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Why go beyond O(p2)? Why loops?

〈0|Tei
∫

d4xL|0〉 = eiZ [v ,a,s,p] = N−1
∫

[dU]ei
∫

d4xLeff
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Why go beyond O(p2)? Why loops?
◮ Why not? Chiral Symmetry forbids O(p0) interactions

between pions, but allows all higher orders
◮ Unitarity requires that if an amplitude at order p2 is purely

real, at order p4 its imaginary part is nonzero.
Take the ππ scattering amplitude. The elastic unitarity
relation for the partial waves t I

ℓ of isospin I and angular
momentum ℓ reads:

Im t I
ℓ =

√

1 − 4M2
π

s
|t I
ℓ|2
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Why go beyond O(p2)? Why loops?
◮ Why not? Chiral Symmetry forbids O(p0) interactions

between pions, but allows all higher orders
◮ Unitarity requires that if an amplitude at order p2 is purely

real, at order p4 its imaginary part is nonzero.
Take the ππ scattering amplitude. The elastic unitarity
relation for the partial waves t I

ℓ of isospin I and angular
momentum ℓ reads:

Im t I
ℓ =

√

1 − 4M2
π

s
|t I
ℓ|2

◮ The correct imaginary parts are generated automatically
by loops

◮ The divergences occuring in the loops can be disposed of
just like in a renormalizable field theory
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Effective quantum field theory

The method of effective quantum field theory provides a rigorous
framework to compute Green functions that respect:

symmetry, analyticity, unitarity

The method yields a systematic expansion of the Green func-
tions in powers of momenta and quark masses

In the following I will discuss in detail how this works when you
consider loops:

◮ I will consider the finite, analytically nontrivial part of the
loops and discuss in detail its physical meaning

◮ I will consider the divergent part of the loops and discuss
how the renormalization program works
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Scalar form factor of the pion

〈πi(p1)π
j(p2)|m̂(ūu + d̄d)|0〉 =: δijΓ(t) , t = (p1 + p2)

2 ,

At tree level:
Γ(t) = 2m̂B = M2

π + O(p4) ,

in agreement with the Feynman–Hellman theorem:
the expectation value of the perturbation in an eigenstate of the
total Hamiltonian determines the derivative of the energy level
with respect to the strength of the perturbation:

m̂
∂M2

π

∂m̂
= 〈π|m̂q̄q|π〉 = Γ(0) .

This matrix element is relevant for the decay h → ππ, which, for
a light Higgs would have been the main decay mode

Donoghue, Gasser & Leutwyler (90)
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Dispersion relation for Γ(t)

For t ≥ 4M2
π Im Γ(t) 6= 0. Γ(t) is analytic everywhere else in

the complex t plane, and obeys the following dispersion relation:
Γ̄(t) = Γ(t)/Γ(0)

Γ̄(t) = 1 + bt +
t2

π

∫ ∞

4M2
π

dt ′

t ′2
Im Γ̄(t ′)
t ′ − t
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Dispersion relation for Γ(t)

For t ≥ 4M2
π Im Γ(t) 6= 0. Γ(t) is analytic everywhere else in

the complex t plane, and obeys the following dispersion relation:
Γ̄(t) = Γ(t)/Γ(0)

Γ̄(t) = 1 + bt +
t2

π

∫ ∞

4M2
π

dt ′

t ′2
Im Γ̄(t ′)
t ′ − t

Unitarity implies [σ(t) =
√

1 − 4M2
π/t ]

Im Γ̄(t) = σ(t)Γ̄(t)t0
0
∗
(t) = Γ̄(t)e−iδ0

0 sin δ0
0 = |Γ̄(t)| sin δ0

0

where t0
0 is the S–wave, I = 0 ππ scattering amplitude

Strictly speaking, the above unitarity relation is valid only for t ≤ 16M2
π

. To a good approximation, however, it holds

up to the K K̄ threshold
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Dispersion relation and chiral counting

Γ̄(t) = 1 + bt +
t2

π

∫ ∞

4M2
π

dt ′

t ′2
|Γ̄(t ′)| sin δ0

0(t
′)

t ′ − t

b ∼ O(1)
(

1 + O(M2
π)
)

δ0
0 ∼ O(p2)

(

1 + O(p2)
)

There are two O(p2) correction to Γ̄:

1. O(1) contribution to b;

2. the dispersive integral containing the O(p2) phase δ0
0.

Notice that the latter is fixed by unitarity and analyticity

Are these respected by the one loop calculation?
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Dispersion relation and one–loop CHPT

The full one–loop expression of Γ̄(t) reads as follows:

Γ̄(t) = 1 +
t

16π2F 2
π

(ℓ̄4 − 1) +
2t − M2

π

2F 2
π

J̄(t)

J̄(t) =
1

16π2

[

σ(t) ln
σ(t)− 1
σ(t) + 1

+ 2
]
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Dispersion relation and one–loop CHPT

The full one–loop expression of Γ̄(t) reads as follows:

Γ̄(t) = 1 +
t

16π2F 2
π

(ℓ̄4 − 1) +
2t − M2

π

2F 2
π

J̄(t)

J̄(t) =
1

16π2

[

σ(t) ln
σ(t)− 1
σ(t) + 1

+ 2
]

To prove that unitarity and analyticity are respected at this order
is sufficient to add:

δ0
0(t) = σ(t)

2t − M2
π

32πF 2
π

+O(p4) J̄(t) =
t

16π2

∫ ∞

4M2
π

dt ′

t ′
σ(t ′)
t ′ − t
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Can you prove it?

Hints:
◮ Subtract J̄(t) once more

J̄(t) =
t

96π2M2
π

+
t2

16π2

∫ ∞

4M2
π

dt ′

t ′2
σ(t ′)
t ′ − t

◮ Trick to pull out a linear term from the dispersive integral:
∫ ∞

4M2
π

dt ′

t ′2
t ′σ(t ′)
t ′ − t

= t
∫ ∞

4M2
π

dt ′

t ′2
σ(t ′)
t ′ − t

+

∫ ∞

4M2
π

dt ′

t ′2
σ(t ′)
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High-energy contributions

The dispersive integral goes up to s′ = ∞, but the integrand is
correct only at low energy!

Γ̄(t)h.e. =
t2

π

∫ ∞

Λ2

dt ′

t ′2
|Γ̄(t ′)| sin δ0

0(t
′)

t ′ − t

∼ t2

π

∫ ∞

Λ2

dt ′

t ′2
|Γ̄(t ′)| sin δ0

0(t
′)

1
t ′

(

1 +
t
t ′
+ . . .

)

∼ ct2 +O(t3)

The contributions from the high-energy region of the dispersive
integral are formally of higher order – introducing a cut-off to
remove them would only make the formulae more cumbersome
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Renormalization at one loop

∫
d4l
(2π)4

{p2, p ·l , l2}
(l2 − M2)((p − l)2 − M2)

, p = p1 + p2

∼
∫

d4l
(2π)4

1
(l2−M2)

︸ ︷︷ ︸

+ p2
∫

d4l
(2π)4

1
(l2−M2)((p−l)2−M2)

︸ ︷︷ ︸

T (M2) J(p2)

T (M2) = a + bM2 + T̄ (M2) J(t) = J(0) + J̄(t)
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Renormalization at one loop

∫
d4l
(2π)4

{p2, p ·l , l2}
(l2 − M2)((p − l)2 − M2)

, p = p1 + p2

∼
∫

d4l
(2π)4

1
(l2−M2)

︸ ︷︷ ︸

+ p2
∫

d4l
(2π)4

1
(l2−M2)((p−l)2−M2)

︸ ︷︷ ︸

T (M2) J(p2)

T (M2) = a + bM2 + T̄ (M2) J(t) = J(0) + J̄(t)

T̄ (M2) and J̄(t) are finite

Γ(t) ∼ M2
[

1 + bM2 + tJ(0)
︸ ︷︷ ︸

+T̄ (M2) + J̄(t)
]

divergent part
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Counterterms

L2 ⇒ Γ(2)(t) ∼ M2

L4 ⇒ Γ(4)(t) ∼ ℓ3M4 + ℓ4M2t
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L2 ⇒ Γ(2)(t) ∼ M2

L4 ⇒ Γ(4)(t) ∼ ℓ3M4 + ℓ4M2t

To remove the divergences one only needs to properly define
the couplings (ℓ3,4) in the lagrangian at order O(p4)
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Counterterms

L2 ⇒ Γ(2)(t) ∼ M2

L4 ⇒ Γ(4)(t) ∼ ℓ3M4 + ℓ4M2t

To remove the divergences one only needs to properly define
the couplings (ℓ3,4) in the lagrangian at order O(p4)

Quote from Weinberg’s book on QFT, vol. I: “(...) as long as we
include every one of the infinite number of interactions allowed
by symmetries, the so–called non–renormalizable theories are
actually just as renormalizable as renormalizable theories.”
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Chiral logarithms

Scalar radius of the pion

Γ(t) = Γ(0)
[

1 +
1
6
〈r2〉πSt + O(t2)

]

〈r2〉πS ∼ J(0) =

∫
d4l
(2π)4

1
(l2 − M2)2 ∼ ln

M2

Λ2

The integral is UV divergent, but also IR divergent if M → 0:

lim
M2→0

〈r2〉πS ∼ ln M2 ,

The extension of the cloud of pions surrounding a pion (or any
other hadron) goes to infinity if pions become massless (Li and
Pagels ’72 )
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Chiral symmetry and renormalization

To remove the divergent part in Γ(t) we have to fix the divergent
part of chiral–invariant operator of order O(p4)

e.g. 〈∂µU†∂µU〉〈BM(U + U†)〉 ∼ . . .+ M2φ2∂µφ
4∂µφ6 + . . .
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Chiral symmetry and renormalization

To remove the divergent part in Γ(t) we have to fix the divergent
part of chiral–invariant operator of order O(p4)

e.g. 〈∂µU†∂µU〉〈BM(U + U†)〉 ∼ . . .+ M2φ2∂µφ
4∂µφ6 + . . .

Chiral symmetry implies that after calculating the divergent part
of Γ(s) I also know the divergent part of the 6π → 6π scattering
amplitude
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Chiral symmetry and renormalization

To remove the divergent part in Γ(t) we have to fix the divergent
part of chiral–invariant operator of order O(p4)

e.g. 〈∂µU†∂µU〉〈BM(U + U†)〉 ∼ . . .+ M2φ2∂µφ
4∂µφ6 + . . .

1. Do we have a proof that quantum effects do not introduce
violations of the chiral symmetry? Or that one can build a
chiral invariant generating functional only with a path
integral over a chiral invariant classical action?
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Chiral symmetry and renormalization

To remove the divergent part in Γ(t) we have to fix the divergent
part of chiral–invariant operator of order O(p4)

e.g. 〈∂µU†∂µU〉〈BM(U + U†)〉 ∼ . . .+ M2φ2∂µφ
4∂µφ6 + . . .

1. Do we have a proof that quantum effects do not introduce
violations of the chiral symmetry? Or that one can build a
chiral invariant generating functional only with a path
integral over a chiral invariant classical action?

2. Is there a tool that allows one to calculate the divergences
keeping chiral invariance explicit in every step of the
calculation?
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Leutwyler’s theorem

What is the most general way of constructing a chiral-invariant
generating functional out of a path integral over the Goldstone
boson degrees of freedom?

Z [v ′, a′, s′, p′] = Z [v , a, s, p] ⇔ Leff[v ′, a′, s′, p′] = Leff[v , a, s, p]?

For Lorentz–invariant theories in 4 dimensions, a path integral
constructed with gauge–invariant lagrangians is a necessary
and sufficient condition to obtain a gauge–invariant generating
functional

The theorem also includes the case in which the symmetry is
anomalous and the case in which the symmetry is explicitly bro-
ken

Leutwyler (94), d’Hoker & Weinberg (94)
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Chiral invariant renormalization
◮ Gasser & Leutwyler (84) have shown that, using the

background field method and heat kernel techniques, the
calculation of the divergences at one loop – and the
corresponding renormalization – can be performed in an
explicitly chiral invariant manner

◮ The method has been extended and applied to two loops
(Bijnens, GC & Ecker 98). After a long and tedious
calculation, the divergent parts of all the counterterms at
O(p6) has been provided

◮ The renormalization of CHPT up to two loops has been
performed explicitly: the calculation of any amplitude at two
loops can be immediately checked by comparing the
divergent part of Feynman diagrams to the divergent parts
of the relevant counterterms
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Chiral perturbation theory
◮ Chiral perturbation theory provides a rigorous framework

to compute Green functions that respect all the good
properties we require:
symmetry, analyticity, unitarity
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functions in powers of momenta and quark masses
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Chiral perturbation theory
◮ Chiral perturbation theory provides a rigorous framework

to compute Green functions that respect all the good
properties we require:
symmetry, analyticity, unitarity

◮ The method yields a systematic expansion of the Green
functions in powers of momenta and quark masses

◮ The method has been rigorously established and can be
formulated as a set of calculational rules:
LO tree level diagrams with L2

NLO tree level diagrams with L4

1-loop diagrams with L2

NNLO tree level diagrams with L6

2-loop diagrams with L2

1-loop diagrams with one vertex from L4
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ππ scattering at NLO

a0
0 =

7M2
π

32πF 2
π

[

1 +
M2

π

3
〈r2〉πS +

200πF 2
πM2

π

7
(a0

2 + 2a2
2)

− M2
π

672π2F 2
π

(15ℓ̄3 − 353)
]

= 0.16 · 1.25 = 0.20

2a0
0 − 5a2

0 =
3M2

π

4πF 2
π

[

1 +
M2

π

3
〈r2〉πS +

41M2
π

192π2F 2
π

]

= 0.624

Gasser and Leutwyler (83)
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Higher orders

Higher order corrections are suppressed by O(m2
q/Λ

2)
Λ ∼ 1 GeV ⇒ expected to be a few percent

a0
0 = 0.200 +O(p6) a2

0 = −0.0445 +O(p6)

Gasser and Leutwyler (84)
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Higher orders

Higher order corrections are suppressed by O(m2
q/Λ

2)
Λ ∼ 1 GeV ⇒ expected to be a few percent

a0
0 = 0.200 +O(p6) a2

0 = −0.0445 +O(p6)

The reason for the rather large correction in a0
0 is a chiral log

a0
0 =

7M2
π

32πF 2
π

[

1 +
9
2
ℓχ + . . .

]

a2
0 = − M2

π

16πF 2
π

[

1 − 3
2
ℓχ + . . .

]

ℓχ =
M2

π

16π2F 2
π

ln
µ2

M2
π

Gasser and Leutwyler (84)
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Higher orders

0 0.1 0.2 0.3 0.4
E(GeV)

0

0.1

0.2

0.3

R
e[

t 00 ]
O(p

2
)

O(p
2
)+O(p

4
)

O(p
4
)
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Higher orders

0 0.1 0.2 0.3 0.4
E(GeV)

-0.1

-0.05

0

0.05

R
e[

t 02 ]

O(p
2
)

O(p
2
)+O(p

4
)

O(p
4
)
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Higher orders

Higher order corrections are suppressed by O(m2
q/Λ

2)
Λ ∼ 1 GeV ⇒ expected to be a few percent

a0
0 = 0.200 +O(p6) a2

0 = −0.0445 +O(p6)

The reason for the rather large correction in a0
0 is a chiral log

a0
0 =

7M2
π

32πF 2
π

[

1 +
9
2
ℓχ + . . .

]

a2
0 = − M2

π

16πF 2
π

[

1 − 3
2
ℓχ + . . .

]

ℓχ =
M2

π

16π2F 2
π

ln
µ2

M2
π

Gasser and Leutwyler (84)

How large are yet higher orders?
Is it at all possible to make a precise prediction?
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Roy equations

Unitarity effects can be calculated exactly using dispersive
methods
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Unitarity effects can be calculated exactly using dispersive
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Unitarity, analyticity and crossing symmetry ≡ Roy equations
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Unitarity effects can be calculated exactly using dispersive
methods

Unitarity, analyticity and crossing symmetry ≡ Roy equations

Input: imaginary parts above 0.8 GeV
two subtraction constants, e.g. a0

0 and a2
0
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Roy equations

Unitarity effects can be calculated exactly using dispersive
methods

Unitarity, analyticity and crossing symmetry ≡ Roy equations

Input: imaginary parts above 0.8 GeV
two subtraction constants, e.g. a0

0 and a2
0

Output: the full ππ scattering amplitude below 0.8 GeV
Note: if a0

0, a
2
0 are chosen within the universal band

the solution exists and is unique
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Roy equations

Unitarity effects can be calculated exactly using dispersive
methods

Unitarity, analyticity and crossing symmetry ≡ Roy equations

Input: imaginary parts above 0.8 GeV
two subtraction constants, e.g. a0

0 and a2
0

Output: the full ππ scattering amplitude below 0.8 GeV
Note: if a0

0, a
2
0 are chosen within the universal band

the solution exists and is unique

Numerical solutions of the Roy equations
Pennington-Protopopescu, Basdevant-Froggatt-Petersen (70s)
Ananthanarayan, GC, Gasser and Leutwyler (00)
Descotes-Genon, Fuchs, Girlanda and Stern (01)
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Numerical solutions

0.15 0.2 0.25 0.3

a
0

0

-0.06
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-0.04
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a 02 S
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S
1

S
2 S

3
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Numerical solutions
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Numerical solutions
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Numerical solutions
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In CHPT the two subtraction constants are predicted
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Combining CHPT and dispersive methods

In CHPT the two subtraction constants are predicted

Subtracting the amplitude at threshold (a0
0, a

2
0) is not mandatory

The freedom in the choice of the subtraction point
can be exploited to use the chiral expansion
where it converges best, i.e. below threshold
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Combining CHPT and dispersive methods

0 0.1 0.2 0.3 0.4
E(GeV)

0

0.1

0.2

0.3

R
e[

t 00 ]

O(p
2
)

O(p
2
)+O(p

4
)

O(p
4
)
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Combining CHPT and dispersive methods

The convergence of the series at threshold is greatly improved
if CHPT is used only below threshold

CHPT at threshold

a0
0 = 0.159 → 0.200 → 0.216

10 · a2
0 = −0.454 → −0.445 → −0.445

p2 p4 p6

GC, Gasser and Leutwyler (01)
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Combining CHPT and dispersive methods

The convergence of the series at threshold is greatly improved
if CHPT is used only below threshold

CHPT at threshold

a0
0 = 0.159 → 0.200 → 0.216

10 · a2
0 = −0.454 → −0.445 → −0.445

p2 p4 p6

CHPT below threshold + Roy

a0
0 = 0.197 → 0.2195 → 0.220

10 · a2
0 = −0.402 → −0.446 → −0.444

GC, Gasser and Leutwyler (01)



Intro Unitarity Renormalization Applications Summary ππ scattering Experimental tests

Low-energy theorem for ππ scattering

M(π0π0 → π+π−) ≡ A(s, t , u) = isospin invariant amplitude

Low energy theorem: A(s, t , u) =
s − M2

F 2 +O(p4) Weinberg 1966

M2 = B(mu + md) M2
π = M2 + O(m2

q), Fπ = F + O(mq)

All physical amplitudes can be expressed in terms of A(s, t , u)

T I=0 = 3A(s, t , u) + A(t , s, u) + A(u, t , s) ⇒ T I=0 =
2s − M2

π

F 2
π

S wave projection (I=0)

t0
0 (s) =

2s − M2
π

32πF 2
π

a0
0 = t0

0 (4M2
π) =

7M2
π

32πF 2
π

= 0.16
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Low-energy theorem for ππ scattering

M(π0π0 → π+π−) ≡ A(s, t , u) = isospin invariant amplitude

Low energy theorem: A(s, t , u) =
s − M2

F 2 +O(p4) Weinberg 1966

M2 = B(mu + md) M2
π = M2 + O(m2

q), Fπ = F + O(mq)

All physical amplitudes can be expressed in terms of A(s, t , u)

T I=2 = A(t , s, u) + A(u, t , s) ⇒ T I=2 =
−s + 2M2

π

F 2
π

S wave projection (I=2)

t2
0 (s) =

2M2
π − s

32πF 2
π

a2
0 = t2

0 (4M2
π) =

−M2
π

16πF 2
π

= −0.045



Intro Unitarity Renormalization Applications Summary ππ scattering Experimental tests

Chiral predictions for a0
0 and a2

0

Quark mass dependence of Mπ and Fπ:

M2
π = M2

(

1 − M2

32π2F 2 ℓ̄3 + O(p4)

)

M2 ≡ −mu + md

F 2 〈0|q̄q|0〉 Gell-Mann, Oakes, Renner (68)

Fπ = F
(

1 +
M2

16π2F 2 ℓ̄4 + O(p4)

)

Phenomenological determinations (indirect):

ℓ̄3 = 2.9 ± 2.4 Gasser & Leutwyler (84)

ℓ̄4 = 4.4 ± 0.2 GC, Gasser & Leutwyler (01)

Lattice calculations determine these constants directly
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Chiral predictions for a0
0 and a2

0
χPT calculations at NLO (Gasser & Leutwyler 84)

and at NNLO (Bijnens, GC, Ecker, Gasser & Sainio, 95)

Prediction obtained matching O(p6) χPT to Roy equations
(disp. relation): GC, Gasser & Leutwyler (01)

a0
0 = 0.220 ± 0.001 + 0.009∆ℓ4 − 0.002∆ℓ3

10 · a2
0 = −0.444 ± 0.003 − 0.01∆ℓ4 − 0.004∆ℓ3

where ℓ̄4 = 4.4 +∆ℓ4 ℓ̄3 = 2.9 +∆ℓ3

Adding errors in quadrature [∆ℓ4 = 0.2, ∆ℓ3 = 2.4]

a0
0 = 0.220 ± 0.005

10 · a2
0 = −0.444 ± 0.01

a0
0 − a2

0 = 0.265 ± 0.004



Intro Unitarity Renormalization Applications Summary ππ scattering Experimental tests

Chiral predictions for a0
0 and a2

0
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Experimental tests
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Experimental tests

0.28 0.3 0.32 0.34 0.36 0.38 0.4

E(GeV)

0

5

10

15

20
δ 00 -δ

11 (d
eg

re
es

)

E865

Geneva-Saclay

NA48

0.26

0.22

0.18



Intro Unitarity Renormalization Applications Summary ππ scattering Experimental tests

Experimental tests
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Recent update: E865 corrected their data
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Experimental tests
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isospin breaking corrections recently calculated for Ke4 are es-
sential at this level of precision GC, Gasser, Rusetsky (09)
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Experimental tests
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Summary
◮ The finite, analytically nontrivial part of the one loop

integrals automatically generates the correct imaginary
parts, as required by unitarity.

◮ Effective quantum field theory is a systematic method to
generate a perturbative solution of dispersion relations

◮ The UV divergences encountered in loop integrals can be
removed according to standard renormalization methods

◮ Some loop integrals have also an IR singular behaviour
which has a very clear physical meaning, and again shows
the necessity of taking loop effects into account

◮ Leutwyler’s theorem: doing a path integral over an effective
Lagrangian is the most general way to construct an
invariant generating functional

◮ As an example of the accuracy one can reach with this
method I have discussed:

◮ the calculation of ππ S-wave scattering lengths



Experiments

Experiments on ππ scattering

ππ scattering at low energy can be measured in
◮ pionium decay

the decay width is proportional to (a0 − a2)
2 DIRAC

◮ K± → π0π0π±

a cusp at Mπ0π0 = 2Mπ+ is proportional to (a0 −a2)
2 NA48

◮ Ke4 decays
δ0

0 − δ1
1 between threshold and s ∼ M2

K can be extracted by
measuring certain angular distributions E865, NA48

All measurements have reached a remarkably high accuracy
⇒ necessary to take isospin breaking corrections into account



Experiments

Pionium lifetime measurement
Master formula: Deser, Goldberger, Baumann, Thirring 54

Gall, Gasser, Lyubovitskij, Rusetsky 99, 01

cf. also Sazdjian, and Gashi, Oades, Rasche, Woolcock

Γ2π0 =
2
9
α3p⋆(a0

0 − a2
0)

2(1 + δ1) + o(δ9/2)

with p⋆ the modulus of the π0 3-momentum and
δ1 = (5.8 ± 1.2)× 10−2 isospin breaking corrections

DIRAC (05):

τ = 2.91 +0.45
−0.38 (stat) +0.19

−0.49 (syst)× 10−15s

which translates to

a0
0 − a2

0 = 0.264 +0.033
−0.020
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Pionium lifetime measurement
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Cusp in K± → π
0
π

0
π
±

NA48: high-statistics measurement of K± → π0π0π±.
Cusp in the π0π0 spectrum @ π+π− threshold clearly observed
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Experiments

Cusp in K± → π
0
π

0
π
±

NA48: high-statistics measurement of K± → π0π0π±.
Cusp in the π0π0 spectrum @ π+π− threshold clearly observed

Theoretical interpretation: Cabibbo 04

Early history: Wigner (48), Budini, Fonda (61),... , Bernstein et al. (97), Meißner et al. (97)

Two-loop treatment: Cabibbo, Isidori 05, Gamiz, Prades, Scimemi 06, GC, Gasser, Kubis, Rusetsky 06

a π+π− intermediate state is responsible for the cusp

π

π

π

K + PK

+(p
3
)

0

0
1

(p 
2
)

(p )

π+(Q 3 −l)

π− (l)

( )



Experiments

Cusp in K± → π
0
π

0
π
±: results

NA48 published the first results of their analysis in 2006:

a0
0 − a2

0 = 0.268 ± 0.010(stat)± 0.004(syst)± 0.013(ext)

a2
0 = −0.041 ± 0.022(stat)± 0.014(syst)

Correlation coeff. = −0.858

Constraining a0
0 and a2

0 to respect the low-energy theorem which
relates them to the scalar radius they get

a0
0 = 0.220 ± 0.006(stat)± 0.004(syst)± 0.011(ext)

More statistics already analyzed – results not yet published



Experiments

Cusp in K± → π
0
π

0
π
±: results
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Cusp in K± → π
0
π

0
π
±: results
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Extracting the ππ phases from Ke4

Isospin limit

Vµ − Aµ ≡ 〈π(p1)π(p2)|s̄γµ(1 − γ5)u|K (p)〉

Aµ =
−i
MK

[(p1 + p2)µF + (p1 − p2)µG + LµR]

F = fseiδ0
0 + fpeiδ1

1 cos θ + D-wave G = gpeiδ1
1 + D-wave

the phases δI
ℓ are those of ππ scattering (Watson’s theorem)

Measuring certain angular distributions one can extract
very cleanly the phase difference:

δ0
0(s)− δ1

1(s) 2Mπ <
√

s < MK − ml



Experiments

Extracting the ππ phases from Ke4

Isospin breaking effects

radiative corrections and mu − md 6= 0 break isospin

NA48 corrects two effects
◮ the effect of the Coulomb attraction between two slow

pions is removed by applying the Gamow factor
◮ the effect of real emission of photons is taken into account

with the help of the program PHOTOS Was et al.

The mass splitting between the charged and neutral pions and
the difference md − mu, however, are not corrected for

We (GC, Gasser and Rusetsky) proceed by assuming that

Full isospin breaking eff. = Coulomb factor×PHOTOS×mass effects

and discuss how the latter affect the measured phases



Experiments

Isospin breaking effects in Ke4 GC, Gasser Rusetsky

Tree and one-loop diagrams in Ke4:

K+ π+

π−

s̄γµγ5u

π+

π−

π0

π0

a) b) c)

The different thresholds between b) and c) affect the phases

π
0

π
0

η

The π0 − η mixing ∝ (mu − md) also modifies the phases



Experiments

Isospin breaking effects in Ke4 GC, Gasser Rusetsky

Both effects add up to [δ =measured phase]

δ =
1

32πF 2

{

(4∆π + s)σ + (s − M2
π0)

(

1 +
3

2R

)

σ0

}

−δ1
1+O(p4)

where ∆π = M2
π+ − M2

π0 , σ =

√

1 − 4M2
π

s
, R =

ms − m̂
md − mu

For the numerical analysis we use R = 37 ± 4

Related work also by
◮ Cuplov and Nehme, Nehme [CHPT calculation at O(p4)

including isospin breking effects]
◮ Gevorkyan et al. 07 [Coulomb and real photon corrections

⇔ double counting problems – approach not sound]
◮ Descotes-Genon and Knecht (in preparation)
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Isospin breaking effects in Ke4 GC, Gasser Rusetsky
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Isospin breaking effects in Ke4 GC, Gasser Rusetsky
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Isospin breaking effects in Ke4 GC, Gasser Rusetsky
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Experiments

Effect of isospin breaking on the scattering lengths
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Effect of isospin breaking on the scattering lengths
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Effect of isospin breaking on the scattering lengths
Fits assuming the LET (a2

0(a
0
0))

Before...

a0
0 =







0.243 ± 0.037 χ2 = 2.2 Geneva-Saclay [ 5 data]
0.218 ± 0.013 χ2 = 5.7 E865 [ 6 data]
0.245 ± 0.007 χ2 = 9.6 NA48 [10 data]

and after applying isospin breaking corrections

a0
0 =







0.222 ± 0.040 χ2 = 2.1 Geneva-Saclay
0.195 ± 0.013 χ2 = 6.6 E865
0.223 ± 0.007 χ2 = 11.5 NA48

Averaging the latter three independent determinations yields

a0
0 = 0.217 ± 0.008exp ± 0.006th [S = 1.3] GC, Gasser Rusetsky, 08

new results with more statistics presented at conferences but not yet published
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