
INTRODUCTION TO  tmQCD
AND ITS APPLICATIONS

to WMEs

STRONGnet Summer School
ZIF Bielefeld 

A. Vladikas
INFN - TOR VERGATA 

Bielefeld 
13-26/6/2011



tmQCD: advantages



1st advantage: 
IR zero-mode 
regularization



IR zero-mode regularization

• Wilson fermion matrix MW = DW + m0 has spurious zero-modes at small quark mass 
(lattice artefacts)

• In quenched simulations they cause exceptional configurations which impede 
simulations at masses lower than, say, half the strange quark mass; m0 ≤ ms / 2

• In un-quenched simulations the fermion determinant suppresses these zero-modes in 
MC, but an IR cutoff could still be helpful to the approach of the chiral limit

• tmQCD introduces an IR mass cutoff (the twisted mass!) which facilitates the approach 
to small mass regime

ψ̄ MW ψ =
(
ū d̄

) (
DW + m0 + iµγ5 0

0 DW + m0 − iµγ5

) (
u
d

)



IR zero-mode regularization

• Wilson fermion matrix MW = DW + mq has spurious zero-modes at small quark mass 
(lattice artefacts)

• In quenched simulations they cause exceptional configurations which impede 
simulations at masses lower than, say, half the strange quark mass; mq ≤ ms / 2

• In un-quenched simulations the fermion determinant suppresses these zero-modes in 
MC, but an IR cutoff could still be helpful to the approach of the chiral limit

• tmQCD introduces an IR mass cutoff (the twisted mass!) which facilitates the approach 
to small mass regime

ψ̄ MW ψ =
(
ū d̄

) (
DW + m0 + iµγ5 0

0 DW + m0 − iµγ5

) (
u
d

)

det MW = det
(

DW + m0 + iµγ5 0
0 DW + m0 − iµγ5

)

= det
[
(DW + m0)†(DW + m0) + µ2

]



IR zero-mode regularization

• Wilson fermion matrix M = DW + mq has spurious zero-modes at small quark mass 
(lattice artefacts)

• In quenched simulations they cause exceptional configurations which impede 
simulations at masses lower than, say, half the strange quark mass; mq ≤ ms / 2

• In un-quenched simulations the fermion determinant suppresses these zero-modes in 
MC, but an IR cutoff could still be helpful to the approach of the chiral limit

• tmQCD introduces an IR mass cutoff (the twisted mass!) which facilitates the approach 
to small mass regime
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2nd advantage: 
simplified 

renormalization



tmQCD and renormalization

• Wilson fermion renormalization may be complicated due to loss of chiral symmetry

• this may be simplified in tmQCD through judicious choices of the twist angle

• for the moment consider multiplicative renormalization of fermion operators; all Z’S 
are logarithmically divergent

• mass-independent renormalization schemes implied throughout

• since (Wilson) standard QCD and tmQCD coincide in the chiral limit (i.e. they both 
reduce to naive kinetic term + Wilson term) we have the same Z’S for both lattice 
theories 

• continuum operators (i.e. their correlation functions or MEs) are expressed in terms of 
Wilson lattice standard QCD and tmQCD:

[
Aa

µ

]
cont

= ZA [Aa
µ

]
QCD

+ O(a)

= cos(ω) ZA [Aa
µ

]
tmQCD

+ ε3ab sin(ω) ZV [V b
µ

]
tmQCD

+ O(a)

• NB: valid for isospin indices a,b =1,2

• same ZA in both regularizations

• m a x i m a l l y t m Q C D (ω=π/ 2 ) 
expression significantly simpler

a = 1, 2



tmQCD and renormalization

• Wilson fermion renormalization may be complicated due to loss of chiral symmetry

• this may be simplified in tmQCD through judicious choices of the twist angle

• for the moment consider multiplicative renormalization of fermion operators; all Z’S 
are logarithmically divergent

• mass-independent renormalization schemes implied throughout

• since (Wilson) standard QCD and tmQCD coincide in the chiral limit (i.e. they both 
reduce to naive kinetic term + Wilson term) we have the same Z’S for both lattice 
theories 

• continuum operators (i.e. their correlation functions or MEs) are expressed in terms of 
Wilson lattice standard QCD and tmQCD:

• NB: valid for isospin indices a,b =1,2

• same ZP in both regularizations

• tmQCD expression valid at all ω

[
P a

]
cont

= ZP [P a
]
QCD

+ O(a)

= ZP [P a
]
tmQCD

+ O(a)
a = 1, 2



tmQCD and renormalization

• For maximally tmQCD we thus have:

[
Aa

µ

]
cont

= ε3ab ZV [V b
µ

]
MtmQCD

+ O(a)
[
P a

]
cont

= ZP [P a
]
tmQCD

+ O(a)

• PCVC now reads:

ZV

∑

!x

∇µ
x 〈V 1

µ (x) P 2(0) 〉tmQCD = −2µq

∑

!x

〈P 1
µ(x) P 2(0) 〉tmQCD

• insert complete set of states, take large time separations etc:

• NB: the rhs is RGI

• with the point-split, conserved vector current the original VWI is exact

mπ ZV 〈0|V0(x)|π〉tmQCD = 2µq 〈0|P (0)|π〉tmQCD



tmQCD and renormalization

• use  maximally tmQCD expression for axial current ...

[
Aa

µ

]
cont

= ε3ab ZV [V b
µ

]
MtmQCD

+ O(a)

• standard definition of pion decay constant is:

fπ =
1

mπ
〈0|A0(0)|π〉cont

• .... to get:
fπ = lim

a→0

ZV

mπ
〈0|V0(0)|π〉tmQCD

• use  PCVC in maximally tmQCD ...

• .... to get:

fπ = lim
a→0

2µq

m2
π

〈0|P (0)|π〉tmQCD

mπ ZV 〈0|V0(x)|π〉tmQCD = 2µq 〈0|P (0)|π〉tmQCD



tmQCD and renormalization

• The determination of the pion decay constant with standard Wilson fermions requires 
knowledge of the normalization constant of the axial current

fπ = lim
a→0

2µq

m2
π

〈0|P (0)|π〉tmQCD

• with maximally tmQCD this is not the case

• a source of systematic error has been eliminated! 

fπ = lim
a→0

1
mπ

ZA 〈0|A0|π〉QCD



• the chiral condensate

• multiplicatively renormalizable with chirally symmetric regularization

• Without chiral symmetry, the condensate mixes with the identity operator

• Other terms, quadratically and linearly divergent, must also be subtracted. They are 
proportional to the quark mass and vanish in the chiral limit.

• Power divergences are “vigorous” and would better be avoided (determination of their 
finite coefficients - e.g. C(g02) - is a very difficult task in practice, requiring high orders 
of improvement).

< ψ̄ψ >R = Zs0 < ψ̄ψ >

< ψ̄ψ >R = Zs0

[
< ψ̄ψ > +

C(g2
0)

a3

]

ZS is log.ly divergent

tmQCD and renormalization

< S0 > = < ψ̄ψ >

• the chiral condensate

• additive renormalization (cubic power subtraction) with Wilson fermions



• recall  that the renormalized condensate insertion is computed from the bare tmQCD 
theory as:

• for twist angle ω = π/2 this means that in tmQCD the condensate is obtained from 
the mult.ly renormalizable pseudoscalar density 

tmQCD and renormalization

< ψ̄ψ > = iZP [< P 3 > ]tmQCD

[
< · · · S0 · · · >R

]QCD
=

[
cos(ω) < · · ·S0 · · · >R + i sin(ω) < · · ·P 3 · · · >R

]tmQCD

P 3
R = [ψ̄τ3γ5ψ ]R = ZP P 3

• the pseudoscalar operator is multiplicatively renormalizable:



• recall  that the renormalized condensate insertion is computed from the bare tmQCD 
theory as:

• for twist angle ω = π/2 this means that in tmQCD the condensate is obtained from 
the mult.ly renormalizable pseudoscalar density 

tmQCD and renormalization

< ψ̄ψ > = iZP [< P 3 > ]tmQCD

[
< · · · S0 · · · >R

]QCD
=

[
cos(ω) < · · ·S0 · · · >R + i sin(ω) < · · ·P 3 · · · >R

]tmQCD

P 3
R = [ψ̄τ3γ5ψ ]R = ZP P 3

• the pseudoscalar operator is multiplicatively renormalizable:

• above is valid in the chiral limit

• tmQCD: logarithmic divergence; standard Wilson: cubic divergence

• maximal tmQCD eliminates the power divergence - but this is a chiral limit 
renormalization pattern



• in the chiral limit

tmQCD and renormalization

< ψ̄ψ > = iZP [< P 3 > ]tmQCD

• off the chiral limit 

〈ψ̄ψ〉 = i ZP

[
〈P 3〉tmQCD +

µqCP (g2
0)

a2
+ · · ·

]

• these power (quadratic) subtractions, though less vigorous than the standard QCD 
cubic ones,  impede in practice the calculation of the chiral condensate

• similar and very important simplifications of the renormalization patterns of 4-fermion 
operators will be dealt with in lesson-3



3rd advantage: 
automatic improvement



Automatic improvement

• Start with a crash-course on Symanzik improvement for a generic lattice action

• close to continuum, lattice action described in terms of a local continuum effective 
theory

• each term L0, , L1 , L2 , ... are dim-4,5,6, ... operators in the continuum; think of them as 

regularized in some scheme (MS, very fine lattice spacing, ...) and renormalized

• these operators must have the symmetries of the lattice action on the lhs.

• constraining ourselves to on-shell cases (i.e. fields satisfy the equations of motion - 
Dirac etc.) we have a smaller basis of independent operators

•  L0 is the continuum action - continuum QCD,

•  L1 is proportional to the “magnetic” term  ψ σμν Fμν ψ - gives rise to Clover term 

Seff = S0 + a S1 + a2 S2 + · · ·

=
∫

d4xL0 + a

∫
d4xL1 + a2

∫
d4xL2 + · · ·



Automatic improvement

• this models the cutoff effects generated by the lattice action; how about those 
generated by operator insertions in correlation functions? 

• Consider renormalized connected n-point correlation function of a composite field Φ:

Φeff = Φ0 + a Φ1 + a2 Φ2 + · · ·

• in the local effective theory the renormalized field  ZΦ Φ is represented by a effective 
field

G(x1, · · · , xn) = [ZΦ]n 〈 Φ(x1) · · · Φ(xn) 〉

• each term Φ0, , Φ1 , Φ2 , ... are dim-d,d+1,d+2, ... operators in the continuum

•  Φeff, Φ0, , Φ1 , Φ2 , ... share the same symmetries

• if Φ0 is the (d=3) axial current Aμ(x), then Φ1 is proportional to ∂μP(x) and m Aμ(x)



Automatic improvement

• in terms of the effective theory, the cutoff effect of the renormalized Green functions 
are written as follows:

G(x1, · · · , xn) = [ZΦ]n 〈 Φ(x1) · · ·Φ(xn) 〉

= 〈 Φeff(x1) · · ·Φeff(xn) 〉

=
1
Z

∫
Dµ(ψ̄, ψ, U) Φeff(x1) · · ·Φeff(xn) exp(−Seff)



Automatic improvement

• in terms of the effective theory, the cutoff effect of the renormalized Green functions 
are written as follows:

• first line: lattice expectation value w.r.t. lattice action

G(x1, · · · , xn) = [ZΦ]n 〈 Φ(x1) · · ·Φ(xn) 〉

= 〈 Φeff(x1) · · ·Φeff(xn) 〉

=
1
Z

∫
Dµ(ψ̄, ψ, U) Φeff(x1) · · ·Φeff(xn) exp(−Seff)



Automatic improvement

• in terms of the effective theory, the cutoff effect of the renormalized Green functions 
are written as follows:

• first line: lattice expectation value w.r.t. lattice action

• second, third lines: continuum expectation value w.r.t. effective action

G(x1, · · · , xn) = [ZΦ]n 〈 Φ(x1) · · ·Φ(xn) 〉

= 〈 Φeff(x1) · · ·Φeff(xn) 〉

=
1
Z

∫
Dµ(ψ̄, ψ, U) Φeff(x1) · · ·Φeff(xn) exp(−Seff)



Automatic improvement

• recall Symanzik expansion for effective action and composite field:

• the Symanzik expansion becomes

Seff = S0 + a S1 + a2 S2 + · · ·

=
∫

d4xL0 + a

∫
d4xL1 + a2

∫
d4xL2 + · · ·

Φeff = Φ0 + a Φ1 + a2 Φ2 + · · ·

G(x1, · · · , xn) =
1
Z

∫
Dµ(ψ̄, ψ, U) Φeff(x1) · · ·Φeff(xn) exp(−Seff)

= 〈 Φ0(x1) · · ·Φ0(xn) 〉0

− a

∫
d4y〈 Φ0(x1) · · ·Φ0(xn) L1(y) 〉0

+ a
∑

k

〈 Φ0(x1) · · ·Φ1(xk) · · ·Φ0(xn) 〉0 +O(a2)

• NB: continuum expectation values on rhs, weighted with L0,



Automatic improvement

• the Symanzik expansion becomes

G(x1, · · · , xn) =
1
Z

∫
Dµ(ψ̄, ψ, U) Φeff(x1) · · ·Φeff(xn) exp(−Seff)

= 〈 Φ0(x1) · · ·Φ0(xn) 〉0

− a

∫
d4y〈 Φ0(x1) · · ·Φ0(xn) L1(y) 〉0

+ a
∑

k

〈 Φ0(x1) · · ·Φ1(xk) · · ·Φ0(xn) 〉0 +O(a2)

• generates contact terms; may be absorbed in redefinition of Φ1

• if we redefine the lattice action, by adding to it a discretization of the d=5 magnetic 
term (i.e. the Clover term) , and the lattice field, by adding to it the d+1 counter-term, 
then the lattice correlation function has no O(a) corrections

• these counter-terms have coefficients csw(g02) and cΦ(g02) which must be tuned

• this is the standard Symanzik improvement programme



Automatic improvement

• NB: the fully twisted case ω = π/2 is of particular interest. Classically we have:

L = ψ̄
[

/D + M exp[i
π

2
τ3γ5]

]
ψ = ψ̄

[
/D + i µ τ3 γ5

]
ψ

• the lattice version requires introduction of the Wilson term but also of the critical 
standard mass mcr in order to ensure full twist

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + mcr + iµqτ
3γ5

]
ψ

• NB: the concept of twist angle at the quantum level requires renormalized masses:

tan(ω) =
µR

mR
=

Zµ µq

Zm [m0 −mcr]

ω =
π

2
↔ m0 = mcr



• the study of discretization effects of lattice observables is based on the Symanzik 
expansion 

• the lattice  action close to the continuum is described in terms of an effective theory 

• for the fully twisted lattice action

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + mcr + iµqτ
3γ5

]
ψ

• the Symanzik expansion counter-terms are:

L0 = ψ̄
[

/D + i µR τ3 γ5

]
ψ

L1 = i csw (ψ̄ σ · F ψ) + cµ µ2
R (ψ̄ψ)

• the Symanzik expansion for a lattice field operator is:

ΦLatt = Φ0 + aΦ1 + · · ·

Automatic improvement

Seff = S0 + a S1 + a2 S2 + · · ·

=
∫

d4xL0 + a

∫
d4xL1 + a2

∫
d4xL2 + · · ·



• the study of discretization effects of lattice observables is based on the Symanzik 
expansion 

• the lattice  action close to the continuum is described in terms of an effective theory 

• for the fully twisted lattice action

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + mcr + iµqτ
3γ5

]
ψ

• the Symanzik expansion counter-terms are:

L0 = ψ̄
[

/D + i µR τ3 γ5

]
ψ

L1 = i csw (ψ̄ σ · F ψ) + cµ µ2
R (ψ̄ψ)

• the Symanzik expansion for a lattice field operator is:

ΦLatt = Φ0 + aΦ1 + · · ·
dimension d

Automatic improvement

Seff = S0 + a S1 + a2 S2 + · · ·

=
∫

d4xL0 + a

∫
d4xL1 + a2

∫
d4xL2 + · · ·



• the study of discretization effects of lattice observables is based on the Symanzik 
expansion 

• the lattice  action close to the continuum is described in terms of an effective theory 

• for the fully twisted lattice action

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + mcr + iµqτ
3γ5

]
ψ

• the Symanzik expansion counter-terms are:

L0 = ψ̄
[

/D + i µR τ3 γ5

]
ψ

L1 = i csw (ψ̄ σ · F ψ) + cµ µ2
R (ψ̄ψ)

• the Symanzik expansion for a lattice field operator is:

ΦLatt = Φ0 + aΦ1 + · · ·
dimension d dimension d+1

Automatic improvement

Seff = S0 + a S1 + a2 S2 + · · ·

=
∫

d4xL0 + a

∫
d4xL1 + a2

∫
d4xL2 + · · ·



• automatic improvement is based on the following field transformations

• discrete “chiral” transformations R51 :

• lattice action terms transform as R51  eigenstates

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + mcr + iµqτ
3γ5

]
ψ

ψ̄
[1
2
γµ(∇µ +∇∗

µ)
]
ψ

ψ̄
[1
2
ar∇∗

µ∇µ

]
ψ

ψ → i γ5 τ1 ψ

ψ̄ → ψ̄ i γ5 τ1

ψ̄ mcrψ

ψ̄
[
iµqτ

3γ5

]
ψ

L− terms

+

+

−

−
−

R1
5

Automatic improvement



• automatic improvement is based on the following field transformations

• operator dimensionality transformations D :

• lattice action terms transform as D  eigenstates

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + mcr + iµqτ
3γ5

]
ψ

ψ̄
[1
2
γµ(∇µ +∇∗

µ)
]
ψ

ψ̄
[1
2
ar∇∗

µ∇µ

]
ψ

ψ̄ mcrψ

ψ̄
[
iµqτ

3γ5

]
ψ

L− terms

+

+

−

−−
−

R1
5

Uµ(x) → U†
µ(−x− aµ̂)

ψ(x) → exp[3iπ/2]ψ(−x)
ψ̄(x) → ψ̄(−x) exp[3iπ/2]

−
−

+
D

Automatic improvement



• automatic improvement is based on the following field transformations

• twisted mass sign flip μ → −μ

• lattice action terms transform as sign flip  eigenstates

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + mcr + iµqτ
3γ5

]
ψ

ψ̄
[1
2
γµ(∇µ +∇∗

µ)
]
ψ

ψ̄
[1
2
ar∇∗

µ∇µ

]
ψ

ψ̄ mcrψ

ψ̄
[
iµqτ

3γ5

]
ψ

L− terms

+

+

−

−−
−

R1
5

−
−

+
D µ→ −µ

+
+
+
−

• NB: massive theory invariant under R51  ⊗ D ⊗ [μ → −μ]

Automatic improvement



• the lowest- order Symanzik expansion  for the vev of an operator Φ is:

• the LHS is a lattice vev, determined by the lattice fully twisted action

• for an operator Φ with positive R51 parity and even dimension d, the LHS is invariant 
under R51  ⊗ D ⊗ [μ → −μ]

• also the RHS must be invariant under R51  ⊗ D ⊗ [μ → −μ]

• the RHS operators and vev are continuum quantities determined by the continuum 
tmQCD action with positive R51 parity,

L0 = ψ̄
[

/D + i µR τ3 γ5

]
ψ

L1 = i csw (ψ̄ σ · F ψ) + cµ µ2
R (ψ̄ψ)

• the continuum operator Φ0 has positive R51 parity and even dimension d

• the continuum operator Φ1 has odd dimension d+1 and therefore negative R51 parity 

• thus < Φ1 >0 vanishes as it is R51 -odd, weighted by an R51 -even action 

Automatic improvement

L0

L0

< Φ > = < Φ0 >0 + a < Φ1 >0 −a

∫
d4y < Φ0 L1 >0



• the lowest- order Symanzik expansion  for the vev of an operator Φ is:

• the LHS is a lattice vev, determined by the lattice fully twisted action

• for an operator Φ with positive R51 parity and even dimension d, the LHS is invariant 
under R51  ⊗ D ⊗ [μ → −μ]

• also the RHS must be invariant under R51  ⊗ D ⊗ [μ → −μ]

• the RHS operators and vev are continuum quantities determined by the continuum 
tmQCD action with positive R51 parity,

L0 = ψ̄
[

/D + i µR τ3 γ5

]
ψ

L1 = i csw (ψ̄ σ · F ψ) + cµ µ2
R (ψ̄ψ)

• the continuum O(a) counter-term of the action is        , with negative R51 parity

• thus                         vanishes as it is R51 -odd, weighted by an R51 -even action 

• fully twisted QCD action is not improved, but has automatically improved vev !!!!!

Automatic improvement

L0

L0

L1

< Φ > = < Φ0 >0 + a < Φ1 >0 −a

∫
d4y < Φ0 L1 >0

< Φ0L1 >0



• the lowest- order Symanzik expansion  for the vev of an operator Φ is:

• NB (subtlety): the proof rests on the vanishing of the continuum vev

Automatic improvement

L0

< Φ > = < Φ0 >0 + a < Φ1 >0 −a

∫
d4y < Φ0 L1 >0

< Φ0L1 >0< Φ1 >0

• they vanish due to their breaking of the discrete “chiral” symmetry R51, which is a 
symmetry of the continuum tmQCD

• BUT: is this true, i.e. do these “chiral condensates” vanish in a theory with SSB?

• YES! because the term generating SSB is the twisted mass term, while O(a) counter-
terms are generated by the “chirally orthogonal” Wilson term

L0 = ψ̄
[

/D + i µR τ3 γ5

]
ψ

L1 = i csw (ψ̄ σ · F ψ) + cµ µ2
R (ψ̄ψ)



• stated differently, the discrete “chiral symmetry” R51 is a specific vector rotation 
UV2(1), which does not generate SSB

Automatic improvement



• stated differently, the discrete “chiral symmetry” R51 is a specific vector rotation 
UV2(1), which does not generate SSB

• recall twisted vector symmetry (isospin) is SUv(2)ω broken to UV3(1) by Wilson term

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + mcr + iµqτ
3γ5

]
ψ

Automatic improvement



• stated differently, the discrete “chiral symmetry” R51 is a specific vector rotation 
UV2(1), which does not generate SSB

• recall twisted vector symmetry (isospin) is SUv(2)ω broken to UV3(1) by Wilson term

• at ω = π/2 different subgroups of SUv(2)π/2 remain (un)broken by either the 
(twisted) mass term or the Wilson term

• UV1(1) and UV2(1): unbroken by μ-mass term; hard-broken by Wilson and mcr-terms

ψ → exp
[
i
α1

2
γ5τ

2
]

ψ

ψ̄ → ψ̄ exp
[
i
α1

2
γ5τ

2
]

• this is UV1(1) ; similarly for UV2(1)

• i.e. vector symmetry in fully tmQCD 
has an axial form

• it is a vector (flavour) symmetry as it  
is preserved by the mass term

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + mcr + iµqτ
3γ5

]
ψ

Automatic improvement



• stated differently, the discrete “chiral symmetry” R51 is a specific vector rotation 
UV2(1), which does not generate SSB

• recall twisted vector symmetry (isospin) is SUv(2)ω broken to UV3(1) by Wilson term

• at ω = π/2 different subgroups of SUv(2)π/2 remain (un)broken by either the 
(twisted) mass term or the Wilson term

• UV1(1) and UV2(1): unbroken by μ-mass term; hard-broken by Wilson and mcr-terms

ψ → exp
[
i
α1

2
γ5τ

2
]

ψ

ψ̄ → ψ̄ exp
[
i
α1

2
γ5τ

2
]

• this is UV1(1) ; similarly for UV2(1)

• for α2 = π, UV2(1) reduces to R51

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + mcr + iµqτ
3γ5

]
ψ

Automatic improvement



• stated differently, the discrete “chiral symmetry” R51 is a specific vector rotation 
UV2(1), which does not generate SSB

• recall twisted vector symmetry (isospin) is SUv(2)ω broken to UV3(1) by Wilson term

• at ω = π/2 different subgroups of SUv(2)π/2 remain (un)broken by either the 
(twisted) mass term or the Wilson term

• UV1(1) and UV2(1): unbroken by μ-mass term; hard-broken by Wilson and mcr-terms

ψ → exp
[
i
α1

2
γ5τ

2
]

ψ

ψ̄ → ψ̄ exp
[
i
α1

2
γ5τ

2
]

• NB: in simulations we must take extra 
care that the continuum limit is 
approached before the chiral limit; the 
chiral phase of the vacuum must be 
driven by the mass term and not by 
the Wilson term

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + mcr + iµqτ
3γ5

]
ψ

Automatic improvement

µ > aΛ2
QCD



• numerical evidence supports automatic improvement 

• result shown is quenched

Automatic improvement

χLF Collab. K. Jansen, M. Papiutto, 
A. Shindler,C. Urbach, I. Wetzorke

JHEP09 (2005) 071     



• numerical evidence supports automatic improvement 

• result shown is unquenched Nf = 2

Automatic improvement

ETMC Collab.,C. Urbach, PoS(LAT2007) 022



Concluding remarks



Concuding remarks

• tmQCD has several advantages, making it an efficient alternative to GW-type 
computations with dynamical fermions; novel results have been obtained at Nf = 2

• the simplest quantities (pseudoscalar masses, decay constants, quark masses etc.) have 
currently been measured, close to the “physical regime” (lightish pions ∼ 300MeV)

• it is possible to overcome the limitation of two degenerate flavours in the formalism 
without losing tmQCD advantages; Nf = 2+1+1 simulations are well under way

• the main drawback is the lack of flavour symmetry at finite UV cutoff

• early quenched studies have shown that these effects vanish in the ocntinuum

• detailed unquenched studies are still to be carried out; the overall qualitative 
behaviour points out to the vanishing of such effects in the continuum

• one must also be aware that tuning of the theory bare parameters to maximal twist is 
an issue requiring extra care (not covered here)

• the phase diagramme of tmQCD has also been under study in order to gain further 
insight to the issues related to symmetry breaking and their restoration in the 
continuum (not covered here)

• an important theoretical issue is the combination of tmQCD with Schrödinger 
Functional: S. Sint PoS (LAT2005) 235 (not covered here)


