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tmQCD for WMEs:
the BK paradigm



εK, BK and the 
Unitarity Triangle 



ΔS=2 transitions: εK

can also be expressed in terms of neutral meson oscillations:
dominant EW process is FCNC (2 W exchange)
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indirect CP-violation

εK =
A[KL → (ππ)I=0]

A[KS → (ππ)I=0]
= [2.282(17) × 10−3] exp(iπ/4)

K0 − K̄0

lowest order EW 
contribution (no QCD)

can perform loop integration exactly (for 
small quark external momenta and masses)



ΔS=2 transitions: εK
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Q∆S=2 = [s̄γµ(1− γ5)d] [s̄γµ(1− γ5)d] ≡ OVV+AA −OVA+AV

effective Hamiltonian

effective Hamiltonian

4-fermion operator

start with the EW theory (no QCD yet)
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ΔS=2 transitions: εK

Q∆S=2 = [s̄γµ(1− γ5)d] [s̄γµ(1− γ5)d] ≡ OVV+AA −OVA+AV

effective Hamiltonian

effective Hamiltonian

4-fermion operator

F0 = λ2
cS0(xc) + λ2

t S0(xt) + 2λcλtS0(xc, xt)

S0(xc) S0(xt) S0(xc, xt)
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ΔS=2 transitions: εK

effective Hamiltonian

• β0, β1 are NLO RG-running coefficients of Callan-Symanzik beta function

• γ0, γ1 are NLO RG-running coefficients of 4-fermion operator anomalous dimension
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• add QCD interactions:  must consider MEs between hadronic (K-meson) states

• cannot calculate ME in perturbation theory (at hadronic scales QCD coupling is large)

• OPE factorizes long- and short-distance effects; below charm scale we have:

• η1, η2 and η3 are functions of the various 
thresholds mt, mc, mb, and MW

• g(μ) is the renormalized QCD coupling

• QRΔS=2(μ) is the renormalized 4-fermion 
operator
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ΔS=2 transitions: εK

effective Hamiltonian

• add QCD interactions:  must consider MEs between hadronic (K-meson) states

• cannot calculate ME in perturbation theory (at hadronic scales QCD coupling is large)

• OPE factorizes long- and short-distance effects; below charm scale we have:

• quark mass dependence cancels out in product of η-functions and S0- functions 

• renormalization scale μ-dependence cancels out between WME and RG-coefficient

• the WME <K|QRΔS=2(μ)|K> between K-meson states is the long-distance NP-quantity which 
must be computed on the lattice

• the rest is the OPE Wilson coefficient (short-distance, perturbative object)
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ΔS=2 transitions: εK

effective Hamiltonian

• OPE factorizes long- and short-distance effects; below charm scale we have:

• for historical and technical reasons, instead of <K|QRΔS=2(μ)|K>, the bag parameter is used:
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ḡ(µ)2

4π

)−γ0/(2β0) {
1 +
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ΔS=2 transitions: εK

effective Hamiltonian

• How is BK connected with εK?

• the phase of εK is given by:

• experimentally:

εK = exp(iφε) sin(φε)
[![〈K̄0|H∆S=2

eff |K0〉]
∆MK

+
!(A0)
$(A0)

]

φε = arctan
∆MK

∆ΓK/2

• ΔMK : mass difference between long- and short-lived neutral Kaons

• ΔΓK : decay width difference between long- and short-lived neutral Kaons

• A0 : amplitude of K → ππ(I=0) decay

|εK | = 2.280(13)× 10−3 ,

φε = 43.51(5)◦ ,

∆MK = 3.491(9)× 10−12 MeV ,

∆ΓK = 7.335(4)× 10−15 GeV ,



ΔS=2 transitions: εK
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BK basics 



operator

B̂K =

〈K̄0|Ô∆S=2|K0〉
8

3
F2

K
m2

K

Ô∆S=2 = [s̄(x) γL
µ d(x)] [s̄(x) γL

µ d(x)]
= OV V +AA + OV A+AV

BK − basics



operator

P-even, contributes to BK

B̂K =

〈K̄0|Ô∆S=2|K0〉
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OV V +AA = [s̄(x) γµ d(x)] [s̄(x) γµ d(x)] + [s̄(x) γµγ5 d(x)] [s̄(x) γµγ5 d(x)]

BK − basics



operator

P-even, contributes to BK

B̂K =

〈K̄0|Ô∆S=2|K0〉
8
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F2

K
m2

K

Ô∆S=2 = [s̄(x) γL
µ d(x)] [s̄(x) γL

µ d(x)]
= OV V +AA + OV A+AV

OV V +AA = [s̄(x) γµ d(x)] [s̄(x) γµ d(x)] + [s̄(x) γµγ5 d(x)] [s̄(x) γµγ5 d(x)]

OV A+AV = [s̄(x) γµ d(x)] [s̄(x) γµγ5 d(x)] + [s̄(x) γµγ5 d(x)] [s̄(x) γµ d(x)]

P-odd, no BK contribution

BK − basics



BK − a renormalisation classic

In the presence of explicit chiral symmetry breaking four-fermion operators of 
different chiralities mix under renormalisation.

Martinelli 1984; Bernard, Draper, (Hockney), Soni 1987, 1998; 
Gupta et al. 1993; Donini et al. 1999

O
∆S=2 = [(s̄γµd)(s̄γµd) + (s̄γµγ5d)(s̄γµγ5d)

︸ ︷︷ ︸

OVV+AA

] − [(s̄γµd)(s̄γµγ5d) + (s̄γµγ5d)(s̄γµd)
︸ ︷︷ ︸

OVA+AV

]
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BK − a renormalisation classic

In the presence of explicit chiral symmetry breaking four-fermion operators of 
different chiralities mix under renormalisation.

Martinelli 1984; Bernard, Draper, (Hockney), Soni 1987, 1998; 
Gupta et al. 1993; Donini et al. 1999

O
∆S=2 = [(s̄γµd)(s̄γµd) + (s̄γµγ5d)(s̄γµγ5d)

︸ ︷︷ ︸

OVV+AA

] − [(s̄γµd)(s̄γµγ5d) + (s̄γµγ5d)(s̄γµd)
︸ ︷︷ ︸

OVA+AV

]

Vanishes if chiral symmetry is preserved
(at least partially)

ŌVV+AA = lim
a→0

ZVV+AA(g2
0, aµ)

[

OVV+AA(a) +
4

∑
k=1

∆k(g2
0)Ok(a)

]

Vanishes for staggered, GW, DW fermions



BK − a renormalisation classic

In the presence of explicit chiral symmetry breaking four-fermion operators of 
different chiralities mix under renormalisation.

Martinelli 1984; Bernard, Draper, (Hockney), Soni 1987, 1998; 
Gupta et al. 1993; Donini et al. 1999

O
∆S=2 = [(s̄γµd)(s̄γµd) + (s̄γµγ5d)(s̄γµγ5d)

︸ ︷︷ ︸

OVV+AA

] − [(s̄γµd)(s̄γµγ5d) + (s̄γµγ5d)(s̄γµd)
︸ ︷︷ ︸
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]
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]

Protected from mixing by discrete symmetries C P S(s ↔ d)



BK − a renormalisation classic

Subtractions flaw the quality of Wilson fermion results

L.  Lellouch Nucl.Phys.Proc.Suppl.94(2001)142

There are two important sources of 
systematic error which would better be 
r e m o v e d i f W i l s o n f e r m i o n B K 
determinations are to be on the same 
footing as the others:
1.  Additive renormalization; 
2. O(a) discretization errors



Getting rid of mixing

Straightforward option: preserve chiral symmetry ⎯ possibly exactly.

Wilson 1: axial Ward identity (3-point function with OVV+AA → 4-point function 
with OVA+AV).

Wilson 2: tmQCD (3-point function with OVA+AV).

tmQCD bonus: push safely towards low quark masses in quenched simulations.

ALPHA Frezzotti, Grassi, Sint & Weisz, JHEP08(2001)058

ALPHA Guagnelli, Heitger, Pena, Sint, A.V. JHEP 03 (2006) 088

Palombi, Pena, Sint JHEP 03 (2006) 089

ALPHA Dimopoulos, Heitger, Palombi, Pena, Sint, A.V. NPB 749 (2006) 69

D.Becirevic et al. Phys.Lett.B487(2000)74; Eur.Phys.J.C37(2004)315



BK and tmQCD



BK renormalization: four flavours

• four-fermion operator renormalization is best studied in general terms: we start with an 
operator with four distinct flavours, work out its renormalization properties and in the end 
identify the four flavours with physical ones.

QVV+AA = [ψ̄1 γµ ψ2][ψ̄3 γµ ψ4] + [ψ̄1 γµγ5 ψ2][ψ̄3 γµγ5 ψ4] + (2↔ 4)

P21 = ψ̄2 γ5 ψ1 P43 = ψ̄4 γ5 ψ3



〈 P21 QVV+AA P43 〉

• four-fermion operator renormalization is best studied in general terms: we start with an 
operator with four distinct flavours, work out its renormalization properties and in the end 
identify the four flavours with physical ones.

• with these definitions we can construct a correlation function with the same contractions as 
the 3-pt. function of BK

QVV+AA = [ψ̄1 γµ ψ2][ψ̄3 γµ ψ4] + [ψ̄1 γµγ5 ψ2][ψ̄3 γµγ5 ψ4] + (2↔ 4)

P21 = ψ̄2 γ5 ψ1 P43 = ψ̄4 γ5 ψ3

0 txty

1

2

3

4

BK renormalization: four flavours



• with these definitions we can construct a correlation function with the same contractions as 
the 3-pt. function of BK

QVV+AA = [ψ̄1 γµ ψ2][ψ̄3 γµ ψ4] + [ψ̄1 γµγ5 ψ2][ψ̄3 γµγ5 ψ4] + (2↔ 4)

P21 = ψ̄2 γ5 ψ1 P43 = ψ̄4 γ5 ψ3

• this object can be worked out, say, in tmQCD and then fields 1 and 3 are “identified” with 
the strange quark while fields 2 and 4 are “identified” with the down quark 

• the flavour exchange 2 ↔ 4 in the operator ensures that all Wick contractions are 

reproduced correctly

• four-fermion operator renormalization is best studied in general terms: we start with an 
operator with four distinct flavours, work out its renormalization properties and in the end 
identify the four flavours with physical ones.
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BK renormalization: four flavours

〈 P21 QVV+AA P43 〉



BK renormalization and tmQCD

• we must now establish the relation between tmQCD and standard QCD operators

• consider chiral rotations which are independent for each flavour

ψf → exp
[
iγ5

αf

2

]
ψf ψ̄f → ψ̄f exp

[
iγ5

αf

2

]
f = 1, · · · , 4



BK renormalization and tmQCD

• we must now establish the relation between tmQCD and standard QCD operators

• consider chiral rotations which are independent for each flavour

• NB: these are not standard tmQCD rotations; the latter have an isospin τ3 matrix

• they are called Osterwalder-Seiler rotations

ψf → exp
[
iγ5

αf

2

]
ψf ψ̄f → ψ̄f exp

[
iγ5

αf

2

]
f = 1, · · · , 4



BK renormalization and tmQCD
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• consider chiral rotations which are independent for each flavour
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BK renormalization and tmQCD

• we must now establish the relation between tmQCD and standard QCD operators

• consider chiral rotations which are independent for each flavour

• we must chose the angles so as to kill the cosine term on the rhs

• in this way the QCD quantity is computed in terms of a parity-odd tmQCD operator

• this ensures multiplicative renormalizability

• can such choices be made in a way that preserves the QCD-tmQCD equivalence?

• can we also ensure automatic improvement?

• NB: these are not standard tmQCD rotations; the latter have an isospin τ3 matrix

• they are called Osterwalder-Seiler rotations

• under this change of basis, the relation between standard QCD and tmQCD operators is 
[
QVV+AA

]QCD
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(α1 − α2 + α3 − α4

2

) [
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BK renormalization and tmQCD

• we must now establish the relation between tmQCD and standard QCD operators

• consider chiral rotations which are independent for each flavour

• we would like to satisfy all 3 requirements:

• “kill” the cosine; i.e. all four rotations angles sum to ±π/2

• ensure automatic improvement; i.e. each rotation angle is ±π/2

• angles have ± relative signs so that they can be organized in τ3 isospin doublets

• this is impossible!

• NB: these are not standard tmQCD rotations; the latter have an isospin τ3 matrix

• they are called Osterwalder-Seiler rotations

• under this change of basis, the relation between standard QCD and tmQCD operators is 
[
QVV+AA

]QCD

R

= cos
(α1 − α2 + α3 − α4

2

) [
QVV+AA

]tmQCD

R

− i sin
(α1 − α2 + α3 − α4

2

) [
QVA+AV

]tmQCD

R

C.Pena, S.Sint, A.V. , JHEP09(2004)069

ψf → exp
[
iγ5

αf

2

]
ψf ψ̄f → ψ̄f exp

[
iγ5

αf

2

]
f = 1, · · · , 4



BK renormalization and tmQCD

• the QCD-tmQCD equivalence is preserved only with non singlet rotations; i.e. we need an 
isospin τ3 matrix in the mass term of the action and isospin rotations

• the four flavours must be organized in tmQCD doublets 

• FIRST POSSIBILITY: α1 = α3 = 0 and α2 = α4 = π/2

• this corresponds to standard lattice QCD for strange quark and tmQCD for up/down quark

[
QVV+AA

]QCD

R

= cos
(α1 − α2 + α3 − α4

2

) [
QVV+AA

]tmQCD

R

− i sin
(α1 − α2 + α3 − α4

2

) [
QVA+AV

]tmQCD

R

QVV+AA = [ψ̄1 γµ ψ2][ψ̄3 γµ ψ4] + [ψ̄1 γµγ5 ψ2][ψ̄3 γµγ5 ψ4] + (2↔ 4)

L = ψ̄
[
DW + iµqτ

3γ5

]
ψ + s̄

[
DW + m0

]
s

ψ̄ =
(
ū d̄

)
• problem: no automatic improvement

ALPHA R.Frezzotti, P.Grassi, S.Sint & P.Weisz, JHEP08(2001)058

ALPHA P.Dimopoulos, J.Heitger, F.Palombi, C.Pena, S.Sint, A.V. NPB 749 (2006) 69



BK renormalization and tmQCD

• the QCD-tmQCD equivalence is preserved only with non singlet rotations; i.e. we need an 
isospin τ3 matrix in the mass term of the action and isospin rotations

• the four flavours must be organized in tmQCD doublets 

• SECOND POSSIBILITY: α1 = α3 = -π/4 and α2 = α4 = π/4 

• this corresponds to tmQCD for strange/down quark (up may be added untwisted)

ALPHA P.Dimopoulos, J.Heitger, F.Palombi, C.Pena, S.Sint, A.V. NPB 749 (2006) 69

[
QVV+AA

]QCD

R

= cos
(α1 − α2 + α3 − α4

2

) [
QVV+AA

]tmQCD

R

− i sin
(α1 − α2 + α3 − α4

2

) [
QVA+AV

]tmQCD

R

QVV+AA = [ψ̄1 γµ ψ2][ψ̄3 γµ ψ4] + [ψ̄1 γµγ5 ψ2][ψ̄3 γµγ5 ψ4] + (2↔ 4)

• problem: no automatic improvement

• problem: only good for quenched-QCD with down/strange 
degeneracy or mixed actions with different sea/valence quark actions

ψ̄ =
(
s̄ d̄

)

L = ψ̄
[
DW + m0 + iµqτ

3γ5

]
ψ



BK renormalization and tmQCD

• the QCD-tmQCD equivalence is preserved only with non singlet rotations; i.e. we need an 
isospin τ3 matrix in the mass term of the action and isospin rotations

• the four flavours must be organized in tmQCD doublets 

• THIRD POSSIBILITY: treat sea quarks in standard tmQCD fashion and valence quarks in OS 
fashion (i.e. use a mixed action formulation)

• The sea quark flavours are regularized by the standard Wilson fermion action with a fully 
twisted mass term (standard tmQCD); e.g. for Nf = 2

[
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]QCD

R

= cos
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2

) [
QVV+AA

]tmQCD

R

− i sin
(α1 − α2 + α3 − α4

2

) [
QVA+AV

]tmQCD

R

QVV+AA = [ψ̄1 γµ ψ2][ψ̄3 γµ ψ4] + [ψ̄1 γµγ5 ψ2][ψ̄3 γµγ5 ψ4] + (2↔ 4)

R. Frezzotti, G.C. Rossi, JHEP10 (2004) 070 

ψ̄ = ( ū d̄ ) Ltm = ψ̄
[
DW + iµqτ

3γ5

]
ψ



BK renormalization and tmQCD

• the QCD-tmQCD equivalence is preserved only with non singlet rotations; i.e. we need an 
isospin τ3 matrix in the mass term of the action and isospin rotations

• the four flavours must be organized in tmQCD doublets 

• THIRD POSSIBILITY: treat sea quarks in standard tmQCD fashion and valence quarks in OS 
fashion (i.e. use a mixed action formulation)

[
QVV+AA

]QCD

R

= cos
(α1 − α2 + α3 − α4

2

) [
QVV+AA

]tmQCD

R

− i sin
(α1 − α2 + α3 − α4

2

) [
QVA+AV

]tmQCD

R

QVV+AA = [ψ̄1 γµ ψ2][ψ̄3 γµ ψ4] + [ψ̄1 γµγ5 ψ2][ψ̄3 γµγ5 ψ4] + (2↔ 4)

R. Frezzotti, G.C. Rossi, JHEP10 (2004) 070 

• Each valence quark flavour is regularized by the Osterwalder-Seiler (OS) variant of tmQCD 

• Valence quarks enter with a distinct action for each flavour, which is fully twisted. 

• quark fields are not organized in isospin doublets (i.e. no τ3)

• there is a separate mass term for each flavour, μf may be negative, corresponding to 
twist angle α = -π/2 

LOS = ψ̄f

[
DW + iµfγ5

]
ψf f = u, d, s · · ·



BK renormalization and tmQCD

• the QCD-tmQCD equivalence is preserved only with non singlet rotations; i.e. we need an 
isospin τ3 matrix in the mass term of the action and isospin rotations

• the four flavours must be organized in tmQCD doublets 

• THIRD POSSIBILITY: treat sea quarks in standard tmQCD fashion and valence quarks in IS 
fashion (i.e. use a mixed action formulation)

• for valence OS quarks set α1 = α2 = α3 = π/2 and α4 = -π/2

• operator is multiplicatively renormalizable

• improvement is automatic

• problem: unitarity is lost; recovered in the continuum limit

• problem: we have two types of pseudoscalar states (tmQCD and an OS) which are non-
degenerate by O(a2) effects 

• this calls for a full investigation

[
QVV+AA

]QCD

R

= cos
(α1 − α2 + α3 − α4

2

) [
QVV+AA

]tmQCD

R

− i sin
(α1 − α2 + α3 − α4

2

) [
QVA+AV

]tmQCD

R

QVV+AA = [ψ̄1 γµ ψ2][ψ̄3 γµ ψ4] + [ψ̄1 γµγ5 ψ2][ψ̄3 γµγ5 ψ4] + (2↔ 4)

R. Frezzotti, G.C. Rossi, JHEP10 (2004) 070 



BK renormalization and tmQCD

• mixed action formulation:

LOS = ψ̄f

[
DW + iµfγ5

]
ψf f = u, d, s · · ·

• suitable combinations of μf signs for each flavour ensure automatic improvement and 
multiplicative renormalization for say, BK

• this is a compromise (unitarity issues arise when sea and valence flavours are treated 
differently) 

• in a quenched or partially quenched setup (Nf = 0,2 sea quark flavours and a valence strange 
quark) this is unavoidable for any regularization

μh -μh

μl = μvμl =μv



BK renormalization and tmQCD

• Kaons and other mesons may be of the standard tmQCD variety or of OS type

• the two exponential decays exp[ - mKtm |t| ] and exp[ - mKOS |t| ] cancel in the ratio but we 
are still left with an operator which injects an O(a2) energy 

μh -μh

μl = μvμl =μv

μh

-μl

μh

μlmtm
K = mOS

K + O(a2)

• BK has a mixed tm-OS structure 

〈WOS
K Q W tm

K 〉
〈W tm

0,K Atm
0,K〉 〈AOS

0,K WOS
0,K〉

→ BK =
3
8

〈K̄0 | Q | K0〉
[f tm

K mtm
K ] [fOS

K mOS
K ]

exp[ - mKOS |t| ] exp[ - mKtm |t| ]



BK renormalization and tmQCD

• Kaons and other mesons may be of the standard tmQCD variety or of OS type

• NB: all operators above are renormalized (and thus continuum notation is used)

• the superscripts tm and OS denote the regularization that continuum quantities come from

μh -μh

μl = μvμl =μv

μh

-μl

μh

μlmtm
K = mOS

K + O(a2)

• BK has a mixed tm-OS structure 

〈WOS
K Q W tm

K 〉
〈W tm

0,K Atm
0,K〉 〈AOS

0,K WOS
0,K〉

→ BK =
3
8

〈K̄0 | Q | K0〉
[f tm

K mtm
K ] [fOS

K mOS
K ]

exp[ - mKOS |t| ] exp[ - mKtm |t| ]



BK: quenched and twisted

LPHAA
Collaboration

P.Dimopoulos, J.Heitger, F.Palombi, C.Pena, S.Sint, A.V. NPB 749 (2006) 69

M.Guagnelli, J.Heitger, C.Pena, S.Sint, A.V. JHEP 03 (2006) 088

P.Dimopoulos, J.Heitger, F.Palombi, C.Pena, S.Sint, A.V. NPB 776 (2007) 258

F.Palombi, C.Pena, S.Sint JHEP 03 (2006) 089



tmQCD → no operator mixing (no exceptional configurations).

SF non-perturbative renormalisation.

Various physical volumes: check control of finite volume effects.

Two different regularisations: check control of the continuum limit.

N.B.: action is O(a) improved, but four-fermion operator is not ⇒ continuum 
limit approached linearly in a.

P.Dimopoulos, J.Heitger, F.Palombi, C.Pena, S.Sint, A.V. NPB 749 (2006) 69

M.Guagnelli, J.Heitger, C.Pena, S.Sint, A.V. JHEP 03 (2006) 088

F.Palombi, C.Pena, S.Sint JHEP 03 (2006) 089

P.Dimopoulos, J.Heitger, F.Palombi, C.Pena, S.Sint, A.V. NPB 776 (2007) 258

Quenched computation of BK



π/2 strategy:

π/4 strategy (specially devised for quenched case):

m!, µ! tuned to have m!,R = 0

mq, µq tuned to have mR = µR

S = ∑
x,y

{ψ̄!(x) [Dw,sw + m! + iµ!γ5τ3] (x, y)ψ!(y) + s̄(x) [Dw,sw + ms] (x, y)s(y)}

S = ∑
x,y

{ψ̄(x) [Dw,sw + m! + iµ!γ5τ3] (x, y)ψ(y)}

in both cases: OVV+AA

twist
−−→ OVA+AV

NB: we never have only fully twisted quarks → “automatic” O(a) improvement 
argument does not apply.

q

0

0

Quenched computation of BK



Approach to continuum: non-perturbative renormalisation

SF technique via finite size scaling: split renormalisation into

Renormalisation at a low, hadronic scale where contact with typical large-
volume values of β is made.

NP running to very high scales (∼100 GeV) where contact with PT is made.

B̂K = (αs(µ))−γ0/2b0 exp

{

−

∫ g (µ)

0
dg

[

γ(g)
β(g)

−

γ0

b0g

]} [

lim
a→0

Z(g2
0, aµ) BK(a)

]



Approach to continuum: non-perturbative renormalisation

SF technique via finite size scaling: split renormalisation into

Renormalisation at a low, hadronic scale where contact with typical large-
volume values of β is made.

NP running to very high scales (∼100 GeV) where contact with PT is made.

Figure C.3: Left column: The step scaling function σ+
VA+AV;s(u) (discrete points) as

obtained non-perturbatively from combined fits to Clover and Wilson data. The
shaded area is the result of fit D to the points (see text). The dotted (dashed) line is
the LO (NLO) perturbative result. Right column: RG running of O+

VA+AV obtained
non-perturbatively (discrete points) at specific values of the renormalization scale µ,
in units of Λ (taken from ref. [4]). The lines are perturbative results at the indicated
order for the Callan-Symanzik β-function and the operator anomalous dimension γ.

41



Continuum limit

• Combined linear extrapolation of the two regularisations, using ALPHA 
determination of current normalisations and improvement coefficients. 

B̂K = 0.735(71)

B̄
MS
K (2 GeV) = 0.534(52)



Continuum limit

• π/2 

• π/4 
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C.L.      Ref. [6]

• why the curvature? This O(a) effect can be tampered with, through one 
Symanzik counter-term of the axial current

• there seems to be a cancellation effect between O(a) effects in numerator and 
denominator of  BK



Comparison with quenched literature

 RBC 05
 CP-PACS 01

 MILC 03
 BosMar 03
 Babich et al 06

 ALPHA 06

 Lee et al 04
 JLQCD 97

Difference with other Wilson fermion 
computations mainly due to method 
employed to extract BK.

B̂K = 0.735(71)

B̄
MS
K (2 GeV) = 0.534(52)



Comparison with quenched literature
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 Babich et al 06

 ALPHA 06

 Lee et al 04
 JLQCD 97

C. Pena, PoS(Lat2006)019



BK: quenched, twisted and 
“improved”

P. Dimopoulos, H.Simma, A.V., JHEP07 (2009) 007LPHAA
Collaboration



tm - OS pseudoscalar meson mass splitting

• the tm-OS mass splitting may be due to two factors:

• the presence of the Clover term in the action

• the way maximal twist is imposed (i.e. the way κcrit is determined)

• different groups made different choices, so comparison is possible

K. Jansen et al., Phys.Lett.B624(2005)334

A.M.Abdel-Rehim, R.Lewis, R.M.Woloshyn, J.M.S.Wu, Phys.Rev.D74(2006)014507

D. Becirevic et al., Phys.Rev.D74(2006)034501

P. Dimopoulos, H.Simma, A.V. JHEP; JHEP07 (2009) 007

• “optimal” κcrit mPCAC =
∂0 〈 A0 P 〉

〈P P 〉 ∝
[

∂0 〈 V0 P 〉
〈P P 〉

]cont

〈 A0 P 〉 ∝
[
〈 V0 P 〉

]cont

• Wilson (untwisted) κcrit from PCAC with pbc’s

• no Clover

• no Clover

• “optimal” κcrit

• Clover

• Wilson (untwisted) κcrit from PCAC with SFbc’s

• Clover



tm - OS pseudoscalar meson mass splitting

• the tm-OS mass splitting may be due to two factors:

• the presence of the Clover term in the action

• the way maximal twist is imposed (i.e. the way κcrit is determined)

• different groups made different choices, so comparison is possible

K. Jansen et al., Phys.Lett.B624(2005)334

A.M.Abdel-Rehim, R.Lewis, R.M.Woloshyn, J.M.S.Wu, Phys.Rev.D74(2006)014507

• “optimal” κcrit mPCAC =
∂0 〈 A0 P 〉

〈P P 〉 ∝
[

∂0 〈 V0 P 〉
〈P P 〉

]cont

〈 A0 P 〉 ∝
[
〈 V0 P 〉

]cont

• no Clover

• no Clover

• “optimal” κcrit

NB:  κcrit  unimproved; no Symanizk counterterms used
(but automatic improvement OK for hadron masses, WMEs etc)

NB: renormalization worked out from scratch in tmQCD



tm - OS pseudoscalar meson mass splitting

• the tm-OS mass splitting may be due to two factors:

• the presence of the Clover term in the action

• the way maximal twist is imposed (i.e. the way κcrit is determined)

• different groups made different choices, so comparison is possible

• Wilson (untwisted) κcrit from PCAC with pbc’s

• Wilson (untwisted) κcrit from PCAC with SFbc’s

• Clover

NB:  κcrit  improved; need two Symanzik counterterms, cSW, cA

NB: all renormalizations taken from untwisted theory

D. Becirevic et al., Phys.Rev.D74(2006)034501 • Clover

P. Dimopoulos, H.Simma, A.V. JHEP; JHEP07 (2009) 007



tm - OS pseudoscalar meson mass splitting

• Comparison of these works for MPStm and MPSOS in the Kaon mass range

• all determinations of MPStm are compatible, discrepancies are found between the various MPSOS

• the MPStm and MPSOS mass splitting is expressed in terms of the quantity:

∆(r2
0M

2) ≡ [r0M
OS]2 − [r0M

tm]2
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this work

K. Jansen et al., Phys.Lett.B624(2005)334

A.M.Abdel-Rehim, R.Lewis, R.M.Woloshyn, 
J.M.S.Wu, Phys.Rev.D74(2006)014507

• non-Clover results with different 
“optimal” κcrit determinations show 
discrepancies at larger lattice spacings

P. Dimopoulos, H.Simma, A.V. JHEP

• Clover results are not sensitive to the details of the κcrit determination: at β=6.0, 
D. Becirevic et al find Δ(r02 M2) ≈ 0.27 against our Δ(r02 M2) ≈ 0.25



tm - OS pseudoscalar meson mass splitting

∆(r2
0M

2) ≡ [r0M
OS]2 − [r0M

tm]2
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K. Jansen et al., Phys.Lett.B624(2005)334

A.M.Abdel-Rehim, R.Lewis, R.M.Woloshyn, 
J.M.S.Wu, Phys.Rev.D74(2006)014507

P. Dimopoulos, H.Simma, A.V. JHEP

• apparently the O(a) effects of the 
oprtimal κcrit determination induce 
large O(a2) effects in the pseudoscalar 
masses

• these are probably milder once the 
Clover term is introduced 

• Comparison of these works for MPStm and MPSOS in the Kaon mass range

• all determinations of MPStm are compatible, discrepancies are found between the various MPSOS

• the MPStm and MPSOS mass splitting is expressed in terms of the quantity:



tm - OS pseudoscalar meson mass splitting

∆(r2
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K. Jansen et al., Phys.Lett.B624(2005)334

A.M.Abdel-Rehim, R.Lewis, R.M.Woloshyn, 
J.M.S.Wu, Phys.Rev.D74(2006)014507

P. Dimopoulos, H.Simma, A.V. JHEP

• clearly a cutoff effect (not enough 
resolution to see it vanish in C.L.)

• Clover data have significantly reduced 
mass splitting 

• NB: unquenched non-Clover ETMC data also show large splitting (see later)

• Comparison of these works for MPStm and MPSOS in the Kaon mass range

• all determinations of MPStm are compatible, discrepancies are found between the various MPSOS

• the MPStm and MPSOS mass splitting is expressed in terms of the quantity:



tm - OS BK parameter

• BK is obtained in standard fashion as ratio of 2-pt. to 2-pt. correlation functions (SF variety)

• the novelty is in the tm -OS combination of valence quark propagators

• all Z ’s from previous SF computations in (untwisted) Wilson theory

• the same holds for the continuum anomalous dimension of the 4-fermion operator

• all matrix elements are fully twisted, therefore O(a) improved (automatically)

• ZVA+AV has O(a ΛQCD) which are expected to be subdominant

• at each gauge coupling, simulations are carried out at a couple of degenerate quark mass 
values which give a K-meson close to its physical value 

RBK =
i ZV A+AV 〈K̄0|QV A+AV |K0〉

(8/3) iZV [〈0|V0|K0〉]tm ZA [〈K0|A0|0〉]OS



tm - OS BK parameter

• BK is obtained in standard fashion as ratio of 2-pt. to 2-pt. correlation functions (SF variety)

• the novelty is in the tm -OS combination of valence quark propagators

• as this is the first simulation of its kind, the question arises naturally: do we have a signal?

RBK =
i ZV A+AV 〈K̄0|QV A+AV |K0〉

(8/3) iZV [〈0|V0|K0〉]tm ZA [〈K0|A0|0〉]OS
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tm - OS BK parameter

• comparison with our earlier quenched, unimproved BK results
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• cA influences scaling properties; it is an 
O(a) correcting term, which somehow 
spoils a cancellation mechanism between 
discretization errors in BK numerator 
and denominator 

• cA has negligible influence; it is an O(a2) 
term 



tm - OS BK parameter

• continuum extrapolation of BK results
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• linear in a BRGI
K = 0.706(65) (χ2/dof = 0.30)

BRGI
K = 0.733(34) (χ2/dof = 0.26)

BRGI
K = 0.735(71)

• linear in a2 

P.Dimopoulos et al.,NPB 776 (2007) 258

• this behaviour suggests that 
O(a ΛQCD) effects of ZVA+AV 
are presumably less dominant 
than O(a2 μ2) effects 



BK:
partially quenched (Nf=2), 

twisted and improved

M. Constantinou et al., PRD83 (2011) 014505



The Simulation

• The Nf = 2 ETMC runs are performed at three gauge couplings β.

• β = 3.80, corresponding to a ≈ 0.10 fm [i.e. 1/a ≈ 2.0 GeV ] V = 243 × 48

• β = 3.90, corresponding to a ≈ 0.09 fm [i.e. 1/a ≈ 2.2 GeV ] V = 243 × 48 & 323 × 64

• β = 4.05, corresponding to a ≈ 0.07 fm [i.e. 1/a ≈ 2.8 GeV ] V = 323 × 64

• 3-4 sea quark masses = light valence quark masses in the range 280 MeV ≤ mPS ≤ 550 MeV

• @ each light quark, 3 heavy (strange) quark masses in the range 450 MeV ≤ mPS ≤ 700 MeV



Pseudoscalar meson mass splitting

• scaling tests performed at fixed quark masses μl ∼ 40 MeV and μh ∼ 90 MeV
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• small (a few %) scaling violations of the (“true”) tmQCD Kaon mass and decay 
constant,

• compatible with O(a) automatic improvement



Pseudoscalar meson mass splitting

• scaling tests performed at fixed quark masses μl ∼ 40 MeV and μh ∼ 90 MeV
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• compatible with O(a) automatic improvement

• OS-Kaon mass shows 30% discretization error - vanishes in the continuum limit



Pseudoscalar meson mass splitting

• scaling tests performed at fixed quark masses μl ∼ 40 MeV and μh ∼ 90 MeV

• benevolent cancellation mechanism between large O(a2) effects in numerator and 
denominator

• two methods for the determination of ZVA+AV (RI/MOM scheme) give compatible 
results 
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BK: signal quality

(aµ!, aµh) = (0.0110, 0.0250)
(aµ!, aµh) = (0.0080, 0.0200)

β = 3.80
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BK: finite volume effects

L = 32 : (aµ!, aµh) = (0.0040, 0.0150)
L = 24 : (aµ!, aµh) = (0.0040, 0.0150)

β = 3.90

2τ/T

R

1.000.900.800.700.600.500.400.300.200.100.00

0.80

0.75

0.70

0.65

0.60

0.55

0.50



BK: renormalization (RI/MOM)

• Opt for RI/MOM scheme

• the correlation function of interest, in coordinate space, is obtained by inserting the quark 
bilinear operator in 4-point fermionic Green function (the quark propagator) 

x2x1 QVA+AV(0)

x3 x4

GV A+AV (x1, x2, x3, x4) = 〈ψ1(x1) ψ̄2(x2) QV A+AV (0) ψ3(x3) ψ̄4(x4)〉



BK: renormalization (RI/MOM)

• Opt for RI/MOM scheme

• the correlation function of interest, in coordinate space, is obtained by inserting the quark 
bilinear operator in 4-point fermionic Green function (the quark propagator) 

x2x1 QVA+AV(0)

x3 x4

• Fourier transform it to obtain the correlation function in momentum space 

QVA+AV(0)

p

p

p

p

GV A+AV (x1, x2, x3, x4) = 〈ψ1(x1) ψ̄2(x2) QV A+AV (0) ψ3(x3) ψ̄4(x4)〉

GV A+AV (p) =
∫

dx1dx2dx3dx4 GAV +V A (x1, x2, x3, x4) exp[−ip(x1 − x2 + x3 − x4)]



• amputate the momentum space correlation function

• NB: exceptional momentum configuration (optional)

• NB: all manipulations are in the Landau gauge 

• the amputated correlation function is a matrix in Dirac-colour 
space; its tree level value is (VA+AV)⊗l

QΓ(0)

=

=

BK: renormalization (RI/MOM)

ΛV A+AV (p) = S−1
1 (p) S−1

2 (p) GAV +V A (p) S−1
3 (p) S−1

4 (p)

=

=



Basic definitions

• it is convenient to impose the renormalization condition on a function of momenta (rather 
than on a Dirac-colour matrix)

• we thus “project” the amputated correlation Dirac-colour Green function by suitable traces

• this consists in defining the projected-amputated Green function 

• the trace is over colour and spin indices

• the trace over colours is trivial

• the trace over spin is conditioned by the choice of the Dirac 
projectors PQ, chosen so that the tree-level value of ΓVA+AV is 
unity (recall that the tree level value of is ΓVA+AV  is (VA+AV)⊗l ).

QΓ(0)

= =

ΓV A+AV (p) = Tr
[
PAV +V A GAV +V A (p)

]
= =



RI/MOM renormalization scheme

• so far we only defined a convenient projected-amputated correlation function ΓVA+AV(p), in 
terms of the bilinear operator QVA+AV and the fermion fields ψ

• this bare quantity, regularized by the lattice, is computed non-perturbatively (i.e. numerically, 
at fixed UV cutoff)

• the renormalized ΓVA+AV(p) is formally given by:

• RI/MOM renormalization scheme: impose the following renormalization condition on ΓVA+AV(p)

quark field renormalization operator renormalization

• i.e. the renormalized amputated-projected correlation function [ΓVA+AV(p)]R , at scale μ, is 
set to its tree level value. From it the product ZQ /Zψ2

 is determined

[
ΓV A+AV (p)

]
R

= lim
a→0

[
Z−2

ψ (aµ) ZAV +V A(aµ) GAV +V A (p)
]

[
ΓV A+AV (p)

]

R

∣∣∣
p2=µ2

=
[
Z−2

ψ (aµ) ZAV +V A(aµ) GAV +V A (p)
]

= 1



RI/MOM renormalization scheme

• in practice the bare ΓVA+AV(p) is computed at fixed UV cutoff (lattice spacing) for several 
quark masses μQ and renormalization scales μ 

• being a mass-independent scheme, the chiral extrapolation μQ → 0 must be performed

• we must disentangle ZQ from Zψ; conceptually the simplest way is by using the lattice 
conserved vector current VC, which has ZV

C = 1

• for this current, the RI/MOM condition gives a way to compute non-perturbatively Zψ

• in practice this method is not applied because the conserved current is point split and 
somewhat intricate and costly to implement (in reality these are superable problems...)

• instead of VC, we use ZV V  = VC, with ZV taken from a tmQCD Ward identity

[
ΓV C (p2)

]

R

∣∣∣∣∣
p2=µ2

= Z−1
ψ (aµ)ΓV C (µ) = 1

[
ΓV A+AV (p)

]

R

∣∣∣
p2=µ2

=
[
Z−2

ψ (aµ) ZAV +V A(aµ) GAV +V A (p)
]

= 1



BK: renormalization (RI/MOM)

• a few “massages” are necessary:

• Goldstone pole subtraction
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BK: renormalization (RI/MOM)

• a few “massages” are necessary:

• Goldstone pole subtraction

• extrapolation to sea-quark chiral limit

• discretization effects calculated in 1-loop PT 



BK: renormalization (RI/MOM)

• check the “wrong chirality” contributions:



BK: renormalization (RI/MOM)

• Use NLO PT RG-running from “all scales” to a reference scale μ∼1/a and extrapolate 
residual (ap)2 dependence as a cutoff effect 



• for each β we have a number of bag parameters BK(μl= μsea, μh)

• The RGI-bag parameter is fit by the SU(2) - χPT Ansatz:

BK: mass extrapolations

• “hatted” quantities are in MS @ 2GeV.  What calibrations are needed?

• f0 = 121.0(1) MeV -- the pion decay constant @ chiral limit

• Bχ -- the bag parameter @ chiral limit

• B0 = 2.84(11) GeV              

• μu/d = 3.5(1) MeV               

• ETMC, M. Constanstinou et al., JHEP08 (2010) 068;   ETMC, R. Baron et al., JHEP08 (2010) 097

• need to also know strange quark mass 

∧

−

∧

BRGI
K (µ̂l, µ̂s) = BRGI

χ (µ̂s)
[
1 + b(µ̂s)

2B̂0µ̂l

f2
0

− 2B̂0µ̂l

32π2f2
0

ln
( 2B̂0µ̂l

16π2f2
0

)]
+ a2 f2

0 DB(µ̂s)

∧



• for each β we have a number of bag parameters BK(μl= μsea, μh)

• need to also know strange quark mass

• Use the SU(2) - χPT Ansatz for the tmQCD pseudoscalar mass:

BK: mass extrapolations

∧

f2
0 M2

34(µ̂l, µ̂h) = CM (µ̂h)
[
1 + c(µ̂h)

2B̂0µ̂l

f2
0

]
+ a2 f2

0 DM (µ̂h)

• for each β and μl calculate M34 at three reference values 75 MeV < μh* < 105 MeV

• use above Ansatz and known value of μu/d to compute M34 (μu/d, μh*) in the continuum 

• interpolate [M34 (μu/d, μh*)]2 linearly in μh* to the physical value M342 = (495 MeV)2 and obtain:

• μs = 92(5) MeV 

∧

∧∧ ∧

∧ ∧ ∧

∧



• for each β we have a number of bag parameters BK(μl= μsea, μh)

• now that μs is known, we interpolate BK(μl= μsea, μh) linearly in μh, at fixed β and μl, to get:

•  BK(μl, μs)

BK: mass extrapolations
∧∧

∧ ∧

∧

∧ ∧ ∧ ∧∧

∧ ∧

β = 3.90

µh/f0

B
R

G
I

K
("

,h
)

0.60.50.40.30.20.1

0.95

0.90

0.85

0.80

0.75



• for each β we have a number of bag parameters BK(μl= μsea, μh)

• now that μs is known, we interpolate BK(μl= μsea, μh) linearly in μh, at fixed β and μl, to get:

•  BK(μl, μs)

• now use SU(2) - χPT Ansatz (simultaneous chiral and continuum fit), to obtain:

• BK(μu/d, μs)

BK: mass extrapolations
∧∧

∧

BRGI
K (µ̂l, µ̂s) = BRGI

χ (µ̂s)
[
1 + b(µ̂s)

2B̂0µ̂l

f2
0

− 2B̂0µ̂l

32π2f2
0

ln
( 2B̂0µ̂l

16π2f2
0

)]
+ a2 f2

0 DB(µ̂s)

∧

∧

∧ ∧ ∧ ∧∧

∧ ∧

β = 3.90

µh/f0

B
R

G
I

K
("

,h
)

0.60.50.40.30.20.1

0.95

0.90

0.85

0.80

0.75

∧ ∧

BRGI
K (u/d, s) at CL

β = 4.05
β = 3.90
β = 3.80

(µ̂!/f0)2

B
R

G
I

K
("

,s
)

(M
2)

0.500.400.300.200.100.00

1.10

1.05

1.00

0.95
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0.70
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BK: mass extrapolations

“statistical error” (bootstrap):

ME fluctuations 1%

Zs determination 2%

CL/chiral extrapolations 

strange quark mass interpolations

BRGI
K (u/d, s) at CL

β = 4.05
β = 3.90
β = 3.80

(µ̂!/f0)2

B
R

G
I

K
("

,s
)

(M
2)

0.500.400.300.200.100.00

1.10

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

BRGI
K = 0.729 (25) (17)

“systematic error”:

lattice calibration from r0 or f0

Zs determined with 2 methods

polynomial chiral extrapolations 

quark/PS-meson χPT interpolations



BK comparison with others

*HYP-STAG/MILCBNL-SNU-WU
*DW/MILCALV
*DWRBC-UKQCD

Nf = 2 + 1

*OS/TMETMC (this work)
OVJLQCD 2008
DWY. Aoki et al. 2005

Nf = 2

*OS-TMALPHA 2009
*DWCP-PACS 2008
*TMALPHA 2007
*DWY. Aoki et al. 2006

Nf = 0

BRGI
K

1.31.21.11.00.90.80.70.60.50.40.30.2

• Hardly any dependence on Nf∼1/a is observed 
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FLAG, G. Colangelo et al., arXiv:1011.4408 [hep-lat]



• In 2001 the reliable lattice estimates of BK were all quenched

• the staggered estimates were clearly the “best”, with Ginsparg Wilson computations in their 
infancy and Wilson computation afflicted by large systematic effects, due to:

• the complicated renormalization pattern of BK resulting from loss of chiral symmetry in 
the bare action

• the large discretization errors

• thanks to tmQCD, both sources of systematic error are now under control at a 
(moderate?) price

• quenching is quickly being removed (the last uncontrolled source of systematic error), by 
either by a partially quenced setup (Nf = 2) or an unquenched one (Nf = 2+1, 2+1+1, ...)

• BK is the “simplest” 4-fermion operator, from the lattice point of view (one anomalous 
dimension, Kaonic mass regime, no finite state interactions, ...)

• controlling its systematics paves the way for more complicated realities, which have been put 
to stand-by mode for many years (BK, K →ππ, ... )

Conclusions


