interacting
matter ?

N

hadron gas

temperatured [GeV]

* What governs the transition from

i ?
Quark and Gluons into Hadrons ? vacuum uclei NeUtron stars

4
chemical potential U B

Places to find QGP ?

n the early universe
n the laboratory: RHIC, LHC, FAIR
n the cores of neutron stars ?




QGP-at RHIC (1)

Gold-Gold collisions at /s = 130,200 GeV /A

f| ‘—.;.

—> estimated temperature: To =~ (1.5 — 2)T,

—> estimated energy density: €g =~ (5 — 15)GeV /fm”




QGP-at RHIC (1)

(schematic picture)

hadronic phase

QGP and ] and freeze-out
hydrodynamic expansion _ e

pre-equilibrium hadronization
10

Expansion:
hydrodynamic description
needs equation of state

Hadronization:
dependent on details of the )
equation of state and the nature Goal:

observed tracks in the
detector




QGP.at RHIC (lil)

elliptic flow

Hydrodynamic Model

. What are the properties of
the QGP at RHIC?

O
N

* hydrodynamic models are very

RHIC AutAU s = 200 GeV successful in the description of the
R0 PP RHIC data

A KY 0 A+A

Elliptic Flow v,
©

A K'4+K™ A E+E . .
S . * viscosity extremely small
2 3 4

Transverse Momentum p (GeV/c)

jet quenching
STAR sy, = 200 GeV

—— p+p minimum bias
e d+Au central

*  AutAu central * dens medium, away-side jet is
strongly/completely suppressed

— perfect liquid!?

)
e

o
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A¢ (radians)



HIC at RHIC (IV)

* The resonance gas is describing the observed hadron-spectrum

InZ(T,V, uB, us, “Q) = Z InZ,,,(T,V, up, HS?NQ)

i1€hadrons

Z In Zﬁz(T, V, NS?IJ/Q) + Z In Z,I»,?%(Ta V, NB?NS?HQ)

1Emesons tEbaryons

— produced matter is thermalized!?

new fits (yields)
L[] dN/dy
O 4n
parametrization

2005 fits, dN/dy data

/\ ratios
O yields

Dataé :

O STAR |
O PHENIX
"  BRAHMS

T 164 MeV pt 30 MeV V 1950fm

S Model XZ/N _29 7/11 *
C ' a 7?

S KKpD AR E qu)ddK*z*A*

Andronic, Braun-Munzinger, Stachel,
PLB 673 (2009) 142.
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QCD’on the lattice

lattice spacing a
—P—

_J l J\ discretize space time and
7/ Y/

hence all ,,paths™ of quarks
and gluons

—

T

quarks gluons z+ia

Y (x), QZ(:I:) U,(x) = P exp / de,A, ()

T




Lattice QCD (at T, u > 0)

lattice spacing a
—P—

_J l J\ discretize space time and
7/ Y/

hence all ,,paths™ of quarks
and gluons

at honzero chemical
potential w:

A0—>A0—’I:[JJ

or equivalently:

Ug(x) — e**Up(x)
Uj(z) — e~ Uj (x)
Hasenfratz, Karsch, PLB 125 (1983) 308.

P(x),P(x)  Uu(z) = P exp

quarks gluons z+pa

/ dr,Ay(x)

T




Lattice QCD (at T, u > 0)

* the QCD partition function:
Z(V,T./i) = | DA DY Dy exp{-S)

— ’(;szw,y/(py + SG
3

1
am 5w,y + 5 Z A)IIJ, {Up,(m) 5:13—|—aﬂ,y T Ul(y) 5m_aﬂay}

p=1

1 . =
‘|‘§74 {ea” Uy(x) 5:1:—|—a21,’y —e ™ Ui () 5a3—a41,y}

* geometry of space time:  IN? X IN; (4d - torus)

note:
* only closed loops participate to the partition

function

* only loops that wind around the torus in time

direction W-times pick up a pt-dependence:

e choose a fixed time-slice on whic

exp{Wn/T}
—> alternatively (gauge-transformation):

n all

temporal links get a factor exp{-

-p/T'}



Thessign problem

* integration over fermion fields

Z(V,T.1) = | DADYDY exp{Sr(A,v,%) - BSc(4)}

_ / DA det[M](A, 1) exp{—BSc(A)}

propabilistic interpretation
complex for u > 0 necessary for Monte Carlo!

complex action can potentially be
handled by the Langevin Algorithm

—> see talk by G.Aarts




Thessign problem

* properties of the fermion matrix and eigen-spectrum

free case

free case

4% x 64 N':O u > 0

| MT(0) = v M (0)s | M (1) = vsM (—p)7s
(v5- Hermiticity)

05 |

0

free naive fermions

3
Ap =m =+ zJ Z sin®(pg) + sin’(ps + ip)
k=1

MM is MM s
* positive definite

* block diagonal in parity (even-odd)

space, use even-odd preconditioning
e regulated by the mass: A\,in = m?

* not block diagonal in parity (even-odd)
space

* not regulated, zero-modes possible for
sufficiently large pt




Thessign problem

* factorization of the fermion determinant into modulus and phase

1.0 ¢

e | | p=3.250, 1624, am=0.005, n=3 —e

S . . p=3.260, 164am 0005n =3 —a—
det [M] p— |det [M] | eXp{Z¢} 08| TR p=3.265, 1674, am=0.005, =3 —v— |

p=3.270, 1674, am=0.005, n=3 ——

p=3.275, 1624, am=0.005, n=3 ——

$=3.250, 12 4, am=0.005, nf 3 —e—
06 1 p=3.260, 12°4, am=0.005, n=3 —— ]

. ,oeln p=3.270, 1224, am=0.005, n=3 —v—

1 . 7o p=3.280, 124am OOO5n =3 —e—
consider the phase quenched ensemble: 04 | . : e 460, 1554, ameo.100, n3 —o—

¢ 3

p=3.470, 164, am=0.100, n=3 —+—

. p=3.480, 1624, am=0.100, n=3 ——
02} o . X B=3.490, 16%4, am=0.100, n=3 —+— |

¥ $ 0gily %o
O cos(¢)) 0 Srabsg T, h o,
< | det M ()| X TR eI H§;§§»Efgg"n.nu...iIl ay, = ayy
’> 0.0 e |

(€oS(®))| det n ()| | | ot

(O) (1) =

—> the signal gets lost due to the sign
problem

in the microscopic limit of QCD:

(m2<< ! ’ [1,2<<i
TNV VvV

2\ Ns+1

4
(cos(¢)) = |1 — Lz contour
m: lines of

Splittorff, Verbaarschot, PRL98 (2007) 031601. ' Var(¢)

—> the sign problem is not severe for
p < mg/2

0
Allton et al, PRD7 (2005) 054508.



QCD-like theories

e dense two color matter: Uu(w) e SU(2)

the 2-flavor action: some lattice studies:

—  aly 75 e Hands, Montvay, Scorzato,
Sr = 1M (p)pr + P2 M(p)4po Skullerud, EPJC 22 (2001) 451

+J 4 (C~s) T2 ’(Zér + J_’(pgr (C~s5) T2t * Kogut, Toublan,Sinclair,
PRD 68 (2003) 054507

' i ° , Kim, Skullerud,
—> diquark source terms to regulate eigenvalues Hands, Kim, Skulleru

, PRD 81 (2010) 091502
and to study spontaneous symmetry breaking e Hands, Kenny, Kim, Skullerud,

EPJA 47 (2011) 60
symmetries:

s M (p)vs = MT(—p)
KM(p)K~' = M*(p)

with K = C"Y5T2
—> for the latter equality we use the Pauli-Gursey
symmetry: T2U, ()72 = U ()
— it implies that det M () is real but not
necessary positive




QCD-like theories

e dense two color matter: Uu(w) e SU(2)

the 2-flavor action with change of variables some lattice studies:

e Hands, Montvay, Scorzato,
Sp = (4) M(p)  Jvs Y\ _ g Mo Skullerud, EPJC 22 (2001) 451
—J5 M(—[J,) [0)  Kogut, Toublan,Sinclair,
PRD 68 (2003) 054507
. g t _ —1 7.t o i
wih =~ Cmy and ¢ = C7lmay hands K Salend,
e Hands, Kenny, Kim, Skullerud,

EPJA 47 (2011) 60
symmetries:

s M (p)vs = MT(—p)
KM(p)K~' = M*(p)

with KK = C"Y5T2

consider:

MM — ( M (1) M (1) + |

Mt (—p)M(—p) + |J|? )
with J = J*

—> block-diagonal in ¥, ¢ and regulated by J*J
—> use 1), @-preconditioning, take square root analytically




QCD:-like theories

® dense two color matter: U,,J(:B) & SU(Z) (49)/<@4)o

(q9)Y/<qq)o
some results for the chiral and 14
diquark condenstates using a 1.2
quark-meson-diquark model :

Y . 0 . 8 AN TN
with proper-time RG flow I,
"4 O AAAAAAR
0.6 L5522
\

Nils Strodthoff, 83

St.Goar, March 16, 2011 0o

short-comings / differences:

* color-neutral bound states of two
quark: bosonic baryons

*enhanced symmetry (Pauli-Gursey)
SU(Nys)r x SU(Ny)r — SU(2NF)

*more complex symmetry breaking
pattern (5 pseudo Goldstone
bosons: 3 pions + 2 diquarks)

Nils Strodthoff, St. Goar 201 |

, lattice vs. model at T=0

NJL —
Lattice
QMD MF
QMD RG

q9>/<aq)o. <99)/{aq)o

l. 2
Nils Strodthoff, St. Goar 201 |




QCD with imaginary (& or iso-spin fug

* jso-spin chemical potential: ., — — g
efermion matrix acting on the iso-spin doublet has real determinant

*introduce source term with quantum numbers of the pion condenstate

efind variables in which MTM is block-diagonal, use preconditioning
Kogut, Sinclair, PRD 66 (2002) 034505

* pure imaginary chemical potential:
edeterminant is real, use standard HMC
epartition function is periodic in Imu /T with periodicity of 27T /3

e complex phase structure in the complex plane
Roberge,VWeiss, NPB 275 (1986) 734

o critical behavior connected to the Roberge-Weiss transition may
govern also QCD thermodynamics at Re(ui) > 0

D'Elia, Massimo and Di Renzo, Francesco and Lombardo, PRD 76 (2007) 114509
de Forcrand, Philipsen PRL 105 (2010) 152001




Extrapolation methods

* imaginary chemical potential: two color QCD

eperform HMC for uz <0 - A+B(aw’+Claw*

o —— [A+B(aw’11+Claw’
eextrapolate to pu“ > 0 by fitting data

to an a appropriate Ansatz and perform
analytic continuation

*note: fitting range is limited by the
periodicity of the partition function

chiral condensate
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0.00 X | L L 1 L | 1 | 1 | 1 | | | " 1 L | 1 1 L I(—‘>n 1
-04-02 00 0.2 04 06 08 1.0 , 12 14 16 18 20 22 24
Papa ¢t al,, PoS Lat2006 (2006) 143

some lattice studies:

Phillipsen, Forcrand, JHEP 0811 (2008) 012;  D‘Elia et al., PRD 76 (2007) 114509;
Phillipsen, Forcrand, JHEP 0701 (2007) 077;  D‘Elia et al., PRD 70 (2004) 074509 ;
Phillipsen, Forcrand, NPB 673 (2003) 170; D‘Elia et al., PRD 67(2003)014505 .




Extrapolation methods

* reweighting:

re-weighting method by Budapest-Wuppertal group:
* exact determination of the determinant
respectively all eigenvalues is required (oc V'?)
* no efficient parallel algorithms p(O)s .0
* small system sizes

* overlap problem:
* exponentially small tails of the distribution
need to be determined very precisely

* applicability range shrinks with volume \ ) /




Extrapolation methods

* reweighting:

(OR) 43 4

<O>,3,p, — <R>Iglo 9

re-weighting method by Budapest-Wuppertal group:

* exact determination of the determinant
respectively all eigenvalues is required (oc V'?)
* no efficient parallel algorithms
* small system sizes

* overlap problem:
* exponentially small tails of the distribution
need to be determined very precisely
e applicability range shrinks with volume
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Fodor, Katz, JHEP 0404 (2004) 050;
Fodor, Katz, JHEP 0203 (2002) 014 ;
Fodor, Katz, PLB 534 (2002) 87.




Extrapolation methods

Zo(a,n) = [ dU |det M(u)| exp{~Sc} 6(z - O)

A
Attempts to improve the re-weighting: p(O)so p(O)s,u
* modify the Monte-Carlo sampling in order to
get a precise tail of the distribution
* simulate at a fixed value of O (DOY)
* introduce an additional weight function
(Wang-Landau sampling)

re-weight not only from the (1 = 0)-ensemble
but also from the phase quenched ensemble X O

170

T [MeV] | multiparameter reweighting =
DOS method, am=0.05 —&—

160 |
WDOS method, am=0.03 —-&—
150 ~

T~ ag

“ O -
“Oq %
ot

140 | o5

ol -
120 |

Nf — 4 110

6%, 6% x 8 100 |

amg = 0.05, 0.03 90

Fodor, Katz, CS, JHEP 0703:121,2007.




Extrapolation methods

* Taylor expansion:

e start from Taylor expansion of the pressure,

* calculate expansion coefficients for fixed temperature

the convergence region
remains to be determined
non-perturbatively

* no sign problem: T
all simulations are doneatu = 0
u,d,s __ 1 1
C,5 =
" gkl VTS quark-gluon
9°95 9% In Z plasma

) w\i ; s deconfined,
a7 ) 0(F)o('F)"| X-Symmetric

ad7S:0
hadron gas

* method is straight forward: confined,

all terms can be generated automatically X-broken supe.fc‘z,'ﬁg'uctor

Allton et al., PRD66:074507,2002;
Allton et al., PRD68:014507,2003;

Allton et al., PRD71:054508,2005. ~ few times nuclear 4B

matter density




Extrapolation methods

 formulate all operators in term of space-time, color (and spin) traces:

* evaluate all traces by noisy estimators:
M 8 M , , _, 0 M
Tr M e M M
6[1;77’1 au’nz

N
. . . . 1 .
with IN random vectors, satisfying Jim S 05 Ty = 0

n=1

* construct expansion coefficients from DY, Dg, D? , with unbiased estimators




Hadronic-fluctuations

* Taylor expansion coefficients are the moments of hadronic fluctuations

1 1 2
2ef = o (N%) 24 = o ((N%) - 3(N})")
X =B,Q,5,1,...

Main ingredients:
e fast solver for the linear equation Ax = b,
with A being a large and sparse matrix.
* Iterative Krylov Subspace Methods are well
suited for parallelization.

—> relatively large systems can be
handled on massive parallel machines

e stochastic estimator of Tr A
* use noise reduction techniques
expansion coefficients with respect to p x are
connected to the moments of the 1 x-distribution
* higher order moments are getting more and nth-moment:

more sensitive to the tail of the distribution n
m, = | dx " p(x)
—> high statistics required

Nx




Baryonic fluctuations

16° X 4, mq = m;/10 Analyzing the critical behavior:

scaling field (chiral limit):
1 (T—Tc <u3>2)
t= — P
to 1. T
free energy:
f = AL|t|*”® 4+ regular

critical exponent:
—0.15 < a < —0.11

/T

C

08 085 09 09 1 105 11

F2A41(2 — &)k |t|" ™ + regular
—12A4(2 — a)(1 — a)k? |t|”® + regular > kink (chiral limit)

F12044(2 — a)(1 — a)(—a)k® |t| 7~ 4+ regular —  divergent
(chiral limit)




Baryonic fluctuations

16° X 4, mq = m;/10 Analyzing the critical behavior:

scaling field (chiral limit):
1 (T—Tc <u3>2)
t= — P
to 1. T
free energy:
f = AL|t|*”® 4+ regular

critical exponent:
—0.15 < a < —0.11

T/T

C

08 085 09 09 1 1.05 1.1

F2A41(2 — &)k |t|" ™ + regular
—12A4(2 — a)(1 — a)k? |t|”® + regular > kink (chiral limit)

F12044(2 — a)(1 — a)(—a)k® |t| 7~ 4+ regular —  divergent
(chiral limit)




Baryonic fluctuations

hadron resonance gas

InZ(T,V, NB?NS?/JJQ) — Z InZ,,,(T,V, //’JB?//’JS?NQ)

1€hadrons

> mZE (T,V,ps,pe)+ >, WZf (T,V,us,ps, 1)

1Emesons tEbaryons

Mesons:

2 oo

i dy i
54 = (n; ) Z(+1)l+1l_2Kz(lm,,;/T) cosh(IS;us/T +1Qipnq/T)
=1

baryons:

i d; i\ 2
- <"; ) Y (=D Ky (Im; /T) cosh(IBipg /T + 1Sips /T + 1Qipg /T)

=1

T4 T2

Boltzmann

approximation | 3 ratios:

ratios are
independent of
spectrum and
volume

possibly large

RN _ B
parts of cut-off = 02 /Np = B coth(upg/T)
effects cancel




Baryonic fluctuations

e sixth order fluctuations

Use

| parametrization
of freeze-out

1 curve to connect
to STAR

1 measurements of
net-proton
number

T/T_I-—>

C

0.8 085 09 095 1 1.05 1.1 1.15 [ ST

Vi (GeV)
[CS, arXiv:1007.5164] T(pup) 0.166 GeV
—0.139 GeV ™~ 'u%

—0.053 GeV *uj

*sensitive to relevant quantum
numbers in the medium

* divergent at the critical point 15 (v/3) = 1.308 GeV
1+ 0.273 GeV~'y/s

[Cleymans et al., Phys. Rev. C 63 (2006) 034905]




Baryonic fluctuations

Lattice vs. Experiment:

@~ LQCD: BNL-Bi
~&— LQCD: Mumbai

512 (GeV) ~ "2 [GeV] |

5 10 20 100
Mukherjee, QM 201 | CS, Theor. Phys. Suppl. 186, 563 (2010)

[HRG: Karsch, Redlich, PLB 695 (201 1)]
[STAR data: Aggarwal et al, PRL (2010) 022302]

* net-proton number fluctuations e fluctuations increase for small v/s

can be described by the HRG . . .
* sensitive to truncation of the series

solid lines: pg 7 0, ps 7 0 due to close radius of convergence
dashed lines: ug =0, us = 0




Baryonic fluctuations

Lattice vs. Experiment:

@~ LQCD: BNL-Bi
~&— LQCD: Mumbai

s\ (GeV)

5 10 20
Mukherjee, QM 201 |

[HRG: Karsch, Redlich, PLB 695 (201 1)]
[STAR data: Aggarwal et al, PRL (2010) 022302]

* net-proton number fluctuations
can be described by the HRG

solid lines: g # 0, usg # 0
dashed lines: ug =0, us = 0

0.1 L— —
10 100
CS, Theor. Phys. Suppl. 186,563 (2010)

e fluctuations increase for small v/s

® sensitive to truncation of the series
due to close radius of convergence




Baryonic fluctuations

Lattice vs. Experiment:

@~ LQCD: BNL-Bi
~&— LQCD: Mumbai

s\ (GeV)

5 10 20
Mukherjee, QM 201 |

[HRG: Karsch, Redlich, PLB 695 (201 1)]
[STAR data: Aggarwal et al, PRL (2010) 022302]

* net-proton number fluctuations
can be described by the HRG

solid lines: g # 0, usg # 0
dashed lines: ug =0, us = 0

o ”I”ISW[GIeV]
10 100
CS, Theor. Phys. Suppl. 186,563 (2010)

e fluctuations increase for small v/s

® sensitive to truncation of the series
due to close radius of convergence




The critical endpoint

method for locating of the CEP:

* determine largest temperature where all p=-co+ce(us/T) +ca(pup/T)* +---

coefficients are positive = TCEP i )
XB = 2¢2 + 12¢4 (ug/T)" + 30ce (uB/T)" + - - -

* determine the radius of convergence at 8

this temperature - CEP

all coefficients
positive:
singularity
on the real

axis! //)/

11 I ! !
T CEP T RW 085 09 095 1 105 1.1

TCEP CS, Theor. Phys. Suppl. 186,563 (2010)

TSC;'EP
Pn (p) \/Cn/cn+2

_ o o o CEP .
first non tr!v!al est!mate of TCEP by cs 0 lim p,
second non-trivial estimate of T by ci10 n— 0o




The critical endpoint

method for locating of the CEP:

* determine largest temperature where all p=-co+ce(us/T) +ca(pup/T)* +---

coefficients are positive = TCEP i )
XB = 2¢2 + 12¢4 (ug/T)" + 30ce (uB/T)" + - - -

* determine the radius of convergence at -

this temperature - CEP

1.15

all coefficients
positive:
singularity
on the real

axis! //)/

Ll |
1 | 5
TCEPl TRW
ToEP CS, Theor. Phys. Suppl. 186, 563 (2010)

TSC’EP
pr(p) = \/en/cnra

_ o o o CEP .
first non tr!v!al est!mate of TCEP by cs 0 lim p,
second non-trivial estimate of T by ci10 n— 0o




The critical endpoint

method for locating of the CEP:

* determine largest temperature where all p=-co+ce(us/T) +ca(pup/T)* +---

coefficients are positive = TCEP i )
XB = 2¢2 + 12¢4 (ug/T)" + 30ce (uB/T)" + - --

* determine the radius of convergence at 10 | | ,

this temperature - CEP

1.15

1.1

all coefficients
positive:
singularity
on the real

axis! //)/

l | | 0.8
TCEPl T RW 0 1
o CS, Theor. Phys. Suppl. 186, 563 (2010)

CEP
TS

* radius of convergence is consistent
with critical line in the chiral limit

first non-trivial estimate of T7<EF by cg O. Kaczmarek, et al., PRD 83 (201 1) 014504
second non-trivial estimate of T<*F by c10




Summary

* Some QCD-like theories such as two color QCD, as well as QCD with pure
imaginary chemical potential or isospin chemical potential can be simulated
without a sign problem.

* A bunch of extrapolation techniques exist that can be used to obtain results
for small chemical potentials ( /T ).

* The expansion coefficients of the pressure are connected the hadronic
fluctuations, which can be compared to experimental data from heavy ion
collisions.

* The Taylor expansion naturally provides a method to locate the critical point of
QCD by an analysis of the radius of convergence.




Back Up




phase boundary for small chemical potentials

Following the critical line:

e Three parameters (1., Lo, l1g ) have been fixed by the magnetic
equation of state M = h'/% fo(2)

* Determine r, by a scaling analysis of the mixed susceptibility

82 M 2%,
_ _ (B—1)/Bd g1
= @u/T)? il fa(2) o xe

Xm

—> one fit parameter:

N,=8: m/m.= 1/20 +—@— . /-2qu1’G/(zzg —
=0. M/Mm.= ——
Ne=a: mmg= 110 == 1 Nimd: mymem 110 —ep—s "

1/20 —A— ] 1/20 —A—
1/80 —F— | > & 1/80 —H—

t

-0.04  -0. . . 0.06 0.08 0.1

0

—> obtain from p4-action, N, = 8,4: kK, = 0.059(6)
Kaczmarek et al, PRD 83 (2011) 014504




phase boundary for small chemical potentials

Comparison with the freeze-out line:

e Statistical models are very successful in describing particle
abundances observed in heavy ion collision; use a parametrization
of the freeze-out curve

1.2

statistical model:

11 | 1 T, 2 4
¢ —1-0.023 (“—B> —d (“—B)
1 T T T

Cleymans, et al., PRC 73 (2006) 034905
09 |

lattice:

T. 2
~¢ =1 —0.0066(7) (”’—B>
T T

Kaczmarek et al, accepted by PRD,
arXiv:1011.3130 [hep-lat]

0.8 r

0.7 r

0.6 ] ] ] ] ] ] ]
0 0.5 1 1.5 2 2.5 3 3.5 4

—> curvature of the freeze-out curve seems to be larger

e open issues: continuum limit, strangeness conservation, nonzero
electric charge




