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Lesson 1: tmQCD 
action and symmetries



Generalities
• tmQCD is a relative newcomer in the family of lattice fermion regularizations

• it consists in modifying the standard Wilson fermion matrix by adding a mass term , 
which is “twisted” in chiral space

iµ ψ̄ τ3γ5 ψ
Pauli matrix in SU(2) flavour space



Generalities
• tmQCD is a relative newcomer in the family of lattice fermion regularizations

• it consists in modifying the standard Wilson fermion matrix by adding a mass term , 
which is “twisted” in chiral space

iµ ψ̄ τ3γ5 ψ
Pauli matrix in SU(2) flavour space

• there are several advantages in such a choice:

• natural infrared cutoff enables a safer approach to the chiral limit (and keeps us safe 
from exceptional configurations in the quenched approximation)

• in many cases the renormalization properties of WMEs are simplified

• in most cases of interest observable quantities are improved “automatically” (i.e. 
without Symanzik counter-terms in the action and the operators)



Generalities
• tmQCD is a relative newcomer in the family of lattice fermion regularizations

• it consists in modifying the standard Wilson fermion matrix by adding a mass term , 
which is “twisted” in chiral space

iµ ψ̄ τ3γ5 ψ
Pauli matrix in SU(2) flavour space

• there are several advantages in such a choice:

• natural infrared cutoff enables a safer approach to the chiral limit (and keeps us safe 
from exceptional configurations in the quenched approximation)

• in many cases the renormalization properties of WMEs are simplified

• in most cases of interest observable quantities are improved “automatically” (i.e. 
without Symanzik counter-terms in the action and the operators)

• there is a price to pay: flavour symmetry is lost and so are parity and time reversal 
(recovered in the continuum limit)
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Classical tmQCD

• apparently this is not QCD! (parity breaking? isospin braking? extra mass term?)

• but this theory is form invariant under chiral transformations in 3rd isospin direction, 
combined with spurionic transformations of the two mass parameters

• to see this, define first an invariant mass and a twist angle:

• for simplicity consider with two degenerate flavours

• the classical QCD theory with SU(2) flavour symmetry is: 

ψ̄ = ( ū d̄ )

L = ψ̄ [ /D + m + i µ τ3 γ5 ] ψ

M =
√

m2 + µ2 tan(ω) =
µ

m
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L = ψ̄
[

/D + M exp[iωτ3γ5]
]

ψ
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Classical tmQCD

• apparently this is not QCD! (parity breaking? isospin braking? extra mass term?)

• but this theory is form invariant under chiral transformations in 3rd isospin direction, 
combined with spurionic transformations of the two mass parameters

• redefine fermionic fields through chiral rotations [ I3(α) - rotations ]: 

• for simplicity start with two degenerate flavours

• the classical QCD theory with SU(2) flavour symmetry is: 

ψ̄ = ( ū d̄ )
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L = ψ̄ [ /D + m + i µ τ3 γ5 ] ψ

ψ → ψ′ = exp
[
i
α

2
γ5τ

3
]
ψ ψ̄ → ψ̄′ = ψ̄ exp

[
i
α

2
γ5τ

3
]

Transformation angle



Classical tmQCD

• apparently this is not QCD! (parity breaking? isospin braking? extra mass term?)

• but this theory is form invariant under chiral transformations in 3rd isospin direction, 
combined with spurionic transformations of the two mass parameters

• redefine fermionic fields through chiral rotations [ I3(α) - rotations ]: 

• for simplicity start with two degenerate flavours

• the classical QCD theory with SU(2) flavour symmetry is: 

ψ̄ = ( ū d̄ )

L = ψ̄ [ /D + m + i µ τ3 γ5 ] ψ

ψ → ψ′ = exp
[
i
α

2
γ5τ

3
]
ψ ψ̄ → ψ̄′ = ψ̄ exp

[
i
α

2
γ5τ

3
]

• redefine mass parameters through spurionic transformations are:

m → m′ = m cos(α) + µ sin(α)
µ → µ′ = µ cos(α) − m sin(α)



Classical tmQCD

• the form invariance of the theory is:

• with the same invariant mass 
and a new twist angle

M ′ = M tan(ω′) =
µ′

m′

ω′ = ω − α

L = ψ̄
[

/D + m + i µ τ3 γ5

]
ψ = ψ̄

[
/D + M exp[iωτ3γ5]

]
ψ

L′ = ψ̄′
[

/D + m′ + i µ′ τ3 γ5

]
ψ′ = ψ̄′

[
/D + M exp[iω′τ3γ5]

]
ψ′



Classical tmQCD

• the form invariance of the theory is:

• with the same invariant mass 
and a new twist angle

M ′ = M tan(ω′) =
µ′

m′

ω′ = ω − α

L = ψ̄
[

/D + m + i µ τ3 γ5

]
ψ = ψ̄

[
/D + M exp[iωτ3γ5]

]
ψ

• we have a family of theories, prametrised by their twist angle 

• they are equivalent, as they are linked by field and mass redefinitions

• the quark mass is given by the invariant mass M = √(m2 + μ2)
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Classical tmQCD

• the form invariance of the theory is:

• with the same invariant mass 
and a new twist angle

M ′ = M tan(ω′) =
µ′

m′

ω′ = ω − α

L = ψ̄
[

/D + m + i µ τ3 γ5

]
ψ = ψ̄

[
/D + M exp[iωτ3γ5]

]
ψ

• with I3(α = ω) - rotations we obtain ω′ = 0 ⇔ μ′ = 0 and m′ = M

• i.e. the special case of zero twist angle is QCD !! 
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Classical tmQCD

• the form invariance of the theory is:

• with the same invariant mass 
and a new twist angle

M ′ = M tan(ω′) =
µ′

m′

ω′ = ω − α

L = ψ̄
[

/D + m + i µ τ3 γ5

]
ψ = ψ̄

[
/D + M exp[iωτ3γ5]

]
ψ

• with I3(α = ω - π/2) - rotations we obtain ω′ = π/2 ⇔ m′ = 0 and μ′ = M

• this special case of interest is known as fully twisted QCD or maximally 
twisted QCD!! 

L′ = ψ̄′
[

/D + m′ + i µ′ τ3 γ5

]
ψ′ = ψ̄′

[
/D + M exp[iω′τ3γ5]

]
ψ′



Classical tmQCD

• QCD is obtained from tmQCD (defined at fixed ω) with chiral transformations in 3rd 
isospin direction [ I3(ω)-rotations ], combined with spurionic transformations of the 
two mass parameters:

• symmetries are lost only apparently, since at the classical level QCD  ↔ tmQCD

• parity breaking? isospin braking?

tan(ω) =
µ

m

ψ → ψ′ = exp
[
i
ω

2
γ5τ

3
]
ψ ψ̄ → ψ̄′ = ψ̄ exp

[
i
ω

2
γ5τ

3
]

L = ψ̄
[

/D + m + i µ τ3 γ5

]
ψ = ψ̄

[
/D + M exp[iωτ3γ5]

]
ψ

m → m′ = M

µ → µ′ = 0
• the symmetry transformations of the fermion 

fields in the tmQCD formalism are obtained by 
performing the opposite I3(-ω)-rotations to the 
standard symmetry transformations of the 
fields in QCD



Classical tmQCD

• twisted parity is Pω

• symmetries are lost only apparently, since at the classical level QCD  ↔ tmQCD

• parity breaking? isospin braking?

tan(ω) =
µ

m

L = ψ̄
[

/D + m + i µ τ3 γ5

]
ψ = ψ̄

[
/D + M exp[iωτ3γ5]

]
ψ

x = (x0,x) → x′ = (x0,−x)
A0(x) → A0(x′)
Ak(x) → −Ak(x′)

ψ(x) → γ0 exp
[
iωγ5τ

3
]
ψ(x′)

ψ̄(x) → ψ̄(x′) exp
[
iωγ5τ

3
]
γ0



Classical tmQCD

• twisted parity is Pω

• symmetries are lost only apparently, since at the classical level QCD  ↔ tmQCD

• parity breaking? isospin braking?

tan(ω) =
µ

m
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]
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[
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]
ψ

NB!

x = (x0,x) → x′ = (x0,−x)
A0(x) → A0(x′)
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3
]
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[
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Classical tmQCD

• twisted time-reversal is similarly Tω

• symmetries are lost only apparently, since at the classical level QCD  ↔ tmQCD

• parity breaking? isospin braking?

tan(ω) =
µ

m

NB!

L = ψ̄
[

/D + m + i µ τ3 γ5

]
ψ = ψ̄

[
/D + M exp[iωτ3γ5]

]
ψ

x = (x0,x) → x′ = (−x0,x)
A0(x) → −A0(x′)
Ak(x) → Ak(x′)

ψ(x) → i γ0γ5 exp
[
iωγ5τ

3
]
ψ(x′)

ψ̄(x) → −i ψ̄(x′) exp
[
iωγ5τ

3
]
γ5γ0



Classical tmQCD

• NB: instead of twisted parity Pω we may have standard parity P0, combined with 
(spurionic) twisted mass sign flip: P0 ⊗ [μ  → -μ]

• symmetries are lost only apparently, since at the classical level QCD  ↔ tmQCD

• parity breaking? isospin braking?

L = ψ̄
[

/D + m + i µ τ3 γ5

]
ψ = ψ̄

[
/D + M exp[iωτ3γ5]

]
ψ

• similarly for time-reversal T0 ⊗ [μ  → -μ]

x = (x0,x) → x′ = (x0,−x)
A0(x) → A0(x′)
Ak(x) → −Ak(x′)
ψ(x) → γ0 ψ(x′)
ψ̄(x) → ψ̄(x′) γ0

µ → −µ



Classical tmQCD

• twisted vector symmetry (isospin) is SUv(2)ω

• symmetries are lost only apparently, since at the classical level QCD  ↔ tmQCD

• parity breaking? isospin braking?

tan(ω) =
µ

m

ψ(x) → exp
[
− i

ω

2
γ5τ

3
]

exp
[
i
θa

2
τa

]
exp

[
i
ω

2
γ5τ

3
]

ψ(x)

ψ̄(x) → ψ̄(x) exp
[
i
ω

2
γ5τ

3
]

exp
[
− i

θa

2
τa

]
exp

[
− i

ω

2
γ5τ

3
]

L = ψ̄
[

/D + m + i µ τ3 γ5

]
ψ = ψ̄

[
/D + M exp[iωτ3γ5]

]
ψ

• vector symmetry transformation angles are θa



Classical tmQCD

• twisted vector symmetry (isospin) is SUv(2)ω

• symmetries are lost only apparently, since at the classical level QCD  ↔ tmQCD

• parity breaking? isospin braking?

tan(ω) =
µ

m

ψ(x) → exp
[
− i

ω

2
γ5τ

3
]

exp
[
i
θa

2
τa

]
exp

[
i
ω

2
γ5τ

3
]

ψ(x)

ψ̄(x) → ψ̄(x) exp
[
i
ω

2
γ5τ

3
]

exp
[
− i

θa

2
τa

]
exp

[
− i

ω

2
γ5τ

3
]

L = ψ̄
[

/D + m + i µ τ3 γ5

]
ψ = ψ̄

[
/D + M exp[iωτ3γ5]

]
ψ

NB! • vector symmetry transformation angles are θa

• “extra” twist angle is ω



Classical tmQCD

• by analogy, twisted axial symmetry is SUA(2)ω

• symmetries are lost only apparently, since at the classical level QCD  ↔ tmQCD

• parity breaking? isospin braking?

tan(ω) =
µ

m

ψ(x) → exp
[
− i

ω

2
γ5τ

3
]

exp
[
i
θa

2
τaγ5

]
exp

[
i
ω

2
γ5τ

3
]

ψ(x)

ψ̄(x) → ψ̄(x) exp
[
i
ω

2
γ5τ

3
]

exp
[
i
θa

2
τaγ5

]
exp

[
− i

ω

2
γ5τ

3
]

L = ψ̄
[

/D + m + i µ τ3 γ5

]
ψ = ψ̄

[
/D + M exp[iωτ3γ5]

]
ψ

• axial symmetry transformation angles are θa

• “extra” twist angle is ω

• axial symmetry valid at M = 0



Classical tmQCD

• the I3(ω)-rotations relating QCD ↔ tmQCD give operator correspondences

Va
µ = cos(ω) V a

µ + ε3ab sin(ω) Ab
µ a = 1, 2

Aa
µ = cos(ω) Aa

µ + ε3ab sin(ω) V b
µ a = 1, 2

V3
µ = V 3

µ

A3
µ = A3

µ

defined in QCD defined in tmQCD

Qa
Γ = ψ̄ Γ

τa

2
ψ

S0 = ψ̄ ψ

tan(ω) =
µ

m



Classical tmQCD

• the I3(ω)-rotations relating QCD ↔ tmQCD give operator correspondences

tan(ω) =
µ

m

Va
µ = cos(ω) V a

µ + ε3ab sin(ω) Ab
µ a = 1, 2

Aa
µ = cos(ω) Aa

µ + ε3ab sin(ω) V b
µ a = 1, 2

V3
µ = V 3

µ

A3
µ = A3

µ

defined in QCD defined in tmQCD

Pa = P a a = 1, 2

P3 = cos(ω)P 3 +
i

2
sin(ω) S0

S0 = cos(ω)S0 + 2i sin(ω) P 3

Qa
Γ = ψ̄ Γ

τa

2
ψ

S0 = ψ̄ ψ



Classical tmQCD

• similar correspondences occur in Ward identities

• in tmQCD the “PCVC” is 

∂µAa
µ = 2m P a + i µ δ3a S0

∂µV a
µ = −2µ ε3ab P b

• in tmQCD the “PCAC” is 

Qa
Γ = ψ̄ Γ

τa

2
ψ

S0 = ψ̄ ψ

• in terms of the QCD currents and densities, they become the standard expressions



Lattice tmQCD

Alpha Collab., R. Frezzotti, P.A. Grassi, S. Sint and P.Weisz, JHEP08 (2001) 058 



Lattice tmQCD

• QCD ↔ tmQCD equivalence carries over to the renormalized quantum level

• Ingredients:

• chiral symmetry of Ginsparg-Wilson (GW) fermions

• mass-independent renormalization scheme

• universality of different lattice regularizations in the continuum limit

• twist angle tuned to ratio of renormalized masses

• QCD ↔ tmQCD equivalence proceeds through linear mapping between renormalized 

Green functions

• regularize QCD and tmQCD with GW fermions

tan(ω) = µR / mR

ZQCD
GW =

∫
Dψ̄DψDU exp

[
− SQCD

GW

]



Lattice tmQCD

• QCD ↔ tmQCD equivalence carries over to the renormalized quantum level

• Ingredients:

• chiral symmetry of Ginsparg-Wilson (GW) fermions

• mass-independent renormalization scheme

• universality of different lattice regularizations in the continuum limit

• twist angle tuned to ratio of renormalized masses

• QCD ↔ tmQCD equivalence proceeds through linear mapping between renormalized 

Green functions

• regularize QCD and tmQCD with GW fermions

tan(ω) = µR / mR
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Lattice tmQCD

• QCD ↔ tmQCD equivalence carries over to the renormalized quantum level

• Ingredients:

• chiral symmetry of Ginsparg-Wilson (GW) fermions

• mass-independent renormalization scheme

• universality of different lattice regularizations in the continuum limit

• twist angle tuned to ratio of renormalized masses

• QCD ↔ tmQCD equivalence proceeds through linear mapping between renormalized 

Green functions

• regularize QCD and tmQCD with GW fermions

tan(ω) = µR / mR

GW:  discretization of kinetic term

ZQCD
GW =

∫
Dψ̄DψDU exp

[
− SQCD

GW

]



Lattice tmQCD

• QCD ↔ tmQCD equivalence carries over to the renormalized quantum level

• Ingredients:

• chiral symmetry of Ginsparg-Wilson (GW) fermions

• mass-independent renormalization scheme

• universality of different lattice regularizations in the continuum limit

• twist angle tuned to ratio of renormalized masses

• QCD ↔ tmQCD equivalence proceeds through linear mapping between renormalized 

Green functions

• regularize QCD and tmQCD with GW fermions

tan(ω) = µR / mR

[
〈 Q 〉

]QCD

GW
=

1
ZQCD

GW

∫
Dψ̄DψDU exp

[
− SQCD

GW

]
Q



Lattice tmQCD

• QCD ↔ tmQCD equivalence carries over to the renormalized quantum level

• Ingredients:

• chiral symmetry of Ginsparg-Wilson (GW) fermions

• mass-independent renormalization scheme

• universality of different lattice regularizations in the continuum limit

• twist angle tuned to ratio of renormalized masses

• QCD ↔ tmQCD equivalence proceeds through linear mapping between renormalized 

Green functions

• regularize QCD and tmQCD with GW fermions

tan(ω) = µR / mR

ZtmQCD
GW =

∫
Dψ̄DψDU exp

[
− StmQCD

GW

]

[
〈 Q 〉

]tmQCD

GW
=

1
ZtmQCD

GW

∫
Dψ̄DψDU exp

[
− StmQCD

GW

]
Q



Lattice tmQCD

• QCD ↔ tmQCD equivalence carries over to the renormalized quantum level

• Ingredients:

• chiral symmetry of Ginsparg-Wilson (GW) fermions

• mass-independent renormalization scheme

• universality of different lattice regularizations in the continuum limit

• twist angle tuned to ratio of renormalized masses

• QCD ↔ tmQCD equivalence proceeds through linear mapping between renormalized 

Green functions

• regularize QCD and tmQCD with GW fermions

• GW chiral symmetry guarantees the same considerations of a trivial QCD  ↔ tmQCD 

equivalence as in the classical case are valid (with minor caveats)

• example: bare Green function of the scalar operator (chiral condensate)

tan(ω) = µR / mR

[
< · · · S0 · · · >

]QCD

GW
=

[
cos(ω) < · · ·S0 · · · > + i sin(ω) < · · ·P 3 · · · >

]tmQCD

GW



Lattice tmQCD

• QCD ↔ tmQCD equivalence between bare Green functions with GW regularization

[
< · · · S0 · · · >

]QCD

GW
=

[
cos(ω) < · · ·S0 · · · > + i sin(ω) < · · ·P 3 · · · >

]tmQCD

GW



Lattice tmQCD

• QCD ↔ tmQCD equivalence between bare Green functions with GW regularization

• QCD ↔ tmQCD equivalence carries over to renormalized quantities, due to mass 

independent renormalization schemes (i.e. S0  and P3 in both QCD and tmQCD have 
the same renormalization constant ZS = ZP = Z )

[
< · · · S0 · · · >

]QCD

GW
=

[
cos(ω) < · · ·S0 · · · > + i sin(ω) < · · ·P 3 · · · >

]tmQCD

GW

Z(aµ̃)
[

< · · · S0 · · · >
]QCD

GW
= Z(aµ̃)

[
cos(ω) < · · ·S0 · · · > + i sin(ω) < · · ·P 3 · · · >

]tmQCD

GW



Lattice tmQCD

• QCD ↔ tmQCD equivalence between bare Green functions with GW regularization

• QCD ↔ tmQCD equivalence carries over to renormalized quantities, due to mass 

independent renormalization schemes (i.e. S0  and P3 in both QCD and tmQCD have 
the same renormalization constant ZS = ZP = Z )

[
< · · · S0 · · · >

]QCD

GW
=

[
cos(ω) < · · ·S0 · · · > + i sin(ω) < · · ·P 3 · · · >

]tmQCD

GW

Z(aµ̃)
[

< · · · S0 · · · >
]QCD

GW
= Z(aµ̃)

[
cos(ω) < · · ·S0 · · · > + i sin(ω) < · · ·P 3 · · · >

]tmQCD

GW

• since QCD  ↔ tmQCD equivalence holds between renormalized (continuum) Green 

functions (proved through GW regularization), evoking universality we claim that this is 
also true for renormalized (continuum) Green functions computed with any other 
lattice regularization; e.g. tmQCD with Wilson fermions

[
< · · · S0 · · · >R

]QCD
=

[
cos(ω) < · · ·S0 · · · >R + i sin(ω) < · · ·P 3 · · · >R

]tmQCD



Lattice tmQCD

• QCD ↔ tmQCD equivalence between bare Green functions with GW regularization

• QCD ↔ tmQCD equivalence carries over to renormalized quantities, due to mass 

independent renormalization schemes (i.e. S0  and P3 in both QCD and tmQCD have 
the same renormalization constant ZS = ZP = Z )

[
< · · · S0 · · · >

]QCD

GW
=

[
cos(ω) < · · ·S0 · · · > + i sin(ω) < · · ·P 3 · · · >

]tmQCD

GW

Z(aµ̃)
[

< · · · S0 · · · >
]QCD

GW
= Z(aµ̃)

[
cos(ω) < · · ·S0 · · · > + i sin(ω) < · · ·P 3 · · · >

]tmQCD

GW

• since QCD  ↔ tmQCD equivalence holds between renormalized (continuum) Green 

functions (proved with GW regularization), evoking universality we claim that this is 
also true for renormalized (continuum) Green functions computed with any other 
lattice regularization; e.g. tmQCD with Wilson fermions

[
< · · · S0 · · · >R

]QCD
=

[
cos(ω) < · · ·S0 · · · >R + i sin(ω) < · · ·P 3 · · · >R

]tmQCD

• QCD ↔ tmQCD equivalence amounts to operator transcriptions in lattice tmQCD 
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naive derivative
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• lattice tmQCD definition:  Wilson fermions + twisted mass term:

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + m0 + iµqτ
3γ5

]
ψ

= ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + M0 exp[iω0τ
3γ5]

]
ψ

Wilson term

• Wilson term cures the fermion doubling problem



Lattice tmQCD

• lattice tmQCD definition:  Wilson fermions + twisted mass term:

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + m0 + iµqτ
3γ5

]
ψ

= ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + M0 exp[iω0τ
3γ5]

]
ψ

bare 
standard 

mass

• bare standard mass renormalizes as in standard Wilson fermions:

mR = Zm0
[
m0 −mcr

]
= Z−1

S0

[
m0 −mcr

]



Lattice tmQCD

• lattice tmQCD definition:  Wilson fermions + twisted mass term:

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + m0 + iµqτ
3γ5

]
ψ

= ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + M0 exp[iω0τ
3γ5]

]
ψ

bare 
twisted 
mass
μq ↔μ

• bare twisted mass renormalizes multiplicatively, due 
to the exact tmQCD vector Ward identity:

µR = Zµ µq = Z−1
P µq

∇µ〈· · · V a,cons
µ · · · 〉 = −2 µq ε3ab 〈· · · P b · · · 〉



Lattice tmQCD

• lattice tmQCD definition:  Wilson fermions + twisted mass term:

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + m0 + iµqτ
3γ5

]
ψ

= ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + M0 exp[iω0τ
3γ5]

]
ψ

• Wilson term causes loss of twisted symmetries:  Pω, Tω

x = (x0,x) → x′ = (x0,−x)
A0(x) → A0(x′)
Ak(x) → −Ak(x′)

ψ(x) → γ0 exp
[
iωγ5τ

3
]
ψ(x′)

ψ̄(x) → ψ̄(x′) exp
[
iωγ5τ

3
]
γ0

• Pω:
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• lattice tmQCD definition:  Wilson fermions + twisted mass term:

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + m0 + iµqτ
3γ5

]
ψ

= ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + M0 exp[iω0τ
3γ5]

]
ψ

• Wilson term causes loss of twisted symmetries:  Pω, Tω

• Parity survives if combined either with flavour exchange (defined as PF1 , PF2) ...

ψ(x)→ i γ0 τ1 ψ(x′) ψ̄(x)→ −i ψ̄(x′) γ0 τ1

ψ(x)→ i γ0 τ2 ψ(x′) ψ̄(x)→ −i ψ̄(x′) γ0 τ2
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• lattice tmQCD definition:  Wilson fermions + twisted mass term:

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + m0 + iµqτ
3γ5

]
ψ

= ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + M0 exp[iω0τ
3γ5]

]
ψ

• Wilson term causes loss of twisted symmetries:  Pω, Tω

• ... or with a sigh flip of the twisted mass (defined as P  ⊗[ μ → - μ] )

ψ(x)→ i γ0 ψ(x′) ψ̄(x)→ −i ψ̄(x′) γ0

µq → − µq
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• lattice tmQCD definition:  Wilson fermions + twisted mass term:

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + m0 + iµqτ
3γ5

]
ψ

= ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + M0 exp[iω0τ
3γ5]

]
ψ

• Wilson term causes loss of twisted symmetries:  Pω, Tω

• ... or with a sigh flip of the twisted mass (defined as P  ⊗[ μ → - μ] )

ψ(x)→ i γ0 ψ(x′) ψ̄(x)→ −i ψ̄(x′) γ0

µq → − µq

• The same holds for time reversal:  TF1 , TF2, T  ⊗[ μ → - μ] are symmetries



Lattice tmQCD

• lattice tmQCD definition:  Wilson fermions + twisted mass term:

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + m0 + iµqτ
3γ5

]
ψ

= ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + M0 exp[iω0τ
3γ5]

]
ψ

• Wilson term causes loss of twisted vector symmetry:  SUV(2)ω; i.e. flavour symmetry is 
hard-broken (Wilson term) in tmQCD

• However it is not completely broken; upon setting θ1 = θ2 = 0, the subgroup UV3(1) 
survives (NB: ω-dependence drops out!)

ψ(x) → exp
[
− i

ω

2
γ5τ

3
]

exp
[
i
θa

2
τa

]
exp

[
i
ω

2
γ5τ

3
]

ψ(x)

ψ̄(x) → ψ̄(x) exp
[
i
ω

2
γ5τ

3
]

exp
[
− i

θa

2
τa

]
exp

[
− i

ω

2
γ5τ

3
]
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• lattice tmQCD definition:  Wilson fermions + twisted mass term:

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + m0 + iµqτ
3γ5

]
ψ

= ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + M0 exp[iω0τ
3γ5]

]
ψ

• Wilson term causes loss of twisted vector symmetry:  SUV(2)ω; i.e. flavour symmetry is 
hard-broken (Wilson term) in tmQCD

• However it is not completely broken; upon setting θ1 = θ2 = 0, the subgroup UV3(1) 
survives (NB: ω-dependence drops out!)

ψ → exp
[
i
θ3

2
τ3

]
ψ

ψ̄ → ψ̄ exp
[
− i

θ3

2
τ3

]



Lattice tmQCD

• lattice tmQCD definition:  Wilson fermions + twisted mass term:

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + m0 + iµqτ
3γ5

]
ψ

= ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + M0 exp[iω0τ
3γ5]

]
ψ

• this hard SUV(2)ω → UV3(1) breaking causes a lack of degeneracy between the neutral 
pion π0 and the two charged pions π±

• It is a discretization effect which vanishes in the continuum limit (SUV(2) restoration)

ψ → exp
[
i
θ3

2
τ3

]
ψ

ψ̄ → ψ̄ exp
[
− i

θ3

2
τ3

]
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• lattice tmQCD definition:  Wilson fermions + twisted mass term:

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + m0 + iµqτ
3γ5

]
ψ

= ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + M0 exp[iω0τ
3γ5]

]
ψ

• axial symmetry SUA(2)ω, broken softly by mass term M0,  also hard-broken by 
Wilson term in standard fashion

• also this symmetry is restored in the continuum and chiral limits

ψ(x) → exp
[
− i

ω

2
γ5τ

3
]

exp
[
i
θa

2
τaγ5

]
exp

[
i
ω

2
γ5τ

3
]

ψ(x)

ψ̄(x) → ψ̄(x) exp
[
i
ω

2
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3
]

exp
[
i
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]
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[
− i

ω

2
γ5τ

3
]
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• lattice tmQCD definition:  Wilson fermions + twisted mass term:

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + m0 + iµqτ
3γ5

]
ψ

= ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + M0 exp[iω0τ
3γ5]

]
ψ

• axial symmetry SUA(2)ω, broken softly by mass term M0,  also hard-broken by 
Wilson term in standard fashion

• also this symmetry is restored in the continuum and chiral limits

• However it is not completely broken in maximally tmQCD (ω=π/2); upon setting θ2 = 
θ3 = 0, the subgroup UA1(1) survives

ψ(x) → exp
[
− i

ω

2
γ5τ

3
]

exp
[
i
θa

2
τaγ5

]
exp

[
i
ω

2
γ5τ

3
]

ψ(x)

ψ̄(x) → ψ̄(x) exp
[
i
ω

2
γ5τ

3
]

exp
[
i
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2
τaγ5

]
exp

[
− i

ω

2
γ5τ

3
]
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• lattice tmQCD definition:  Wilson fermions + twisted mass term:

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + m0 + iµqτ
3γ5

]
ψ

= ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + M0 exp[iω0τ
3γ5]

]
ψ

• axial symmetry SUA(2)ω, broken softly by mass term M0,  also hard-broken by 
Wilson term in standard fashion

• also this symmetry is restored in the continuum and chiral limits

• However it is not completely broken in maximally tmQCD (ω=π/2); upon setting θ2 = 
θ3 = 0, the subgroup UA1(1) survives

ψ → exp
[
i
θ1

2
τ2

]
ψ

ψ̄ → ψ̄ exp
[
− i

θ1

2
τ2

]

NB: this is called an axial 
symmetry, ‘though it has a vector 
form, because it is softly broken by 
the twisted mass term!
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• lattice tmQCD definition:  Wilson fermions + twisted mass term:

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
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µ∇µ + m0 + iµqτ
3γ5

]
ψ

= ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
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µ∇µ + M0 exp[iω0τ
3γ5]

]
ψ

• axial symmetry SUA(2)ω, broken softly by mass term M0,  also hard-broken by 
Wilson term in standard fashion

• also this symmetry is restored in the continuum and chiral limits

• However it is not completely broken in maximally tmQCD (ω=π/2); upon setting θ2 = 
θ3 = 0, the subgroup UA1(1) survives

ψ → exp
[
i
θ1

2
τ2

]
ψ

ψ̄ → ψ̄ exp
[
− i

θ1

2
τ2

]

NB: analogously, for θ1 = θ3 = 0, 
obtain the subgroup UA2(1) 
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• Aftermath: we are left with the following symmetry structure:

UV3(1)⊗ UA1(1) ⊗ UA2(1) ≈ SU(2)
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Lattice tmQCD

• Aftermath: we are left with the following symmetry structure:

UV3(1)⊗ UA1(1) ⊗ UA2(1) ≈ SU(2)

Vector symmetry 
o f a l l tmQCD 
regularizations

A x i a l s y m m e t r i e s o f 
maximally tmQCD, broken 
by twisted mass term

• This is SU(2) with one “vector” and two “axial” generators. 

• Not surprising, since in the chiral limit standard and tmQCD Wilson regularizations 
coincide.

• Interpretation of symmetry as “vector” or “axial” depends on how the mass term is 
introduced in the action.



Shortcoming: 
loss of flavour 

symmetry



• it generates mass splittings between, say, neutral and charged pions

• it is a discretization effect, which should vanish in the continuum

• preliminary studies suggest that this is a big effect in the quenched approximation, but 
diminishes significantly in the  Nf = 2 unquenched case

• the quenched case offers an interesting playing-field for explorative studies of flavour 
breaking, as it is possible (and cheap) to compare, on the same ensemble, mesons with 
the following valence quark content:

• 2 twisted flavours from same isospin multiplet

• 2 twisted flavours from different isospin multiplets

• 2 untwisted flavours (the standard Wilson case, without flavour breaking)

• 1 twisted and 1 untwisted flavour

Flavour symmetry violation



• mass splittings between, say, neutral and charged Kaons

• 4 quenched flavours organized in two maximally twisted, mass degenerate doublets

• K+ made of an “up” and a “strange” twisted flavour

• K0 made of a “down” and a “strange” twisted flavour

• at the smallest lattice spacing, neutral-charged Kaon splitting is mK0 - mK+ ∼ ∼ 50 MeV 

A.M. Abdel-Rehim, et al., 
Phys.Rev.D74(2006)014507

Flavour symmetry violation

ψl =
(

u
d

)
ψh =

(
c
s

)
spectator

MtmQCD doublets

spectator

s ↔ -μ s ↔ -μ

u ↔ μ d ↔ -μ

K+ K+
K0K0



A.M. Abdel-Rehim, et al., 
Phys.Rev.D74(2006)014507

Flavour symmetry violation

• mass splittings between, say, neutral and charged Kaons

• 4 quenched flavours organized in two maximally twisted, mass degenerate doublets

• K+ made of an “up” and a “strange” twisted flavour

• K0 made of a “down” and a “strange” twisted flavour

• at the smallest lattice spacing, neutral-charged Kaon splitting is mK0 - mK+ ∼ ∼ 50 MeV 



Flavour symmetry violation

• mass splittings between, say, neutral and charged Kaons

• 4 quenched flavours organized in a maximally twisted and an untwisted doublet

• pseudoscalars made of twisted (u-d), untwisted (s-c) and mixed (s-d) valence quarks

• NB: the untwisted (s-c) case is the standard Wilson one, without flavour breaking

• comparison at a several lattice spacings, for quark masses “above” strangeness

ALPHA P.Dimopoulos, et al., 
NPB 776 (2007) 258

ψl =
(

u
d

)
ψh =

(
c
s

)

MtmQCD doublet QCD doublet

d ↔ -μ

u ↔ μ

d ↔ -μ

s ↔ m

c ↔ m

s ↔ m



Flavour symmetry violation

• mass splittings between, say, neutral and charged Kaons

• 4 quenched flavours organized in a maximally twisted and an untwisted doublet

• pseudoscalars made of twisted (u-d), untwisted (s-c) and mixed (s-d) valence quarks

• NB: the untwisted (s-c) case is the standard Wilson one, without flavour breaking

• comparison at a several lattice spacings, for quark masses “above” strangeness

ALPHA P.Dimopoulos, et al., 
NPB 776 (2007) 258



• further detailed unquenched studies are required 

• the main difficulty is an accurate and efficient computation of disconnected 
diagrams for neutral pions; cf. C. Michael et al. in various papers and conference 
proceedings

• result so far for Nf = 2 unquenched case is:

Flavour symmetry violation

1− mπ0

mπ+
∼ 0.2 @ a = 0.09fm

ETMC  Ph. Boucaud et al. Phys.Lett. B650 (2007) 304

ETMC  Ph. Boucaud et al. Comp. Phys. Comm. 179 (2008) 695


