Tuesday, June 14

1 Exercise 1

Derive the quark-quark-gluon vertex from the fermionic part of the Wilson action:

$$
\begin{aligned}
S_{W}^{f}= & a^{4} \sum_{x}\left[-\frac{1}{2 a} \sum_{\mu}\left[\bar{\psi}(x)\left(r-\gamma_{\mu}\right) U_{\mu}(x) \psi(x+a \hat{\mu})\right.\right. \\
& \left.\left.+\bar{\psi}(x+a \hat{\mu})\left(r+\gamma_{\mu}\right) U_{\mu}^{\dagger}(x) \psi(x)\right]+\bar{\psi}(x)\left(m_{0}+\frac{4 r}{a}\right) \psi(x)\right]
\end{aligned}
$$

knowing that

$$
U_{\mu}(x)=\mathrm{e}^{\mathrm{i} g_{0} a T^{a} A_{\mu}^{a}(x)} \quad\left(a=1, \ldots, N_{c}^{2}-1\right)
$$

and that the action enters in the functional integral as e^{-S}.
Hint: The Fourier transforms on the lattice are

$$
\begin{aligned}
\psi(x) & =\int_{-\frac{\pi}{a}}^{\frac{\pi}{a}} \frac{d^{4} p}{(2 \pi)^{4}} \mathrm{e}^{\mathrm{i} x p} \psi(p) \\
\bar{\psi}(x) & =\int_{-\frac{\pi}{a}}^{\frac{\pi}{a}} \frac{d^{4} p}{(2 \pi)^{4}} \mathrm{e}^{-\mathrm{i} x p} \bar{\psi}(p) \\
A_{\mu}(x) & =\int_{-\frac{\pi}{a}}^{\frac{\pi}{a}} \frac{d^{4} k}{(2 \pi)^{4}} \mathrm{e}^{\mathrm{i}(x+a \hat{\mu} / 2) k} A_{\mu}(k)
\end{aligned}
$$

and the lattice δ-function is momentum space is

$$
\delta^{(4)}(p)=\frac{a^{4}}{(2 \pi)^{4}} \sum_{x} \mathrm{e}^{-\mathrm{i} x p}
$$

Optional exercise: Derive also the quark propagator (by inverting the quadratic form in the spinor fields, in momentum space).

2 Exercise 2

Reduce the following expressions:
(a)

$$
\sum_{\rho} \gamma_{\rho} \gamma_{\mu} \gamma_{\rho}
$$

(b)

$$
\sum_{\rho} \gamma_{\rho} \gamma_{\mu} \gamma_{\rho} \cos ^{2} k_{\rho}
$$

(c)

$$
\sum_{\rho} \gamma_{\rho} \gamma_{\mu} \gamma_{\rho} \cos ^{2} k_{\mu}
$$

(d)

$$
\sum_{\rho} \gamma_{\rho} \gamma_{\mu} \gamma_{\rho} \cos k_{\mu} \cos k_{\rho}
$$

