Finite Temperature Lattice QCD

Introduction The QCD transition The transition temperature The Equation of State Screening masses

Introduction

asymptotic freedom $\alpha_s(Q \to \infty) = 0$, at finite T: $Q \sim T$

- universe $n_B/n_{\gamma} \simeq 10^{-9} \sim \text{cosmology}$
- at high density
 - probably rich phase structure (color superconductivity, color-flavor locking ...)
 - neutron stars \rightarrow astrophysics
 - difficult for the lattice (sign problem) \rightarrow lectures by G. Aarts, Ch.Schmidt
- heavy ion collisions (LHC, RHIC, FAIR) FAIR: $N_B/S \simeq 0.03$, $\mu_B/T \simeq 2.5$ RHIC: $N_B/S \simeq 0.003$, $\mu_B/T \simeq 0.25$

- at mid rapidity, baryon density is small
- short equilibration time $\tau_{\rm equi}{\lesssim}1~{\rm fm}$ (strong interaction !)
- expansion is described by hydrodynamics \longrightarrow Equation of State

estimates from a simple model: bag model

hadron view quark-gluon view $p_H = d_H \frac{\pi^2}{90} T^4 \qquad p_P = d_P \frac{\pi^2}{90} T^4 - B$ $d_H = \# \text{d.o.f.} = 3 \quad (\pi^{\pm}, \pi^0) \qquad d_P = 2 \cdot 8 + 7/8 \cdot 2 \cdot 2 \cdot 3 \cdot N_F \quad (G, q)$

$$p_H(T_c) = p_P(T_c) \iff T_c = \left(\frac{90}{\pi^2(d_P - d_H)}\right)^{1/4} B^{1/4} \simeq 0.7 B^{1/4} \simeq 140 \text{ MeV}$$

 $M_H = \frac{16\pi}{3} R^3 B$

NOTE: we have a scale here, the temperature T

Quantum statistics in equilibrium:

the central quantity is the **partition function** $Z = \operatorname{tr} \left\{ \exp(-\hat{H}/T) \right\} = \sum_n \langle n | \exp(-\hat{H}/T) | n \rangle$ (at $\mu = 0$) $\exp(-it\hat{H})$ compare with time evolution operator

- (inverse) temperature direction \equiv imaginary time $\tau = it$
- temporal extent limited by $0 \le \tau \le 1/T$
- periodic b.c. in time for bosons $\phi(\tau = 1/T) = \phi(0)$ (commutators) - trace requests anti-periodic b.c. in time for fermions $\psi(\tau = 1/T) = -\psi(0)$ (anti-commutators)

\rightarrow Feynman path integral

$$Z(T,V) = \int_{\text{periodic}} \mathcal{D}\phi(\vec{x},\tau) \exp\left\{-\int_0^{1/T} d\tau \int_V d^3 \vec{x} \,\mathcal{L}_E[\phi(\vec{x},\tau)]\right\}$$

where \mathcal{L}_E is the euclidean Lagrange density

apply standard thermodynamic relations, e.g.

energy density

specific heat

$$\epsilon = \frac{T^2}{V} \frac{\partial \ln Z}{\partial T} \Big|_{V}$$
$$c_V = \frac{1}{VT^2} \frac{\partial^2 \ln Z}{\partial (1/T)^2} \Big|_{V}$$
and $LT = \frac{N_{\sigma}}{N_{\tau}}$

and

on the **lattice** as at zero temperature, but

$$a(\beta)T = \frac{1}{N_{\tau}}$$

- charm at $m_c/T_c = \mathcal{O}(10)$ presumably too heavy for the dynamics at T_c
- leaves light $m_u \simeq m_d \equiv m_l$ and strange m_s quark
- the nature of the transition is expected to depend strongly on m_l and m_s :

• the action is invariant under the global transformation $U_{\tau}(\vec{x}, \tau = N_{\tau}) \rightarrow z U_{\tau}(\vec{x}, \tau = N_{\tau})$ with $z \in Z(3) = \{\exp(in2\pi/3), n = 0, 1, 2\}$, the center group of SU(3)

• the Polyakov loop $L(\vec{x}) = tr \prod_{\tau} U_{\tau}(\vec{x}, \tau)$ is not

 $\Rightarrow \langle L(\vec{x}) \rangle$ is an order parameter for the spontaneous breakdown of the Z(3) symmetry

- the rise of L signals a phase transition
- the susceptibility $\chi_L \sim \langle L^2 \rangle \langle L \rangle^2$ measures thermal fluctuations which grow large at T_c

corrolary $\langle L(r)L(0)\rangle \sim \exp(-F_{O\bar{O}}(r)/T)$

measures the free energy of static quarks at separation r $F_{Q\bar{Q}}(r \to \infty) \to \infty$ for $T < T_c$

 $F_{Q\bar{Q}}(r \to \infty) \to \text{finite for } T > T_c$

i.e. in pure Yang-Mills, $\langle L \rangle$ detects the confinement - deconfinement transition with fermions, $\langle L \rangle$ is not an order parameter, Z(3) broken by fermion action

- at and in the vicinity of a phase transition thermal fluctuations grow large or diverge
- \bullet i.e. correlation lengths ξ become large or diverge
- in this limit microscopic interaction details don't matter \sim series of "spin blockings" and RG flow
- what counts are global symmetries and the dimension

a universality class consists of all those models which flow into the same critical fixed point under repeated renormalization group transformations

 \rightarrow hence the same critical behavior in terms of scaling with universal critical exponents and certain other universal quantities/functions

- equilibrium QCD (Yang-Mills) at high T is expected to be 3 dimensional generically: $\phi(\tau) = \sum_n \phi(\omega_n) \exp(i\omega_n \tau)$ with $\omega_n = 2\pi T n \rightsquigarrow$ only static modes (n = 0) survive
- \Rightarrow compare with (classical) 3d systems with the same global symmetries,
- pure SU(3) Yang-Mills: the same universality class as the 3d Z(3) (3-state) Potts spin model (weakly) 1st order

* the theory behind this is Wilson's renormalization group there is a huge condensend matter literature for introductory lectures see e.g. J. Engels at http://www.physik.uni-bielefeld.de/igs/schools/Fall2006/phase.html the free energy density $f = -\frac{T}{V} \ln Z$ consists of a regular and a singular part, $f = f_{reg} + f_{sing}$, where f_{sing} develops the singularities which drive the transition

scaling: in the vicinity of a critical point $(T_c, H = 0)$, under an arbitrary scale change b

$$f_{sing}(t,h) = b^{-d} f_{sing}(b^{y_t}t, b^{y_h}h)$$

where y_t, y_h are universal critical exponents

$$\begin{split} t &= \frac{1}{t_0} \frac{T - T_c}{T_c} \quad \text{(normalized) reduced temperature} \\ h &= \frac{1}{h_0} H \quad \text{(normalized) external symmetry breaking, e.g. magnetic field, } m_q \text{ in QCD} \end{split}$$

 t_0, h_0 non-universal metric factors i.e. need to be adjusted for each model

$$f_{sing}(t,h) = b^{-d} f_{sing}(b^{y_t}t, b^{y_h}h)$$

- choose $b = |t|^{-1/y_t}$: $f_{sing}(t,h) = |t|^{d/y_t} f_{sing}(\pm 1, |t|^{-y_h/y_t}h)$
 - $\Rightarrow \text{ for magnetization } M = -\partial f / \partial H \text{ find at } t < 0, H = 0; \qquad M \sim (-t)^{\beta} \quad \text{with } \beta = (d y_h) / y_t$ $\Rightarrow \text{ for susceptibility } \chi = \partial M / \partial H \sim \langle (\delta M)^2 \rangle \text{ find at } H = 0; \qquad \chi \sim |t|^{-\gamma} \quad \text{with } \gamma = (2y_h d) / y_t$
- choose $b = |h|^{-1/y_h}$: $f_{sing}(t,h) = |h|^{d/y_h} f_{sing}(t|h|^{-y_t/y_h},\pm 1)$
 - \Rightarrow for magnetization find at t = 0: $M \sim |h|^{1/\delta}$ with $1/\delta = d/y_h 1$

 \Rightarrow note that $\beta + \gamma = y_h/y_t = \beta \delta$ "hyperscaling relation"

 $\Rightarrow \text{ at } t \simeq 0: \quad M(t,h) = |h|^{1/\delta} f_G(z) \quad \text{with } f_G(z) = f_{sing}(z) + z f'_{sing}(z) \text{ universal and } z = t|h|^{-1/\beta\delta}$

• similarly, e.g. the so-called Binder cumulant $B_4 = \frac{\langle (\delta M)^4 \rangle}{\langle (\delta M)^2 \rangle^2}$ with $\delta M = M - \langle M \rangle$ is a universal number

• keep in mind though that corrections to scaling might be important, and there are also the regular terms

conjectured landscape of transitions

arising from the chiral symmetry of QCD at $m_q = 0$

 $SU_L(N_f) \times SU_R(N_f) \times U_A(1)$

- its spontaneous breakdown at low ${\cal T}$
- its restoration at high ${\cal T}$
- and its modelling by σ models (universality)
- note: $U_A(1)$ broken by triangle anomaly but could be effectively restored at high T(no topologically non-trivial configurations

$N_F = 2$ Wilczek, Pisarski

- if $U_A(1)$ effectively restored then 1st order
- if 2nd order then in $SU(2) \times SU(2) \simeq O(4)$ class

 $N_F = 3$

– 1st order

Wilczek, Pisarski

Gavin et al.

- at critical end point: Z(2) class

$N_F = 2$

- conflicting results for critical behavior of $M = \langle \bar{q}q \rangle$, all from coarse lattices with un-improved actions
 - Wilson M scales ~ O(4) in $m \sim H$ at $T > T_c$
 - staggered χ_m, χ_t do not scale ~ O(4) in m
 - staggered M scales $\sim O(4)$ in L
 - staggered c_V scales as 1st order
 - staggered M is as in O(2) at finite L

• $U_A(1)$:

- if effectively restored, then degeneracy in 2-point function (mass spectrum) [Shuryak; Cohen et al;, ...]

there are indications that $U_A(1)$ is not restored

• current projects with Wilson-type quarks [QCDSF-DIK,tmfT,WHOT] have not yet addressed this question

[Karsch,EL; JLQCD; MILC]

[Engels et al.]

[Iwasaki et al.]

[Di Giacomo et al.]

[Kogut, Sinclair]

$N_F = 3$

Binder cumulant B_4

- intersection for various V yields critical value of m
- value of B_4 is universal
- corrections from V finite and 'order parameter not matched correctly'

but: $-m_c$ not universal

– improved action: $m_{PS} \simeq 70 \text{ MeV}$

magnetization-like order parameter \mathcal{M} not identical with chiral condensate $\langle \overline{q}q \rangle$ (chiral symmetry broken by $m_q \neq 0$ anyway)

 $\mathcal{M} = \langle \overline{q}q \rangle + sS$

$N_F = 2 + 1$

recent projects all use improved staggered quarks (p4fat3, asqtad, stout, HISQ) * at finite lattice spacing: taste violations $\mathcal{O}(a^2\alpha_s)$

 \Rightarrow the pion 16-multiplet \rightarrow 8 different representations, $stagg\chi PT$: 5 different reps. only 1 pion is true Goldstone boson also at $a \neq 0$: $m_{\gamma_5}^2 = m_G^2 \sim m_q$ in chiral limit

 \Rightarrow the expected O(4) for 2 light flavors in the limit $m_l \to 0$ goes over into O(2) at $a \neq 0$

^{*} first results from DWF fermions, not yet on the nature of the transition [Christ, Karsch et al.] first results from improved Wilson quarks, mainly equation of state [WHOT]

in O(N) spin models

"magnetic equation of state" $M(t,h) = h^{1/\delta} f_G(z)$ with $z = t/h^{1/\beta\delta}$ and f_G universal $\Rightarrow M \sim (-t)^{\beta}$ at h = 0, t < 0 $M \sim h^{1/\delta}$ at t = 0 $M \simeq h^{1/\delta}(-z)^{\beta}[1 + \tilde{c}_2\beta (-z)^{-\beta\delta/2} + ...] = M(t,0) + c(t)\sqrt{h} + ...$ at $z \to -\infty$ Zia, Wallace \sqrt{h} behavior is known as Goldstone effect in d=3 (~ h \ln h in d=4) Gasser, Leutwyler, Hasenfratz

critical exponents β , δ and $f_G(z)$ known from spin model simulations [Engels et al.]

N	β	δ	\widetilde{c}_2	z_p
2	0.349	4.7798	0.592(10)	1.56(10)
4	0.380	4.824(9)	0.666(6)	1.33(5)

the chiral condensate $\langle \bar{q}q \rangle \sim \langle \text{Tr}D_q^{-1} \rangle$

is the order parameter in the limit $m_l \rightarrow 0$, i.e. takes the role of the magnetization M

complications: - needs multiplicative renormalization $\langle \bar{q}q \rangle^R = Z_m^{-1} \langle \bar{q}q \rangle$ where Z_m is mass renormalization $m_q^R = Z_m m_q$ - away from chiral limit receives additive power divergence $\langle \bar{q}q \rangle (m_q) = \langle \bar{q}q \rangle (0) + m_q/a^2$ \sim subtracted condensate $M = m_s \left[\langle \bar{l}l \rangle - \frac{m_l}{m_s} \langle \bar{s}s \rangle \right]$, difference to $M_b = m_s \langle \bar{l}l \rangle$ small and vanishing with $m_l \to 0$

fit data to the scaling function f_G with 3 unknowns: t_0, h_0 , the metric constants

 T_c , the critical temperature in the chiral limit

at $m_l/m_s \ge 1/10$ corrections to scaling need to be taken into account $M(t,h) = h^{1/\delta} f_G(t/h^{1/\beta\delta}) + a_t th + b_1 h + b_3 h^3 + b_5 h^5$

the chiral susceptibility χ_M is now fixed completely

$$\chi_M(t,h) = \frac{\partial M}{\partial H} = \frac{1}{h_0} h^{1/\delta - 1} f_{\chi}(z) \quad \text{with} \quad f_{\chi}(z) = \frac{1}{\delta} \left(f_G(z) - \frac{z}{\beta} f'_G(z) \right)$$

v.v., reconstruct scaling fct f_{χ} from the data on χ_M : $f_{\chi} = \chi_M h_0 h^{1-1/\delta}$

recall, in QCD $\langle \bar{q}q \rangle(m_q) = \langle \bar{q}q \rangle(0) + \sqrt{m_q} + m_q/a^2 + \cdots$ moreover, in QCD $\chi_M = 2\chi_{dis} + \chi_{con}$ with

 $\chi_{\rm dis} = \frac{1}{16N_{\sigma}^3 N_{\tau}} \left\{ \langle ({\rm Tr}D_l^{-1})^2 \rangle - \langle {\rm Tr}D_l^{-1} \rangle^2 \right\} - \text{measures fluctuations of the chiral condensate}$ $\chi_{\rm con} = \frac{1}{4} \sum_x \langle D_l^{-1}(x,0)D_l^{-1}(0,x) \rangle - \text{arises from the explicit } m_q \text{ dependence of } D_q = D + m_q$ $- \text{ integral over quark-line connected correlator of the scalar isovector } a_0$

 \Rightarrow quadratically UV divergent $\sim a^{-2}$

- in $O(N)\chi PT$ it can be shown that χ_{con} vanishes for N = 4 but not for N = 2 [Smilga, Stern, Verbaarson

- in $stagg\chi PT$ taste violations lead to IR Goldstone contribution to $\chi_{con} \sim 1/\sqrt{m_q}$ [DeTar et al.]

 $-\chi_{con}$ does not contribute to f_{χ} in the chiral limit because of $h^{1-1/\delta}$ and $\delta > 2$

the chiral susceptibility χ_M is now fixed completely

$$\chi_M(t,h) = \frac{\partial M}{\partial H} = \frac{1}{h_0} h^{1/\delta - 1} f_{\chi}(z) \quad \text{with} \quad f_{\chi}(z) = \frac{1}{\delta} \left(f_G(z) - \frac{z}{\beta} f'_G(z) \right)$$

v.v., reconstruct scaling fct f_{χ} from the data on χ_M : $f_{\chi} = \chi_M h_0 h^{1-1/\delta}$ and compare with f_{χ} from the O(N) models:

peaks in χ_M at pseudocritical temperatures T_p are caused by the peak in f_{χ} at $z = z_p$

$$\frac{t_p}{h^{1/\beta\delta}} = \frac{\frac{1}{t_0} \frac{T_p - T_c}{T_c}}{\left(\frac{H}{h_0}\right)^{1/\beta\delta}} = z_p \quad \Rightarrow \quad \frac{T_p(H) - T_c}{T_c} = z_p H^{1/\beta\delta} \frac{t_0}{h_0^{1/\beta\delta}} \qquad \to \text{predict } T_p \text{ from } \langle \bar{q}q \rangle$$

 \star scan through $\beta \longrightarrow a(\beta) \longrightarrow T = 1/N_{\tau}a(\beta)$ ★ T = 0 scale taken from $\Upsilon 2S - 1S$ splitting [A. Gray et al.] via the heavy quark potential V(r) $r_{0,1}/a$ from $r^2 \frac{dV(r)}{dr}\Big|_{r=r_{0,1}} = 1.65(1.0)$ 0.05 0.15 0.2 0 0.1 0.25 0.3 a [fm] 1.5 for absolute values (in MeV) we 1.4 use $r_0 = 0.469(7)$ fm [A. Gray et al.] 1.3 1.2 \star fine tune $\hat{m}_{l,s}(\beta)$ such that $m_{\pi,K} = const$ 2%1.1 $\begin{array}{cccc} m_{\pi} r_{0} & & & \\ m_{K} r_{0} & & & \\ m_{\eta} r_{0} & & & \\ \end{array}$ a/r_0 2 1.0 0.2 0.0 0.1 0.3 0.4 0.5 0.6 0.7 1.6 3% $m_K \simeq m_\kappa^{\rm phys}$ 1.2 0.8 $m_{\pi} \simeq 220 \,\mathrm{MeV}$ 0.4 plots for p4fat3 action at $m_l/m_s = 0.1$ β 0 similar for other actions, different m_l/m_s 3.4 3.6 3.8 3.2 4

may take other scale setting quantity e.g. f_K

 \star investigate quantities sensitive to the transition

renormalized chiral condensate

$$\Delta_{l,s}(T) = \frac{\langle \bar{\psi}\psi \rangle_{l,T} - \frac{m_l}{m_s} \langle \bar{\psi}\psi \rangle_{s,T}}{\langle \bar{\psi}\psi \rangle_{l,0} - \frac{m_l}{m_s} \langle \bar{\psi}\psi \rangle_{s,0}}$$

subtracting power-law additive and cancelling multiplicative UV divergencies strange number susceptibility

$$\chi_s(T)/T^2 \sim \langle n_s^2
angle - \langle n_s
angle^2$$

measures strangeness fluctuations indicative of deconfinement and depends on f_{sing}

location of (rapid) change in both variables moves to lower T when m_l is decreased

similarly, location of (rapid) change in both variables moves to lower T when a is decreased

difficult to identify a transition temperature e.g. by locating an inflection point: curvature = 2nd derivative changes sign \Rightarrow 1st one has maximum

situation may look better when a different quantity is used to set the T scale

explanation: f_K is affected by taste violations roughly in the same way as $\Delta_{l,s}$ r_i i.e. static quark potential much less sensitive \rightarrow in principle more reliable

in any case, a continuum extrapolation is needed, and a better way to locate the transition

 \rightarrow determine $T_p(m_l, N_{\tau})$ from the location of peaks of the susceptibility χ_{dis}

and compare with predictions from O(N) scaling fits to $\langle \bar{q}q \rangle$

extrapolation to continuum limit at physical mass $m_l/m_s = 1/27$

 $T_c = 157$ (4 stat) (3 extrapolation) (1 scale) MeVasqtad, HISQ $T_c = 147$ (2 stat) (3 syst) MeVstout χ_M $T_c = 155$ (3 stat) (3 syst) MeVstout $\Delta_{l,s}$