Chiral perturbation theory

Gilberto Colangelo

 $u^{\scriptscriptstyle b}$

⊳ UNIVERSITÄT BERN

Albert Einstein Center for Fundamental Physics

STRONGnet summer school, ZIF Bielefeld 14–25 June 2011

Lecture I: Foundations of chiral perturbation theory

Introduction

The QCD spectrum Chiral perturbation theory

Chiral perturbation theory

Goldstone theorem Transformation properties of pions Effective Lagrangian Explicit symmetry breaking External fields

Summary

The QCD spectrum – on the lattice

$$C(t) = \int d^3x \, \langle [\bar{q}\gamma_5 q(x)] \, [\bar{q}\gamma_5 q(0)] \rangle \, e^{\mathrm{i} \mathbf{p} \mathbf{x}} \stackrel{t \to \infty}{\longrightarrow} \sum_{n=0}^{\infty} c_n \, e^{-E_n t}$$

$$M_{\pi} = \lim_{\substack{L \to \infty \\ a o 0}} M_{\pi}(L, a) \qquad M_{\pi}(L, a) = E_n(\mathbf{p} = 0)$$

•
$$\overline{q} \gamma_5 q$$
, $\overline{q} \Gamma q$

QCD _XPT

The QCD spectrum

the lowest-lying particles in the spectra are well understood: they would become exactly massless in the chiral limit of QCD (Goldstone bosons)

QCD

- the lowest-lying particles in the spectra are well understood: they would become exactly massless in the chiral limit of QCD (Goldstone bosons)
- the dynamics of strong interactions at low energy can be understood on the basis of chiral symmetry (chiral perturbation theory = χ PT)

- the lowest-lying particles in the spectra are well understood: they would become exactly massless in the chiral limit of QCD (Goldstone bosons)
- the dynamics of strong interactions at low energy can be understood on the basis of chiral symmetry (chiral perturbation theory = χPT)
- the positions of the low-lying resonances is more difficult to determine and understand (lattice? \chi_PT+ dispersion relations?)

- the lowest-lying particles in the spectra are well understood: they would become exactly massless in the chiral limit of QCD (Goldstone bosons)
- the dynamics of strong interactions at low energy can be understood on the basis of chiral symmetry (chiral perturbation theory = χPT)
- the positions of the low-lying resonances is more difficult to determine and understand (lattice? \chi_PT+ dispersion relations?)
- they set the limit of validity of the chiral expansion

 If a symmetry is spontaneously broken the spectrum contains massless particles – the Goldstone bosons

- If a symmetry is spontaneously broken the spectrum contains massless particles - the Goldstone bosons
- symmetry constrains the interactions of the Goldstone bosons – their interactions vanish at low energy

- If a symmetry is spontaneously broken the spectrum contains massless particles – the Goldstone bosons
- symmetry constrains the interactions of the Goldstone bosons – their interactions vanish at low energy
- Green functions contain poles and cuts due to the exchange of Goldstone bosons

- If a symmetry is spontaneously broken the spectrum contains massless particles – the Goldstone bosons
- symmetry constrains the interactions of the Goldstone bosons – their interactions vanish at low energy
- Green functions contain poles and cuts due to the exchange of Goldstone bosons
- the vertices, on the other hand, can be expanded in powers of momenta and obey symmetry relations

- If a symmetry is spontaneously broken the spectrum contains massless particles – the Goldstone bosons
- symmetry constrains the interactions of the Goldstone bosons – their interactions vanish at low energy
- Green functions contain poles and cuts due to the exchange of Goldstone bosons
- the vertices, on the other hand, can be expanded in powers of momenta and obey symmetry relations
- effective Lagrangian: systematic method to construct this expansion, respecting symmetry and all the general principles of quantum field theory

- If a symmetry is spontaneously broken the spectrum contains massless particles – the Goldstone bosons
- symmetry constrains the interactions of the Goldstone bosons – their interactions vanish at low energy
- Green functions contain poles and cuts due to the exchange of Goldstone bosons
- the vertices, on the other hand, can be expanded in powers of momenta and obey symmetry relations
- effective Lagrangian: systematic method to construct this expansion, respecting symmetry and all the general principles of quantum field theory
- The method leads to predictions even very sharp ones

Quantum Chromodynamics in the chiral limit

$$\mathcal{L}_{\rm QCD}^{(0)} = \bar{q}_L i \not\!\!\!D q_L + \bar{q}_R i \not\!\!\!D q_R - \frac{1}{4} G^a_{\mu\nu} G^{a\mu\nu} \qquad \qquad q = \begin{pmatrix} u \\ d \\ s \end{pmatrix}$$

Large global symmetry group:

$$SU(3)_L \times SU(3)_R \times U(1)_V \times U(1)_A$$

- 1. $U(1)_V \Rightarrow$ baryonic number
- 2. $U(1)_A$ is anomalous
- 3.

$$SU(3)_L \times SU(3)_R \Rightarrow SU(3)_V$$

 \Rightarrow Goldstone bosons with the quantum numbers of pseudoscalar mesons will be generated

Quark masses, chiral expansion In the real world quarks are not massless:

$$\mathcal{L}_{QCD} = \mathcal{L}_{QCD}^{(0)} + \mathcal{L}_m, \qquad \mathcal{L}_m := -\bar{q}\mathcal{M}q$$
 $\mathcal{M} = \begin{pmatrix} m_u & & \\ & m_d & \\ & & m_s \end{pmatrix}$

the mass term \mathcal{L}_m can be considered as a small perturbation \Rightarrow Expand around $\mathcal{L}_{QCD}^{(0)} \equiv$ Expand in powers of m_q Quark masses, chiral expansion In the real world quarks are not massless:

$$\mathcal{L}_{QCD} = \mathcal{L}_{QCD}^{(0)} + \mathcal{L}_m, \qquad \mathcal{L}_m := -\bar{q}\mathcal{M}q$$
 $\mathcal{M} = \begin{pmatrix} m_u & & \\ & m_d & \\ & & m_s \end{pmatrix}$

the mass term \mathcal{L}_m can be considered as a small perturbation \Rightarrow Expand around $\mathcal{L}_{QCD}^{(0)} \equiv$ Expand in powers of m_q

Chiral perturbation theory, the low-energy effective theory of QCD, is a simultaneous expansion in powers of momenta and quark masses

Quark mass expansion of meson masses General quark mass expansion for the *P* particle:

$$M_P^2 = M_0^2 + \langle P | ar{q} \mathcal{M} q | P
angle + O(m_q^2)$$

For the pion $M_0^2 = 0$:

$$M_\pi^2=-(m_u+m_d)rac{1}{F_\pi^2}\langle 0|ar{q}q|0
angle+O(m_q^2)$$

where we have used a Ward identity:

$$\langle \pi | ar{q} q | \pi
angle = - rac{1}{F_\pi^2} \langle 0 | ar{q} q | 0
angle =: B_0$$

 $\langle 0|\bar{q}q|0
angle$ is an order parameter for the chiral spontaneous symmetry breaking Gell-Mann, Oakes and Renner (68)

Quark mass expansion of meson masses Consider the whole pseudoscalar octet:

$$M_{\pi}^{2} = (m_{u} + m_{d})B_{0} + O(m_{q}^{2})$$

$$M_{K^{+}}^{2} = (m_{u} + m_{s})B_{0} + O(m_{q}^{2})$$

$$M_{K^{0}}^{2} = (m_{d} + m_{s})B_{0} + O(m_{q}^{2})$$

$$M_{\eta}^{2} = \frac{1}{3}(m_{u} + m_{d} + 4m_{s})B_{0} + O(m_{q}^{2})$$

Quark mass expansion of meson masses Consider the whole pseudoscalar octet:

$$M_{\pi}^{2} = (m_{u} + m_{d})B_{0} + O(m_{q}^{2})$$

$$M_{K^{+}}^{2} = (m_{u} + m_{s})B_{0} + O(m_{q}^{2})$$

$$M_{K^{0}}^{2} = (m_{d} + m_{s})B_{0} + O(m_{q}^{2})$$

$$M_{\eta}^{2} = \frac{1}{3}(m_{u} + m_{d} + 4m_{s})B_{0} + O(m_{q}^{2})$$

Consequences:

$$(\hat{m}=(m_u+m_d)/2)$$

$$\begin{array}{rcl} M_{K}^{2}/M_{\pi}^{2} &=& (m_{\rm s}+\hat{m})/2\hat{m} &\Rightarrow m_{\rm s}/\hat{m}=25.9 \\ M_{\eta}^{2}/M_{\pi}^{2} &=& (2m_{\rm s}+\hat{m})/3\hat{m} &\Rightarrow m_{\rm s}/\hat{m}=24.3 \\ 3M_{\eta}^{2} &=& 4M_{K}^{2}-M_{\pi}^{2} & \mbox{Gell-Mann-Okubo (62)} \\ (0.899 &=& 0.960) \ \mbox{GeV}^{2} \end{array}$$

Quark mass expansion of meson masses

Goldstone theorem

Hamiltonian \mathcal{H} symmetric under the group of transformations *G*: [Q_i are the generators of *G*]

$$[Q_i,\mathcal{H}]=0 \qquad \qquad i=1,\ldots n_G$$

Ground state not invariant under G, i.e. for some generators X_i

 $X_i |0
angle
eq 0$

$$\{Q_1, \ldots, Q_{n_G}\} = \{H_1, \ldots, H_{n_H}, X_1, \ldots, X_{n_G - n_H}\}$$

Goldstone theorem

$$[Q_i, \mathcal{H}] = 0$$
 $i = 1, \dots n_G$, $X_i |0\rangle \neq 0$, $H_i |0\rangle = 0$

1. The subset of generators H_i which annihilate the vacuum forms a subalgebra

$$[H_i, H_k]|0\rangle = 0 \qquad \qquad i, k = 1, \dots n_H$$

2. The spectrum of the theory contains $n_G - n_H$ massless excitations

$$X_i|0\rangle$$
 $i=1,\ldots n_G-n_H$

from $[X_i, \mathcal{H}] = 0$ follows that $X_i |0\rangle$ is an eigenstate of the Hamiltonian with the same eigenvalue as the vacuum

Goldstone theorem

$$[\mathbf{Q}_i,\mathcal{H}]=0 \qquad i=1,\ldots n_G \ , \qquad X_i|\mathbf{0}
angle
eq 0 \ , \qquad H_i|\mathbf{0}
angle = 0$$

- $X_i |0\rangle$ are the Goldstone boson states
- the X_i are generators of the quotient space G/H
- the Goldstone fields are elements of the space G/H
- their transformation properties under G are fully dictated: they transform nonlinearly
- the dynamics of the Goldstone bosons at low energy is strongly constrained by symmetry

Matrix elements of conserved currents

Goldstone's theorem also asserts that:

the transition matrix elements between the conserved currents associated with the generators Q_i and the pions^{*}

 $\langle 0|J_{i}^{\mu}|\pi^{a}(p)
angle = iF_{i}^{a}p^{\mu}$

is an $n_G \times (n_G - n_H)$ matrix F_i^a of rank $N_{GB} = n_G - n_H$

*We have introduced the symbol π for the Goldstone boson fields, and will call them "pions", as in strong interactions. The discussion however, remains completely general

Current conservation implies

$$p_{\mu}\langle \pi^{a_1}(p_1)\pi^{a_2}(p_2)\dots \operatorname{out}|J_i^{\mu}|0
angle = 0 \qquad p^{\mu} = p_1^{\mu} + p_2^{\mu} + \dots$$

Current conservation implies

$$p_{\mu}\langle \pi^{a_1}(p_1)\pi^{a_2}(p_2)\dots \operatorname{out}|J^{\mu}_i|0
angle = 0 \qquad p^{\mu} = p^{\mu}_1 + p^{\mu}_2 + \dots$$

Consider the amplitude for pair creation

$$\langle \pi^{a_1}(p_1)\pi^{a_2}(p_2) \text{out} | J_i^{\mu} | 0 \rangle = \frac{p_3^{\mu}}{p_3^2} \sum_{a_3} F_i^{a_3} v_{a_1 a_2 a_3}(p_i) + \dots$$

Current conservation implies

$$p_{\mu}\langle \pi^{a_1}(p_1)\pi^{a_2}(p_2)\dots \operatorname{out}|J^{\mu}_i|0
angle = 0 \qquad p^{\mu} = p^{\mu}_1 + p^{\mu}_2 + \dots$$

Consider the amplitude for pair creation

$$\langle \pi^{a_1}(p_1)\pi^{a_2}(p_2) \text{out} | J_i^{\mu} | 0 \rangle = \frac{p_3^{\mu}}{p_3^2} \sum_{a_3} F_i^{a_3} v_{a_1 a_2 a_3}(p_i) + \dots$$

Current conserv.
$$\Rightarrow \sum_{a_3} F_i^{a_3} v_{a_1 a_2 a_3}(0) = 0 \Rightarrow v_{a_1 a_2 a_3}(0) = 0$$

Lorentz invariance $\Rightarrow v_{a_1a_2a_3}(p_1, p_2, p_3)$ can only depend on p_1^2, p_2^2, p_3^2 : on the mass shell it is always zero

Amplitude for three-pion creation from a conserved current

$$\langle \pi^{a_1} \pi^{a_2} \pi^{a_3} \text{out} | J_j^{\mu} | 0 \rangle = \frac{p_4^{\mu}}{p_4^2} \sum_{a_4} F_j^{a_4} v_{a_1 a_2 a_3 a_4}(p_j) + \dots$$

Amplitude for three-pion creation from a conserved current

$$\langle \pi^{a_1} \pi^{a_2} \pi^{a_3} \text{out} | J_i^{\mu} | 0 \rangle = \frac{p_4^{\mu}}{p_4^2} \sum_{a_4} F_i^{a_4} v_{a_1 a_2 a_3 a_4}(p_i) + \dots$$

Current conservation \Rightarrow

$$\sum_{a_4} F_i^{a_4} v_{a_1 a_2 a_3 a_4}(0) = 0 \Rightarrow v_{a_1 a_2 a_3 a_4}(0) = 0$$

Amplitude for three-pion creation from a conserved current

$$\langle \pi^{a_1}\pi^{a_2}\pi^{a_3} \text{out}|J_i^{\mu}|0\rangle = \frac{p_4^{\mu}}{p_4^2}\sum_{a_4}F_i^{a_4}v_{a_1a_2a_3a_4}(p_i)+\dots$$

Current conservation \Rightarrow

$$\sum_{a_4} F_i^{a_4} v_{a_1 a_2 a_3 a_4}(0) = 0 \Rightarrow v_{a_1 a_2 a_3 a_4}(0) = 0$$

In this case the vertex function can depend on two Lorentz scalars, *s* and *t*, and we can do a Taylor expansion:

$$V_{a_1a_2a_3a_4}(p_1,p_2,p_3,p_4) = c^1_{a_1a_2a_3a_4}s + c^2_{a_1a_2a_3a_4}t + \dots$$

 Symmetry implies that Goldstone bosons do not interact at low energy

- Symmetry implies that Goldstone bosons do not interact at low energy
- If we take explicitly into account the poles in the Green functions which are due to exchanges of Goldstone bosons we can expand the vertices in powers of momenta

- Symmetry implies that Goldstone bosons do not interact at low energy
- If we take explicitly into account the poles in the Green functions which are due to exchanges of Goldstone bosons we can expand the vertices in powers of momenta
- The symmetry of the system implies also relations among the coefficients in the Taylor expansion in the momenta

- Symmetry implies that Goldstone bosons do not interact at low energy
- If we take explicitly into account the poles in the Green functions which are due to exchanges of Goldstone bosons we can expand the vertices in powers of momenta
- The symmetry of the system implies also relations among the coefficients in the Taylor expansion in the momenta
- The effective Lagrangian is a systematic method to construct this expansion in a way that automatically respects the symmetry of the system

- Symmetry implies that Goldstone bosons do not interact at low energy
- If we take explicitly into account the poles in the Green functions which are due to exchanges of Goldstone bosons we can expand the vertices in powers of momenta
- The symmetry of the system implies also relations among the coefficients in the Taylor expansion in the momenta
- The effective Lagrangian is a systematic method to construct this expansion in a way that automatically respects the symmetry of the system
- Effective Lagrangian for Goldstone Bosons = χ PT

Weinberg (79)

Transformation properties of the pions

The pion fields transform according to a representation of G

$$m{g}\inm{G}:ec{\pi}
ightarrowec{\pi}'=ec{f}(m{g},ec{\pi})$$

where f has to obey the composition law

$$\vec{f}(g_1, \vec{f}(g_2, \vec{\pi})) = \vec{f}(g_1g_2, \vec{\pi})$$

 $\vec{f}(g,0) =$ image of the origin : the elements which leave the origin invariant form a subgroup – the conserved subgroup *H*

 $\vec{f}(gh, 0)$ coincides with $\vec{f}(g, 0)$ for each $g \in G$ and $h \in H \Rightarrow$ the function \vec{f} maps elements of G/H onto the space of pion fields

Transformation properties of the pions

The pion fields transform according to a representation of G

$$g\in {f G}:ec \pi o ec \pi' = ec f(g,ec \pi)$$

where f has to obey the composition law

$$\vec{f}(g_1, \vec{f}(g_2, \vec{\pi})) = \vec{f}(g_1g_2, \vec{\pi})$$

The mapping is invertible: $\vec{f}(g_1, 0) = \vec{f}(g_2, 0)$ implies $g_1 g_2^{-1} \in H$ \Rightarrow pions can be identified with elements of G/H

Action of G on G/H

Two elements of G, $g_{1,2}$ are identified with the same element of G/H if

$$g_1g_2^{-1}\in H$$

Let us call q_i the elements of G/H

Action of G on G/H

Two elements of G, $g_{1,2}$ are identified with the same element of G/H if

$$g_1g_2^{-1}\in H$$

Let us call q_i the elements of G/H

The action of G on G/H is given by

 $gq_1 = q_2h$ where $h(g, q_1) \in H$

Action of G on G/H

Two elements of G, $g_{1,2}$ are identified with the same element of G/H if

$$g_1g_2^{-1}\in H$$

Let us call q_i the elements of G/H

The action of G on G/H is given by

 $gq_1 = q_2h$ where $h(g, q_1) \in H$

The transformation properties of the coordinates of G/H under the action of G are nonlinear (h is in general a nonlinear function of q_1 and g)

The space G/H for QCD

The choice of a representative element inside each equivalence class is arbitrary. For example

$$g = (g_L, g_R) = (1, g_R g_L^{-1}) \cdot (g_L, g_L) =: q \cdot h$$

but also $g = (g_L, g_R) = (g_L g_R^{-1}, 1) \cdot (g_R, g_R) =: q' \cdot h'$
where $q, q' \in G/H$ and $h, h' \in H$

Action of G on G/H

$$(V_L, V_R) \cdot (1, g_R g_L^{-1}) = (V_L, V_R g_R g_L^{-1}) = (1, V_R g_R g_L^{-1} V_L^{-1}) \cdot (V_L, V_L)$$

The space G/H for QCD

In the literature the pion fields are usually collected in a matrix– valued field U, which transforms like

$$U \stackrel{\mathsf{G}}{\longrightarrow} U' = V_{\mathcal{R}} U V_L^{-1}$$

U is nothing but a shorthand notation for $(1, g_R g_L^{-1})$, or its non-trivial part $g_R g_L^{-1}$

As a matrix U is a member of SU(3), and therefore it can be written as

$$U = e^{i\phi^a\lambda_a}$$

where ϕ^a are the eight pion fields

Construction of the effective Lagrangian

In order to reproduce the low–energy structure of QCD we construct an effective Lagrangian which:

- contains the pion fields as the only degrees of freedom
- is invariant under G
- and expand it in powers of momenta

$$egin{array}{rcl} \mathcal{L}_{eff} &=& f_1(U) + f_2(U) \langle U^+ \Box U
angle \ &+& f_3(U) \langle \partial_\mu U^+ \partial^\mu U
angle + O(
ho^4) \end{array}$$

The invariance under transformations $U \xrightarrow{G} U' = V_R U V_L^{-1}$ implies that $f_{1,2,3}(U)$ do not depend on $U \Rightarrow f_1$ is an irrelevant constant and can simply be dropped

Construction of the effective Lagrangian

Using partial integration we end up with

$$\mathcal{L}_{eff} = \mathcal{L}_{2} + \mathcal{L}_{4} + \mathcal{L}_{6} + \dots$$
 $\mathcal{L}_{2} = \frac{F^{2}}{4} \langle \partial_{\mu} U^{+} \partial^{\mu} U \rangle$

where we have fixed the constant in front of the trace by looking at the Noether currents of the *G* symmetry:

$$V_{i}^{\mu}=i\frac{F^{2}}{4}\langle\lambda_{i}[\partial^{\mu}U,U^{+}]\rangle \qquad A_{i}^{\mu}=i\frac{F^{2}}{4}\langle\lambda_{i}\{\partial^{\mu}U,U^{+}\}\rangle$$

and comparing the result of the matrix element with the definition

$$\langle 0|A^{\mu}_{i}|\pi^{k}(\mathbf{p})
angle=i\mathbf{p}^{\mu}\delta_{ik}F$$

Some technical details

The matrix field *U* is an exponential of the pion fields π . If we want fields π of canonical dimension, we have to introduce a dimensional constant in the definition of *U*:

$$U = \exp\left\{rac{i}{\mathcal{F}'}\pi^k\lambda_k
ight\}$$

The requirement that the kinetic term of the pion fields is standard:

$$\mathcal{L}_{kin} = rac{1}{2} \partial_{\mu} \pi^i \partial^{\mu} \pi^i$$
 implies: $F = F'$

The Lagrangian contains only one coupling constant which is the pion decay constant

The first prediction: $\pi\pi$ scattering

Isospin invariant amplitude:

$$M(\pi^{a}\pi^{b} \rightarrow \pi^{c}\pi^{d}) = \delta_{ab}\delta_{cd}A(s,t,u) + \delta_{ac}\delta_{bd}A(t,u,s) + \delta_{ad}\delta_{bc}A(u,s,t)$$

Using the effective Lagrangian above

$$A(s,t,u)=\frac{s}{F^2}$$

Exercise: calculate it!

χ PT and explicit symmetry breaking?

- The effective Lagrangian was constructed in order to systematically account for symmetry relations.
 If the symmetry is explicitly broken can we still use it?
- If the symmetry breaking is weak we can make a perturbative expansion: matrix elements of the symmetry breaking Lagrangian (or of powers thereof) will appear
- Once we know the transformation properties of the symmetry breaking term, we can use symmetry to constrain its matrix elements
- The effective Lagrangian is still the appropriate tool to be used if we want to derive systematically all symmetry relations

Effective Lagrangian with ESB

$$\mathcal{L}^{ ext{QCD}} = \mathcal{L}^{ ext{QCD}}_0 - ar{q}\mathcal{M}q$$

The symmetry breaking term

$$ar{q}\mathcal{M}q=ar{q}_{\mathcal{R}}\mathcal{M}q_{\mathcal{L}}+\mathsf{h.c.}$$

becomes also chiral invariant if we impose that the quark mass matrix ${\cal M}$ transforms according to

$$\mathcal{M} o \mathcal{M}' = V_{\mathcal{R}} \mathcal{M} V_{\mathcal{L}}^+$$

We can now proceed to construct a chiral invariant effective Lagrangian that includes explicitly the matrix \mathcal{M} :

$$\mathcal{L}_{\mathsf{eff}} = \mathcal{L}_{\mathsf{eff}}(\boldsymbol{U}, \partial \boldsymbol{U}, \partial^2 \boldsymbol{U}, \dots, \mathcal{M})$$

Effective Lagrangian with ESB

To first order in $\ensuremath{\mathcal{M}}$ there is only one chiral invariant term which one can construct:

$$\mathcal{L}_{\mathcal{M}}^{(1)} = rac{F^2}{2} \left[B \langle \mathcal{M} U^+
angle + B^* \langle \mathcal{M}^+ U
angle
ight]$$

Strong interactions respect parity \Rightarrow *B* must be real:

$$\mathcal{L}_{\mathcal{M}}^{(1)} = rac{F^2B}{2} \langle \mathcal{M} \left(U + U^+
ight)
angle$$

Effective Lagrangian with ESB

To first order in $\ensuremath{\mathcal{M}}$ there is only one chiral invariant term which one can construct:

$$\mathcal{L}_{\mathcal{M}}^{(1)} = rac{F^2}{2} \left[B \langle \mathcal{M} U^+
angle + B^* \langle \mathcal{M}^+ U
angle
ight]$$

Strong interactions respect parity \Rightarrow *B* must be real:

$$\mathcal{L}_{\mathcal{M}}^{(1)} = rac{F^2B}{2} \langle \mathcal{M} \left(U + U^+
ight)
angle$$

Before using this Lagrangian, pin down the constant B:

$$B=-rac{1}{F^2}\langle 0|ar{q}q|0
angle \qquad M_\pi^2=2B\hat{m}$$

Leading order effective Lagrangian

The complete leading order effective Lagrangian of QCD reads:

$$\mathcal{L}_{2}=rac{\mathcal{F}^{2}}{4}\left[\langle\partial_{\mu}U^{+}\partial^{\mu}U
angle+\langle2\mathcal{BM}\left(U+U^{+}
ight)
angle
ight]$$

F is the pion decay constant in the chiral limit

B is related to the $\bar{q}q$ -condensate and to the pion mass

$$M_{\pi}^2 = 2B\hat{m} + O(\hat{m}^2)$$

$\pi\pi$ scattering to leading order

In the presence of quark masses the $\pi\pi$ scattering amplitude becomes

$$A(s,t,u) = rac{s - M_\pi^2}{F_\pi^2}$$
 Weinberg (66)

The two S-wave scattering lengths read

$$a_0^0 = rac{7M_\pi^2}{32\pi F_\pi^2} = 0.16$$
 $a_0^2 = -rac{M_\pi^2}{16\pi F_\pi^2} = -0.045$

External fields

QCD coupled to external fields ($\mathcal{M} \rightarrow s$):

$$\mathcal{L} = \mathcal{L}_{ ext{QCD}}^{(0)} + ar{q} \gamma^{\mu} (m{v}_{\mu} + \gamma_5 m{a}_{\mu}) m{q} - ar{m{q}} (m{s} - m{i} \gamma_5 m{p}) m{q}$$

Generating functional of Green functions of quark bilinears

$$\langle 0 | \mathit{T} e^{i \int d^4 x \mathcal{L}} | 0 \rangle = e^{i Z[v,a,s,p]}$$

External fields

QCD coupled to external fields ($\mathcal{M} \rightarrow s$):

$$\mathcal{L} = \mathcal{L}_{ ext{QCD}}^{(0)} + ar{m{q}} \gamma^\mu (m{v}_\mu + \gamma_5 m{a}_\mu)m{q} - ar{m{q}}(m{s} - m{i}\gamma_5 m{p})m{q}$$

Generating functional of Green functions of quark bilinears

$$\langle 0|\mathit{T}e^{i\int d^{4}x\mathcal{L}}|0
angle = e^{i\mathcal{Z}[v,a,s,p]} = \mathcal{N}^{-1}\int [\mathit{d}U]e^{i\int d^{4}x\mathcal{L}_{eff}}$$

External fields in $\mathcal{L}_{\mathrm{eff}} = \mathcal{L}_2(U, v, a, s, p) + \mathcal{L}_4(U, v, a, s, p) + \dots$

$$\mathcal{L}_{2} = \frac{F^{2}}{4} \left[\langle D_{\mu} U^{\dagger} D^{\mu} U \rangle + \langle U \chi^{\dagger} + \chi U^{\dagger} \rangle \right]$$

 $D_{\mu}U = \partial_{\mu}U - ir_{\mu}U + iUI_{\mu}$ $\chi = 2B(s + ip)$ $(r_{\mu}, I_{\mu}) = v_{\mu} \pm a_{\mu}$

Gasser, Leutwyler (84)

The chiral Lagrangian to higher orders

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_2 + \mathcal{L}_4 + \mathcal{L}_6 + \dots$$

The number in parentheses are for an SU(N) theory with N = (2,3)

The \mathcal{L}_4 Lagrangian

$$\begin{split} \mathcal{L}_{4} &= L_{1} \langle D_{\mu} U^{\dagger} D^{\mu} U \rangle^{2} + L_{2} \langle D_{\mu} U^{\dagger} D_{\nu} U \rangle \langle D^{\mu} U^{\dagger} D^{\nu} U \rangle \\ &+ L_{3} \langle D_{\mu} U^{\dagger} D^{\mu} U D_{\nu} U^{\dagger} D^{\nu} U \rangle + L_{4} \langle D_{\mu} U^{\dagger} D^{\mu} U \rangle \langle \chi^{\dagger} U + \chi U^{\dagger} \rangle \\ &+ L_{5} \langle D_{\mu} U^{\dagger} D^{\mu} U (\chi^{\dagger} U + U^{\dagger} \chi) \rangle + L_{6} \langle \chi^{\dagger} U + \chi U^{\dagger} \rangle^{2} \\ &+ L_{7} \langle \chi^{\dagger} U - \chi U^{\dagger} \rangle^{2} + L_{8} \langle \chi^{\dagger} U \chi^{\dagger} U + \chi U^{\dagger} \chi U^{\dagger} \rangle \\ &- i L_{9} \langle F_{R}^{\mu\nu} D_{\mu} U D_{\nu} U^{\dagger} + F_{L}^{\mu\nu} D_{\mu} U^{\dagger} D_{\nu} U \rangle \\ &+ L_{10} \langle U^{\dagger} F_{R}^{\mu\nu} U F_{L \mu \nu} \rangle \end{split}$$

$$D_{\mu}U = \partial_{\mu}U - ir_{\mu}U + iUI_{\mu} \qquad \chi = 2B(s + ip)$$

$$F_{R}^{\mu\nu} = \partial^{\mu}r^{\nu} - \partial^{\nu}r^{\mu} - i[r^{\mu}, r^{\nu}]$$

$$r_{\mu} = v_{\mu} + a_{\mu} \qquad I_{\mu} = v_{\mu} - a_{\mu}$$

Summary

- I have discussed Goldstone's theorem and some of its physical implications at low energy
- The effective Lagrangian for Goldstone bosons is a tool to derive systematically the consequences of the symmetry on their interactions – I have discussed the principles that allow one to construct it
- The effective Lagrangian is useful also in the presence of a (small) explicit symmetry breaking – I have shown how to construct it even in this case
- I have emphasized the importance of the external fields in formulating the effective Lagrangian method