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The QCD spectrum
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The QCD spectrum – on the lattice

C(t) =
∫

d3x 〈[q̄γ5q(x)] [q̄γ5q(0)]〉 eipx t→∞
−→

∞
∑

n=0

cn e−Ent

Mπ = lim
L→∞

a→0

Mπ(L, a) Mπ(L, a) = En(p = 0)
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The QCD spectrum
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◮ the positions of the low-lying resonances is more difficult to
determine and understand
(lattice? χPT+ dispersion relations?)
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The QCD spectrum

◮ the lowest-lying particles in the spectra are well
understood: they would become exactly massless in the
chiral limit of QCD (Goldstone bosons)

◮ the dynamics of strong interactions at low energy can be
understood on the basis of chiral symmetry
(chiral perturbation theory = χPT)

◮ the positions of the low-lying resonances is more difficult to
determine and understand
(lattice? χPT+ dispersion relations?)

◮ they set the limit of validity of the chiral expansion
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Systems with spontaneous symmetry breaking

◮ If a symmetry is spontaneously broken the spectrum
contains massless particles – the Goldstone bosons

◮ symmetry constrains the interactions of the Goldstone
bosons – their interactions vanish at low energy

◮ Green functions contain poles and cuts due to the
exchange of Goldstone bosons

◮ the vertices, on the other hand, can be expanded in
powers of momenta and obey symmetry relations

◮ effective Lagrangian: systematic method to construct this
expansion, respecting symmetry and all the general
principles of quantum field theory Weinberg (79)

◮ The method leads to predictions – even very sharp ones
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Quantum Chromodynamics in the chiral limit

L
(0)
QCD = q̄Li /DqL + q̄R i /DqR −

1
4

Ga
µνGaµν q =





u
d
s





Large global symmetry group:

SU(3)L × SU(3)R × U(1)V × U(1)A

1. U(1)V ⇒ baryonic number

2. U(1)A is anomalous

3.
SU(3)L × SU(3)R ⇒ SU(3)V

⇒ Goldstone bosons with the quantum numbers of
pseudoscalar mesons will be generated
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Quark masses, chiral expansion
In the real world quarks are not massless:

LQCD = L
(0)
QCD + Lm, Lm := −q̄Mq

M =





mu

md

ms





the mass term Lm can be considered as a small perturbation ⇒

Expand around L
(0)
QCD ≡ Expand in powers of mq
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Quark masses, chiral expansion
In the real world quarks are not massless:

LQCD = L
(0)
QCD + Lm, Lm := −q̄Mq

M =





mu

md

ms





the mass term Lm can be considered as a small perturbation ⇒

Expand around L
(0)
QCD ≡ Expand in powers of mq

Chiral perturbation theory, the low-energy effective theory of
QCD, is a simultaneous expansion in powers of momenta and
quark masses
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Quark mass expansion of meson masses
General quark mass expansion for the P particle:

M2
P = M2

0 + 〈P|q̄Mq|P〉+ O(m2
q)

For the pion M2
0 = 0:

M2
π = −(mu + md)

1
F 2
π

〈0|q̄q|0〉+ O(m2
q)

where we have used a Ward identity:

〈π|q̄q|π〉 = −
1

F 2
π

〈0|q̄q|0〉 =: B0

〈0|q̄q|0〉 is an order parameter for the chiral spontaneous
symmetry breaking Gell-Mann, Oakes and Renner (68)
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Quark mass expansion of meson masses
Consider the whole pseudoscalar octet:

M2
π = (mu + md)B0 + O(m2

q)

M2
K+ = (mu + ms)B0 + O(m2

q)

M2
K 0 = (md + ms)B0 + O(m2

q)

M2
η =

1
3
(mu + md + 4ms)B0 + O(m2

q)
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Quark mass expansion of meson masses
Consider the whole pseudoscalar octet:

M2
π = (mu + md)B0 + O(m2

q)

M2
K+ = (mu + ms)B0 + O(m2

q)

M2
K 0 = (md + ms)B0 + O(m2

q)

M2
η =

1
3
(mu + md + 4ms)B0 + O(m2

q)

Consequences: (m̂ = (mu + md)/2)

M2
K/M2

π = (ms + m̂)/2m̂ ⇒ ms/m̂ = 25.9

M2
η/M2

π = (2ms + m̂)/3m̂ ⇒ ms/m̂ = 24.3

3M2
η = 4M2

K − M2
π Gell-Mann–Okubo (62)

(0.899 = 0.960) GeV2
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Quark mass expansion of meson masses
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Goldstone theorem
Hamiltonian H symmetric under the group of transformations G:
[Qi are the generators of G]

[Qi ,H] = 0 i = 1, . . . nG

Ground state not invariant under G, i.e. for some generators Xi

Xi |0〉 6= 0

{Q1, . . . ,QnG} = {H1, . . . ,HnH ,X1, . . . ,XnG−nH}
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Goldstone theorem

[Qi ,H] = 0 i = 1, . . .nG , Xi |0〉 6= 0 , Hi |0〉 = 0

1. The subset of generators Hi which annihilate the vacuum
forms a subalgebra

[Hi ,Hk ]|0〉 = 0 i , k = 1, . . . nH

2. The spectrum of the theory contains nG − nH massless exci-
tations

Xi |0〉 i = 1, . . . nG − nH

from [Xi ,H] = 0 follows that Xi |0〉 is an eigenstate of the Hamil-
tonian with the same eigenvalue as the vacuum
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Goldstone theorem

[Qi ,H] = 0 i = 1, . . .nG , Xi |0〉 6= 0 , Hi |0〉 = 0

◮ Xi |0〉 are the Goldstone boson states
◮ the Xi are generators of the quotient space G/H
◮ the Goldstone fields are elements of the space G/H
◮ their transformation properties under G are fully dictated:

they transform nonlinearly
◮ the dynamics of the Goldstone bosons at low energy is

strongly constrained by symmetry
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Matrix elements of conserved currents

Goldstone’s theorem also asserts that:

the transition matrix elements between the conserved currents
associated with the generators Qi and the pions∗

〈0|Jµ
i |π

a(p)〉 = iF a
i pµ

is an nG × (nG − nH) matrix F a
i of rank NGB = nG − nH

∗We have introduced the symbol π for the Goldstone boson fields, and will

call them “pions”, as in strong interactions. The discussion however, remains

completely general
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Pions do not interact at low energy

Current conservation implies

pµ〈π
a1(p1)π

a2(p2) . . . out|Jµ
i |0〉 = 0 pµ = pµ

1 + pµ
2 + . . .
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Pions do not interact at low energy

Current conservation implies

pµ〈π
a1(p1)π

a2(p2) . . . out|Jµ
i |0〉 = 0 pµ = pµ

1 + pµ
2 + . . .

Consider the amplitude for pair creation

〈πa1(p1)π
a2(p2)out|Jµ

i |0〉 =
pµ

3

p2
3

∑

a3

F a3
i va1a2a3(pi) + . . .
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Pions do not interact at low energy

Current conservation implies

pµ〈π
a1(p1)π

a2(p2) . . . out|Jµ
i |0〉 = 0 pµ = pµ

1 + pµ
2 + . . .

Consider the amplitude for pair creation

〈πa1(p1)π
a2(p2)out|Jµ

i |0〉 =
pµ

3

p2
3

∑

a3

F a3
i va1a2a3(pi) + . . .

Current conserv. ⇒
∑

a3

F a3
i va1a2a3(0) = 0 ⇒ va1a2a3(0) = 0

Lorentz invariance ⇒ va1a2a3(p1, p2, p3) can only depend on
p2

1, p2
2, p2

3: on the mass shell it is always zero
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Pions do not interact at low energy

Amplitude for three–pion creation from a conserved current

〈πa1πa2πa3out|Jµ
i |0〉 =

pµ
4

p2
4

∑

a4

F a4
i va1a2a3a4(pi) + . . .
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4
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i va1a2a3a4(pi) + . . .

Current conservation ⇒

∑

a4

F a4
i va1a2a3a4(0) = 0 ⇒ va1a2a3a4(0) = 0



Introduction χPT Summary Goldstone th. π transf. Eff. Lagrangian ESB Ext. fields

Pions do not interact at low energy

Amplitude for three–pion creation from a conserved current

〈πa1πa2πa3out|Jµ
i |0〉 =

pµ
4

p2
4

∑

a4

F a4
i va1a2a3a4(pi) + . . .

Current conservation ⇒

∑

a4

F a4
i va1a2a3a4(0) = 0 ⇒ va1a2a3a4(0) = 0

In this case the vertex function can depend on two Lorentz
scalars, s and t , and we can do a Taylor expansion:

va1a2a3a4(p1, p2, p3, p4) = c1
a1a2a3a4

s + c2
a1a2a3a4

t + . . .
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Low energy expansion

◮ Symmetry implies that Goldstone bosons do not interact at
low energy
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◮ Symmetry implies that Goldstone bosons do not interact at
low energy

◮ If we take explicitly into account the poles in the Green
functions which are due to exchanges of Goldstone bosons
we can expand the vertices in powers of momenta
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functions which are due to exchanges of Goldstone bosons
we can expand the vertices in powers of momenta

◮ The symmetry of the system implies also relations among
the coefficients in the Taylor expansion in the momenta
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◮ The effective Lagrangian is a systematic method to
construct this expansion in a way that automatically
respects the symmetry of the system
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Low energy expansion

◮ Symmetry implies that Goldstone bosons do not interact at
low energy

◮ If we take explicitly into account the poles in the Green
functions which are due to exchanges of Goldstone bosons
we can expand the vertices in powers of momenta

◮ The symmetry of the system implies also relations among
the coefficients in the Taylor expansion in the momenta

◮ The effective Lagrangian is a systematic method to
construct this expansion in a way that automatically
respects the symmetry of the system

◮ Effective Lagrangian for Goldstone Bosons = χPT
Weinberg (79)
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Transformation properties of the pions

The pion fields transform according to a representation of G

g ∈ G : ~π → ~π′ = ~f (g, ~π)

where f has to obey the composition law

~f (g1,~f (g2, ~π)) = ~f (g1g2, ~π)

~f (g, 0) = image of the origin : the elements which leave the
origin invariant form a subgroup – the conserved subgroup H

~f (gh, 0) coincides with ~f (g, 0) for each g ∈ G and h ∈ H ⇒ the
function ~f maps elements of G/H onto the space of pion fields
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Transformation properties of the pions

The pion fields transform according to a representation of G

g ∈ G : ~π → ~π′ = ~f (g, ~π)

where f has to obey the composition law

~f (g1,~f (g2, ~π)) = ~f (g1g2, ~π)

The mapping is invertible: ~f (g1, 0) = ~f (g2, 0) implies g1g−1
2 ∈ H

⇒ pions can be identified with elements of G/H
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Action of G on G/H

Two elements of G, g1,2 are identified with the same element of
G/H if

g1g−1
2 ∈ H

Let us call qi the elements of G/H
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Action of G on G/H

Two elements of G, g1,2 are identified with the same element of
G/H if

g1g−1
2 ∈ H

Let us call qi the elements of G/H

The action of G on G/H is given by

gq1 = q2h where h(g, q1) ∈ H

The transformation properties of the coordinates of G/H under
the action of G are nonlinear (h is in general a nonlinear function
of q1 and g)
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The space G/H for QCD

The choice of a representative element inside each equivalence
class is arbitrary. For example

g = (gL, gR) = (1, gRg−1
L ) · (gL, gL) =: q · h

but also g = (gL, gR) = (gLg−1
R , 1) · (gR, gR) =: q′ · h′

where q, q′ ∈ G/H and h, h′ ∈ H

Action of G on G/H

(VL,VR) · (1, gRg−1
L ) = (VL,VRgRg−1

L )

= (1,VRgRg−1
L V−1

L ) · (VL,VL)
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The space G/H for QCD

In the literature the pion fields are usually collected in a matrix–
valued field U, which transforms like

U G
−→ U ′ = VRUV−1

L

U is nothing but a shorthand notation for (1, gRg−1
L ), or its non-

trivial part gRg−1
L

As a matrix U is a member of SU(3), and therefore it can be
written as

U = eiφaλa

where φa are the eight pion fields

Callan, Coleman, Wess, Zumino (69)
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Construction of the effective Lagrangian

In order to reproduce the low–energy structure of QCD we con-
struct an effective Lagrangian which:

◮ contains the pion fields as the only degrees of freedom
◮ is invariant under G
◮ and expand it in powers of momenta

Leff = f1(U) + f2(U)〈U+
¤U〉

+ f3(U)〈∂µU+∂µU〉+ O(p4)

The invariance under transformations U G
−→ U ′ = VRUV−1

L im-
plies that f1,2,3(U) do not depend on U
⇒ f1 is an irrelevant constant and can simply be dropped
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Construction of the effective Lagrangian

Using partial integration we end up with

Leff = L2 + L4 + L6 + . . . L2 =
F 2

4
〈∂µU+∂µU〉

where we have fixed the constant in front of the trace by looking
at the Noether currents of the G symmetry:

Vµ
i = i

F 2

4
〈λi [∂

µU,U+]〉 Aµ
i = i

F 2

4
〈λi{∂

µU,U+}〉

and comparing the result of the matrix element with the definition

〈0|Aµ
i |π

k (p)〉 = ipµδikF
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Some technical details

The matrix field U is an exponential of the pion fields π. If we
want fields π of canonical dimension, we have to introduce a
dimensional constant in the definition of U:

U = exp
{

i
F ′

πkλk

}

The requirement that the kinetic term of the pion fields is
standard:

Lkin =
1
2
∂µπ

i∂µπi implies: F = F ′

The Lagrangian contains only one coupling constant which is
the pion decay constant
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The first prediction: ππ scattering

Isospin invariant amplitude:

M(πaπb→πcπd) = δabδcdA(s,t ,u) + δacδbdA(t ,u,s)

+ δadδbcA(u,s,t)

Using the effective Lagrangian above

A(s, t , u) =
s

F 2

Exercise: calculate it!
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χPT and explicit symmetry breaking?

◮ The effective Lagrangian was constructed in order to
systematically account for symmetry relations.
If the symmetry is explicitly broken can we still use it?

◮ If the symmetry breaking is weak we can make a
perturbative expansion: matrix elements of the symmetry
breaking Lagrangian (or of powers thereof) will appear

◮ Once we know the transformation properties of the
symmetry breaking term, we can use symmetry to
constrain its matrix elements

◮ The effective Lagrangian is still the appropriate tool to be
used if we want to derive systematically all symmetry
relations
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Effective Lagrangian with ESB

LQCD = LQCD
0 − q̄Mq

The symmetry breaking term

q̄Mq = q̄RMqL + h.c.

becomes also chiral invariant if we impose that the quark mass
matrix M transforms according to

M → M′ = VRMV+
L

We can now proceed to construct a chiral invariant effective La-
grangian that includes explicitly the matrix M:

Leff = Leff(U, ∂U, ∂2U, . . . ,M)
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Effective Lagrangian with ESB

To first order in M there is only one chiral invariant term which
one can construct:

L
(1)
M =

F 2

2

[

B〈MU+〉+ B∗〈M+U〉
]

Strong interactions respect parity ⇒ B must be real:

L
(1)
M =

F 2B
2

〈M
(

U + U+
)

〉
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Effective Lagrangian with ESB

To first order in M there is only one chiral invariant term which
one can construct:

L
(1)
M =

F 2

2

[

B〈MU+〉+ B∗〈M+U〉
]

Strong interactions respect parity ⇒ B must be real:

L
(1)
M =

F 2B
2

〈M
(

U + U+
)

〉

Before using this Lagrangian, pin down the constant B:

B = −
1

F 2 〈0|q̄q|0〉 M2
π = 2Bm̂
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Leading order effective Lagrangian

The complete leading order effective Lagrangian of QCD reads:

L2 =
F 2

4

[

〈∂µU+∂µU〉+ 〈2BM
(

U + U+
)

〉
]

F is the pion decay constant in the chiral limit

B is related to the q̄q–condensate and to the pion mass

M2
π = 2Bm̂ + O(m̂2)
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ππ scattering to leading order

In the presence of quark masses the ππ scattering amplitude
becomes

A(s, t , u) =
s − M2

π

F 2
π

Weinberg (66)

The two S–wave scattering lengths read

a0
0 =

7M2
π

32πF 2
π

= 0.16 a2
0 = −

M2
π

16πF 2
π

= −0.045
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External fields

QCD coupled to external fields (M → s):

L = L
(0)
QCD + q̄γµ(vµ + γ5aµ)q − q̄(s − iγ5p)q

Generating functional of Green functions of quark bilinears

〈0|Tei
∫

d4xL|0〉 = eiZ [v ,a,s,p]
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External fields

QCD coupled to external fields (M → s):

L = L
(0)
QCD + q̄γµ(vµ + γ5aµ)q − q̄(s − iγ5p)q

Generating functional of Green functions of quark bilinears

〈0|Tei
∫

d4xL|0〉 = eiZ [v ,a,s,p] = N−1
∫

[dU]ei
∫

d4xLeff

External fields in Leff = L2(U, v , a, s, p) + L4(U, v , a, s, p) + . . .

L2 =
F 2

4

[

〈DµU†DµU〉+ 〈Uχ† + χU†〉
]

DµU = ∂µU − irµU + iUlµ χ = 2B(s + ip) (rµ, lµ) = vµ ± aµ

Gasser, Leutwyler (84)
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The chiral Lagrangian to higher orders

Leff = L2 + L4 + L6 + . . .

L2 contains (2, 2) constants

L4 contains (7, 10) constants Gasser, Leutwyler (84)

L6 contains (53, 90) constants Bijnens, GC, Ecker (99)

The number in parentheses are for an SU(N) theory with
N = (2, 3)
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The L4 Lagrangian

L4 = L1〈DµU†DµU〉2 + L2〈DµU†DνU〉〈DµU†DνU〉

+L3〈DµU†DµUDνU†DνU〉+ L4〈DµU†DµU〉〈χ†U + χU†〉

+L5〈DµU†DµU(χ†U + U†χ)〉+ L6〈χ
†U + χU†〉2

+L7〈χ
†U − χU†〉2 + L8〈χ

†Uχ†U + χU†χU†〉

−iL9〈F
µν
R DµUDνU† + Fµν

L DµU†DνU〉

+L10〈U
†Fµν

R UFLµν〉

DµU = ∂µU − irµU + iUlµ χ = 2B(s + ip)

Fµν
R = ∂µrν − ∂νrµ − i[rµ, rν ]

rµ = vµ + aµ lµ = vµ − aµ
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Summary

◮ I have discussed Goldstone’s theorem and some of its
physical implications at low energy

◮ The effective Lagrangian for Goldstone bosons is a tool to
derive systematically the consequences of the symmetry
on their interactions – I have discussed the principles that
allow one to construct it

◮ The effective Lagrangian is useful also in the presence of a
(small) explicit symmetry breaking – I have shown how to
construct it even in this case

◮ I have emphasized the importance of the external fields in
formulating the effective Lagrangian method
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