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Introduction

A spacetime lattice acts as a nonperturbative regularization: the lattice

spacing a induces a momentum cutoff of order 1/a

The other known regularizations (like dimensional regularization or
Pauli-Villars) can only be defined order by order in perturbation theory

Moreover, the lattice regularization is not tied to any specific approximation

It allows calculations from first principles with numerical and analytical
methods – no models need to be introduced, or additional parameters

Bielefeld – p.2



Introduction

A spacetime lattice acts as a nonperturbative regularization: the lattice

spacing a induces a momentum cutoff of order 1/a

The other known regularizations (like dimensional regularization or
Pauli-Villars) can only be defined order by order in perturbation theory

Moreover, the lattice regularization is not tied to any specific approximation

It allows calculations from first principles with numerical and analytical
methods – no models need to be introduced, or additional parameters

Thus: the lattice machinery is introduced as a nonperturbative regularization
scheme which enables nonperturbative computations

The lattice can probe the long-distance physics, which is otherwise
unaccessible to investigations which use continuum QCD

Precisely for the study of low-energy nonperturbative phenomena the lattice
was introduced by Wilson, who went on to prove quark confinement in the
strong coupling regime

The words “ lattice ” and “ perturbation theory ” might then sound like a
contradiction . . . Bielefeld – p.2



Introduction

. . . but this is not the case!

Perturbative calculations on the lattice are important, and for many reasons,
both conceptual and practical

There are many instances where lattice perturbative calculations are useful –
and in some cases even necessary
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Introduction

. . . but this is not the case!

Perturbative calculations on the lattice are important, and for many reasons,
both conceptual and practical

There are many instances where lattice perturbative calculations are useful –
and in some cases even necessary

Perturbation theory → weak coupling regime of the lattice

In principle all known perturbative results of continuum QED and QCD can also
be reproduced using a lattice regularization instead of the more popular ones

However, calculating in such a way the corrections to the magnetic moment of
the muon (to make an example) would be quite laborious

In most cases regularizations like Pauli-Villars or dimensional regularization
are more suited and much easier to employ

Main virtue of the lattice regularization: to carry out nonperturbative
investigations – which often need some perturbative calculations to be
properly interpreted
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Introduction

Main topics of these introductory lectures:

Importance of lattice perturbative calculations

Renormalization of operators (matching to the continuum)

Feynman rules for the Wilson discretization of QCD

Some technical issues

Hypercubic group

Mixing of operators

Divergent integrals

Algebraic reduction of integrals
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Introduction

Main topics of these introductory lectures:

Importance of lattice perturbative calculations

Renormalization of operators (matching to the continuum)

Feynman rules for the Wilson discretization of QCD

Some technical issues

Hypercubic group

Mixing of operators

Divergent integrals

Algebraic reduction of integrals

We will understand (among others):

why perturbation theory on the lattice?

in what lattice perturbation theory is different from continuum
perturbation theory?

what are the main complications?

what special techniques are needed?
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Motivation

Perturbation theory: essential aspect of computations on the lattice, especially
for investigating the behavior of lattice theories near the continuum limit

Particularly important in connecting the outcome of Monte Carlo simulations to
continuum physical numbers

This is called the matching to the continuum physical theory, and it involves
calculations of renormalization factors of lattice matrix elements

Also needed: renormalization of the bare parameters of the Lagrangian, like
coupling constants and masses

The precise knowledge of the renormalization of the strong coupling constant
is essential for the determination of the Λ parameter of lattice QCD and its
relation to its continuum counterpart, ΛQCD

Every lattice action defines a different regularization scheme – and in principle

there is a different Λ parameter for each lattice action

A Λ parameter in a given scheme specifies the value of the coupling constant
in that scheme for any given scale µ, and all dimensionful quantities will be
proportional to Λ
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Motivation

Since the Λ parameter depends on the scheme, one has to compute the ratio
Λlat/Λcont for every lattice action

For example, for the pure gauge Wilson action one finds

Λ
MS

Λlat
= 28.80934(1)

Thus, one needs a complete set of these renormalization computations for
each new lattice action that is used in Monte Carlo simulations

Lattice perturbation theory is important for many other aspects, e.g.to study
the anomalies on the lattice – or the recovery in the limit a→ 0 of the
continuum symmetries broken by the lattice regularization (like Lorentz or
chiral symmetry)

In general perturbation theory is of paramount importance in order to establish
the connection of lattice matrix elements to the physical continuum theory

Perturbative calculations are thus in many cases essential, and are the only
possibility to have some analytical control over the continuum limit

Because of asymptotic freedom, for QCD one has indeed g0 → 0 as a→ 0
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Motivation

The perturbative region is the one that must be necessarily “traversed” in order
to reach the continuum limit

So, there is a strong connection between lattice perturbation theory and the
continuum limit of discretized versions of QCD
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The perturbative region is the one that must be necessarily “traversed” in order
to reach the continuum limit

So, there is a strong connection between lattice perturbation theory and the
continuum limit of discretized versions of QCD

In discretizing a continuum field theory one has to give up Lorentz invariance
(and in general Poincaré invariance)

The symmetry group of the lattice is the hypercubic group (discrete)
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Motivation

The perturbative region is the one that must be necessarily “traversed” in order
to reach the continuum limit

So, there is a strong connection between lattice perturbation theory and the
continuum limit of discretized versions of QCD

In discretizing a continuum field theory one has to give up Lorentz invariance
(and in general Poincaré invariance)

The symmetry group of the lattice is the hypercubic group (discrete)

The internal symmetries can usually be preserved

In particular, gauge invariance can be maintained on the lattice for any finite
value of the lattice spacing

⇒ this makes possible to define QCD

The fact that one is able to keep gauge invariance for any nonzero a is of
great help in proving the renormalizability of lattice gauge theories

One cannot underestimate how important lattice perturbation theory was for
proving that lattice gauge theories are renormalizable (T. Reisz, 1989)
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Motivation

The phenomenological numbers that are quoted from lattice computations are
very often the result of the combined effort of numerical simulations and
analytic calculations, usually with some input from theory

In this context lattice PT has a wide and useful range of applications

In this respect, perturbative lattice renormalization is important by itself as well
as a hint and a guide for the few cases in which one can also determine the
renormalization constants nonperturbatively

This is even more important when some operator mixing is present

Since lattice symmetries are not as restrictive as those in the continuum, more
mixings (of lattice operators) arise in general under renormalization

In fact, lattice mixing patterns, generally more complex than in the continuum,
become in general more transparent when looked at using perturbative
renormalization rather than nonperturbatively

Also, perturbative coefficients can be usually computed with good accuracy

Perturbative renormalization results can be useful in checking and
understanding results coming from nonperturbative methods (where available)
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Motivation

When short-distance quantities can be calculated using such diverse
techniques, like lattice perturbation theory or Monte Carlo simulations, their
comparison can give significant hints on the validity of perturbative and
nonperturbative methods

In some cases a nonperturbative determination of the renormalization
constants can turn out to be rather difficult to get

For nonperturbative renormalization to work, it is necessary that there is a
plateau for the signal over a substantial range of momenta so that one can
numerically extract the values of the renormalization factors

The nonperturbative renormalization methods can sometimes fail because a
window which is large enough cannot be found

Moreover, where mixings are present these methods could come out to be
useless because certain mixings are too small to be seen numerically,
although still not so small to be altogether ignored

In these cases the only possibility to compute renormalization factors seems to
be provided by the use of lattice perturbative methods
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Motivation

There are cases in which lattice perturbation theory works rather well

For example, the scale evolutions of the strong coupling constant and quark
masses computed in the Schrödinger Functional scheme
( quenched: Λ = Λ

MS
· 0.48811(1) ∼ 116 MeV )

We can see that these scale evolutions are accurately described by
perturbation theory for a wide range of energies

The perturbative and nonperturbative results are very close to each other, and
almost identical even down to energy scales which are surprising low

The best curves include the b2g7
0 term of the β function and the d1g

4
0 term of

the τ function – that is, the first nonuniversal coefficients

The other curves are lower-order approximations

These runnings are computed in the Schrödinger Functional, and depend on
the details of the computational scheme employed – but it is interesting to see
how close perturbation theory can come to nonperturbative results

The choice of a scheme can have a lot of influence on the perturbative
behavior of the coupling constant. . .
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Motivation

From: S. C., M. Lüscher, R. Sommer, H. Wittig, Nucl. Phys. B544 (1999) 669
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Motivation

From: S. C., M. Lüscher, R. Sommer, H. Wittig, Nucl. Phys. B544 (1999) 669
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Motivation

Other example of the usefulness of LPT: understanding of the properties of
minimally doubled fermions

“New” class of actions which maintain chiral symmetry for a doublet of quarks,
and are almost as cheap as Wilson (nearest-neighbors)

Karsten (1981) and Wilczek (1987):
D(p) = i

4∑

µ=1

γµ sin pµ + iγ4

3∑

k=1

(1 − cos pk)

Two examples considered: Karsten-Wilczek and Boriçi-Creutz fermions

Great plus: a conserved axial current , which has a simple expression
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Motivation

Other example of the usefulness of LPT: understanding of the properties of
minimally doubled fermions

“New” class of actions which maintain chiral symmetry for a doublet of quarks,
and are almost as cheap as Wilson (nearest-neighbors)

Karsten (1981) and Wilczek (1987):
D(p) = i

4∑

µ=1

γµ sin pµ + iγ4

3∑

k=1

(1 − cos pk)

Two examples considered: Karsten-Wilczek and Boriçi-Creutz fermions

Great plus: a conserved axial current , which has a simple expression

However, simulating on a computer just the tree-level actions is not correct

By calculating self-energy of the quark and vacuum polarization at one loop, it
was discovered that three counterterms to each action are needed
(S.C., M. Creutz, J. Weber, H. Wittig, 2010)

Reason: breaking of the hypercubic symmetry (inequivalent directions)
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Motivation

Counterterms (KW) : ψ γ4 ψ ψ γ4D4 ψ
∑

µν

Fµ4F4ν

From perturbation theory:

g2
0

(16π2
CF ×

{
−29.53230 −0.12554 −12.69766 (KW )

29.54170 1.52766 −0.9094 (BC)

Next: determine the coefficients of these counterterms nonperturbatively

Simulations with these new fermions are now being done in Mainz

So, most of what we know now of the properties of these new actions comes
from perturbative calculations (something also from symmetry considerations)

Before our calculations: possibility of power divergences was hinted at, by
P.F. Bedaque, M.I. Buchoff, B.C. Tiburzi and A. Walker-Loud (2008)

Perturbation theory has been essential for the discovery of some key features
of this class of fermions

Even with that, it took some time to understand what was happening . . .

All this is also an example of the usefulness of perturbative techniques in
helping to unfold theoretical aspects of (new) lattice formulations
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Motivation

Lattice perturbation theory has now grown into a large and well-established
subject

Often the perturbative calculations on the lattice are rather involved

⇒ use of computer codes for the analytic calculations

→ and also for the computation of lattice integrals

The behavior of lattice perturbation theory is probably not worse than that of
QCD in the continuum

asymptotic expansions, in some cases affected by large higher-order
corrections

Actually, perturbation theory can be more accurately tested on the lattice than
in a continuum regularization, because within a lattice scheme one can also
have nonperturbative results to compare perturbation theory with

When lattice perturbation theory and nonperturbative numerical results do not
agree, perhaps a look at the systematic errors coming from the numerical side
can sometimes be worthwhile
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Renormalization of operators

We are interested in matrix elements of operators – like the V and A currents

They are evaluated with numerical simulations on a lattice, but require some
renormalization in order to be converted into meaningful physical quantities

Monte Carlo matrix elements can be viewed as (regulated) bare numbers

To get physical (= renormalized ) results a lattice renormalization is required

Thus: matching of bare lattice results to some continuum scheme, often the
MS scheme of dimensional regularization

Why MS? In many physical problems one evaluates matrix elements of
operators that appear in an operator product expansion

〈A(x)B(0) 〉 ∼
∑

N,i

cN,i(x
2) xµ1 · · ·xµN 〈O

(N,i)
µ1···µN

(0) 〉 (light-cone OPE)

These matrix elements contain the long-distance physics of the system and
are computed numerically on the lattice

The Wilson coefficients instead contain the short-distance physics and are
obtained from perturbative calculations in the continuum
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Renormalization of operators

In this situation, the operators evaluated on the lattice must at the end be
matched to the same continuum scheme in which the Wilson coefficients are
known

Therefore: very often one has to match lattice results to the MS scheme

Example: moments of deep inelastic structure functions (parton distributions)
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Renormalization of operators

In this situation, the operators evaluated on the lattice must at the end be
matched to the same continuum scheme in which the Wilson coefficients are
known

Therefore: very often one has to match lattice results to the MS scheme

Example: moments of deep inelastic structure functions (parton distributions)

Let us now consider the perturbative matching at one loop

It turns out that to extract physical continuum matrix elements from Monte
Carlo simulations one needs lattice as well as continuum perturbative
calculations

At tree level, for momenta much lower than the lattice cutoff, p≪ π/a, lattice
operators have the same matrix elements as the original continuum operators
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Renormalization of operators

Then at 1 loop one has (generally, with a mixing)

〈q|Olat
i |q〉 =

∑

j

(
δij +

g2
0

16π2

(
− γ

(0)
ij log a2p2 +Rlat

ij

))
· 〈q|Otree

j |q〉

〈q|OMS
i |q〉 =

∑

j

(
δij +

g2

MS

16π2

(
− γ

(0)
ij log

p2

µ2
+RMS

ij

))
· 〈q|Otree

j |q〉

Note: while Rlat
ij is the whole momentum-independent 1-loop correction, RMS

ij

does not include the pole in ǫ and the factors proportional to γE and log 4π

The lattice and continuum 1-loop finite constants, Rlat
ij and RMS

ij , in general
do not have the same value

This happens because lattice propagators and vertices are quite different from
their continuum counterparts, especially for loop momenta of order 1/a

Therefore the 1-loop renormalization factors on the lattice and in the
continuum are in general not equal
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Renormalization of operators

However: the 1-loop anomalous dimensions are the same (as expected)

From the previous equations, the connection between the original lattice
numbers and the final continuum physical results is given by

〈q|OMS
i |q〉 =

∑

j

(
δij −

g2
0

16π2

(
− γ

(0)
ij log a2µ2 + Rlat

ij −RMS
ij

))
· 〈q|Olat

j |q〉

The differences ∆Rij = Rlat
ij − RMS

ij enter then in the matching factors

Zij(aµ, g0) = δij −
g2
0

16π2

(
− γ

(0)
ij log a2µ2 + ∆Rij

)

and represent the main objectives of the perturbative lattice calculations

While Rlat and RMS depend on the state |q〉, ∆R is independent of it, thus Zij

depends only on aµ
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Renormalization of operators

This is as it should be: the renormalization factors are a property of the
operators and are independent of the particular external states considered

This is the reason why we have left the state |q〉 unspecified

Furthermore: the matching factors between the lattice and the MS scheme are
gauge invariant

⇒ important checks of lattice perturbative calculations

Bielefeld – p.20



Renormalization of operators

This is as it should be: the renormalization factors are a property of the
operators and are independent of the particular external states considered

This is the reason why we have left the state |q〉 unspecified

Furthermore: the matching factors between the lattice and the MS scheme are
gauge invariant

⇒ important checks of lattice perturbative calculations

Lattice operators have more possibilities of mixing than continuum ones, due
to the lower symmetry of the lattice

There is no Lorentz invariance – and in many cases other symmetries, like
chiral symmetry, are also broken

Thus, the matching factors are not in general square mixing matrices: Ni ≤ Nj

To include all relevant operators one must be able to determine all the
tree-level structures which appear when lattice radiative corrections are
evaluated

Bielefeld – p.20



Renormalization of operators

After having used both lattice and continuum perturbative techniques, at the
end we obtain the renormalization factor ZO(aµ) which converts the lattice

operator O(a) into the physical renormalized operator Ô(µ):

Ô(µ) = ZO(aµ)O(a)

In this way one achieves the matching of the bare Monte Carlo results
(obtained using a lattice regulator) directly to the physical renormalized results
in the MS scheme

As for any general quantum field theory, the process at the end of which
physical numbers are obtained is carried out in two different steps

One first regularizes the ultraviolet divergences – in this case the regulator is
given by the lattice itself

Then one renormalizes the regulated theory – on the lattice this results in a
matching to a continuum scheme
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Renormalization of operators

Finally, the lattice cutoff must be removed

This means that one has to go to the continuum limit a→ 0 of the lattice
theory, keeping some suitable quantity fixed

Only the scale µ brought in by the renormalization remains after all these steps

In our case, the scale µ at which the matrix elements are renormalized should
be in the range

ΛQCD < µ <
π

a

the lower bound ensures that perturbation theory is valid

the upper bound ensures that cutoff effects, proportional to positive powers of
the lattice spacing, are small
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Renormalization of operators

If one sets

µ =
1

a

a finite renormalization connects the lattice to the MS scheme:

〈q|OMS
i |q〉 =

∑

j

(
δij −

g2
0

16π2

(
Rlat

ij −RMS
ij

))
· 〈q|Olat

j |q〉

Remember: the 1-loop anomalous dimensions are the same on the lattice and
in the continuum

Every lattice action defines a different regularization scheme, and therefore
these finite renormalization factors are in principle different
when different actions are used

But also the bare numbers, that is the Monte Carlo results for a given matrix
element, are different, and everything combines to give the same physical
result
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Discretization

In going from continuum to lattice actions one replaces integrals with sums
∫
d4x→ a4

∑

x

where on the right-hand side x means now sites: x = an

The momenta are restricted to an interval of range 2π/a, the first Brillouin
zone, and which can be chosen as

BZ =
{
k : −

π

a
< kµ ≤

π

a

}

BZ : region of the allowed values of k, and domain of momentum integration

For a lattice of finite volume V = L0L1L2L3, the allowed momenta in the first
Brillouin zone become a discrete set , given by

(kn)µ =
2π

a

nµ

Lµ
nµ = −Lµ/2 + 1, . . . , 0, 1, . . . , Lµ/2,

⇒ in principle also in momentum space one deals with sums
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Discretization

However, in the infinite volume limit the sums over the modes of the first
Brillouin zone become again integrals:

1

V

∑

k

−→

∫ π
a

− π
a

dk0

2π

∫ π
a

− π
a

dk1

2π

∫ π
a

− π
a

dk2

2π

∫ π
a

− π
a

dk3

2π
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Discretization

However, in the infinite volume limit the sums over the modes of the first
Brillouin zone become again integrals:

1

V

∑

k

−→

∫ π
a

− π
a

dk0

2π

∫ π
a

− π
a

dk1

2π

∫ π
a

− π
a

dk2

2π

∫ π
a

− π
a

dk3

2π

The one-sided forward and backward lattice derivatives (also known as right
and left derivatives) can be written as

∇µψ(x) =
ψ(x+ aµ̂) − ψ(x)

a

∇⋆
µψ(x) =

ψ(x) − ψ(x− aµ̂)

a

where µ̂ denotes the unit vector in the µ direction

It is easy to check that they are anti-conjugate to each other:

(∇µ)† = −∇⋆
µ

(∇⋆
µ)† = −∇µ

Bielefeld – p.25



Discretization

Therefore: in a lattice theory that is supposed to have a hermitian Hamiltonian
only their sum, ∇µ + ∇⋆

µ, which is anti-hermitian, can appear

→ it acts as a lattice derivative operator extending over two lattice spacings:

1

2
(∇ + ∇⋆)µψ(x) =

ψ(x+ aµ̂) − ψ(x− aµ̂)

2a

Note that the second-order differential operator ∇µ∇
⋆
µ = ∇⋆

µ∇µ is hermitian,
and when µ is summed corresponds to the 4-dimensional lattice Laplacian,

∆ψ(x) =
∑

µ

∇⋆
µ∇µψ(x) =

∑

µ

ψ(x+ aµ̂) + ψ(x− aµ̂) − 2ψ(x)

a2

For the discretization of continuum actions and operators (derivatives, . . . ) and
the practical setting of the corresponding lattice theory many choices are
possible
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Discretization

Since every lattice action defines a different regularization scheme, one needs

for each action that is used a new complete set of renormalization
computations, in order for the results which come out from Monte Carlo
simulations to be used, interpreted and understood properly

Using different actions leads to different numerical results for the matrix
elements computed in Monte Carlo simulations

Also the values of the renormalization factors, and of the Λ parameter, depend
in general on the lattice action chosen

Even the number and type of counterterms required for the renormalization of
operators can be different in each case

For example, for the renormalization of a weak operator more counterterms
need to be computed when the Wilson action is used than when the overlap
action is used, because chiral invariance is not broken in the second case

Of course all the differences that are seen at finite lattice spacing will
disappear in the final numerical extrapolations to the continuum limit which
must lead, within errors, to the same physical results
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Feynman rules

Wilson action:

SW = Sf
W + Sg

W

Sg
W =

1

g2
0

a4
∑

x,µν

[
Nc − ReTr

[
Uµ(x)Uν(x+ aµ̂)U†

µ(x+ aν̂)U†
ν (x)

]
]

Sf
W = a4

∑

x

[
−

1

2a

∑

µ

[
ψ(x)(r − γµ)Uµ(x)ψ(x+ aµ̂)

+ψ(x+ aµ̂)(r + γµ)U†
µ(x)ψ(x)

]
+ ψ(x)

(
m0 +

4r

a

)
ψ(x)

]

= a4
∑

x

ψ(x)

[
1

2

(
γµ(∇̃⋆

µ + ∇̃µ) − ar∇̃⋆
µ∇̃µ

)
+m0

]
ψ(x)

where we have introduced the lattice covariant derivative

∇̃µψ(x) =
Uµ(x)ψ(x+ aµ̂) − ψ(x)

a
Bielefeld – p.28



Feynman rules

This action has only nearest-neighbor interactions

Other actions can have more complicated interactions, like overlap fermions

The first-order derivative in the Dirac operator is the symmetric one, given by
1
2

(∇ + ∇⋆)µψ in the free case (after an integration by parts)

The fields Uµ(x) live on the links which connect two neighboring lattice sites –
these variables are naturally defined in the middle point of a link

Link variables are unitary matrices – they do not depend linearly on the gauge
potential Aµ(x)

Reason: they belong to the group SU(Nc) rather than to the corresponding

Lie algebra, as is the case in the continuum

The relation of the Uµ(x) matrices to the gauge fields Aµ(x), the variables
which have a direct correspondence with the continuum, is then given by

Uµ(x) = eig0aT
aAa

µ(x) (a = 1, . . . , N2
c − 1)

where the T a are SU(Nc) matrices in the fundamental representation
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Feynman rules

In the weak coupling regime (small g0) the functional integral is dominated by
field configurations near the trivial gauge field Uµ(x) = 1

Perturbation theory is then a saddle-point expansion around these classical
vacuum configuration – and the degrees of freedom are given by the
components of the potential, Aa

µ(x)

Thus, while the fundamental gauge variables in Monte Carlo simulations are
the Uµ’s, and the action is relatively simple when expressed in terms of these
variables, in perturbation theory the true dynamical variables are the Aµ’s

This mismatch is responsible for many complications of lattice PT

Indeed: the Wilson action becomes very complicated when written in terms of
the Aµ’s:

Uµ = 1 + ig0aAµ −
1

2
g2
0a

2A2
µ + · · ·

Moreover, it consists of an infinite number of terms, which give rise to an
infinite number of interaction vertices – with an arbitrary number of fields

→ example: ψAA · · · Aψ (not in the continuum. . . )
Bielefeld – p.30



Feynman rules

Is lattice gauge theory then non-renormalizable?
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Feynman rules

Is lattice gauge theory then non-renormalizable?

Fortunately, only a finite number of vertices is needed to any given order in g0

All but a few vertices are “irrelevant” – they are proportional to some positive
power of the lattice spacing a and so they vanish in the naive continuum limit

However, this does not mean that they can be thrown away in the computation
of Feynman diagrams!

Quite on the contrary: they usually contribute to correlation functions in the
continuum limit, through divergent loop corrections (∼ 1/an)

These irrelevant vertices are indeed important in many cases, they contribute
to the renormalization of masses, coupling constants and wave-functions

All these vertices are in fact necessary to ensure the gauge invariance of
physical amplitudes

Only when they are included can gauge-invariant Ward Identities be
constructed, and the renormalizability of the lattice theory proven

Bielefeld – p.31



Feynman rules

Is lattice gauge theory then non-renormalizable?

Fortunately, only a finite number of vertices is needed to any given order in g0

All but a few vertices are “irrelevant” – they are proportional to some positive
power of the lattice spacing a and so they vanish in the naive continuum limit

However, this does not mean that they can be thrown away in the computation
of Feynman diagrams!

Quite on the contrary: they usually contribute to correlation functions in the
continuum limit, through divergent loop corrections (∼ 1/an)

These irrelevant vertices are indeed important in many cases, they contribute
to the renormalization of masses, coupling constants and wave-functions

All these vertices are in fact necessary to ensure the gauge invariance of
physical amplitudes

Only when they are included can gauge-invariant Ward Identities be
constructed, and the renormalizability of the lattice theory proven

Example: diagrams contributing to the 1-loop gluon self-energy
Bielefeld – p.31



Feynman rules

diagrams on the upper row: have a continuum analog

diagrams on the lower row: pure lattice artifacts – but necessary for the gauge
invariance of the lattice theory, and for its renormalizability

If one takes only the upper row diagrams (the ones that would also exist in the
continuum), the lattice results diverge like 1/a2 (unphysical)

This divergence is removed only when the diagrams of the lower row are added

For this to happen, also a contribution coming from the measure is essential
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Feynman rules

Only when the diagrams of the lower row are considered, gauge invariance is
fully restored as well

In similar ways, terms of the type p2
µ δµν , not Lorentz covariant, and often

present in individual diagrams, disappear only after all diagrams have been
considered and summed

Bielefeld – p.33



Feynman rules

Only when the diagrams of the lower row are considered, gauge invariance is
fully restored as well

In similar ways, terms of the type p2
µ δµν , not Lorentz covariant, and often

present in individual diagrams, disappear only after all diagrams have been
considered and summed

From what we have seen so far: a lattice regularization amount to much more
than introducing in the theory a momentum cutoff

In fact, it is a far more complicated regularization than just introducing a cutoff

one has also to provide a gauge-invariant regularized action

Different discretizations of the same continuum action define different lattice
regularizations
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Feynman rules

Only when the diagrams of the lower row are considered, gauge invariance is
fully restored as well

In similar ways, terms of the type p2
µ δµν , not Lorentz covariant, and often

present in individual diagrams, disappear only after all diagrams have been
considered and summed

From what we have seen so far: a lattice regularization amount to much more
than introducing in the theory a momentum cutoff

In fact, it is a far more complicated regularization than just introducing a cutoff

one has also to provide a gauge-invariant regularized action

Different discretizations of the same continuum action define different lattice
regularizations

You cannot escape the complications of LPT: a gauge-invariant regularization
requires the U ’s, but the degrees of freedom of LPT are the A’s
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Lattice Feynman rules are much more complicated that in the continuum, and
new interaction vertices appear which have no analog in the continuum

The structure of lattice integrals is also completely different – periodicity
causes the appearance of trigonometric functions

The lattice integrands are then rational functions of trigonometric expressions

Thus, things are much more involved than in the continuum:

there are more fundamental vertices

there are more diagrams

propagators and vertices are more complicated expressions

often need Taylor expansions of trigonometric functions in the momenta

Consequence: final expressions containing a huge number of terms

Finally, one has also to evaluate more complicated integrals

For the calculation of all but the simplest matrix elements the help of
computers is almost unavoidable
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Feynman diagrams in momentum space : we need the Fourier transforms on
the lattice (in infinite volume, standard setting of perturbation theory) :

ψ(x) =

∫ π
a

− π
a

d4p

(2π)4
eixp ψ(p)

ψ(x) =

∫ π
a

− π
a

d4p

(2π)4
e−ixp ψ(p)

Aµ(x) =

∫ π
a

− π
a

d4k

(2π)4
ei(x+aµ̂/2)k Aµ(k)

The Fourier transform of Aµ(x) is taken at the point x+ aµ̂/2, halfway between
x and the neighboring point x+ aµ̂

This turns out to be quite important for the general economy of the calculations

The δ-functions in position and momentum space are

δxy = a4

∫ π
a

− π
a

d4p

(2π)4
ei(x−y)p, δ(4)(p) =

a4

(2π)4

∑

x

e−ixp
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Example: quark-quark-gluon vertex in momentum space, for Wilson fermions:
(euclidean space!)

Sqqg =

∫ π
a

− π
a

d4p

(2π)4

∫ π
a

− π
a

d4k

(2π)4

∫ π
a

− π
a

d4p′

(2π)4
(2π)4δ(4)(p+ k − p′)

× ig0
∑

µ

ψ(p′)

(
γµ cos

a(p+ p′)µ

2
− ir sin

a(p+ p′)µ

2

)
Aµ(k)ψ(p)

(color factor not included)

It is easy to see that in the formal a→ 0 limit this becomes the familiar
continuum QCD vertex:
∫ ∞

−∞

d4p

(2π)4

∫ ∞

−∞

d4k

(2π)4

∫ ∞

−∞

d4p′

(2π)4
(2π)4δ(4)(p+k−p′) ·ig0

∑

µ

ψ(p′)γµAµ(k)ψ(p)

In the following we will not explicitly write the δ-function of momenta present in
each vertex and propagator

Convention for the vertices: all gluon lines are entering, and when there are
quark or ghost lines there will always be an equal number of incoming and
outgoing lines
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In the Wilson action the group elements Uµ(x) appear instead of the
fundamental perturbative variables, the algebra elements Aµ(x)

We want to derive the gluon vertices from the pure gauge action

⇒ expand the Uµ’s of the plaquette in terms of the Aµ’s

Thus, an infinite number of interaction vertices are generated

They express the self-interactions of n gluons, with arbitrary n

The power of the coupling constant which enters in these vertices grows with
the number of gluons

⇒ only a finite number of vertices is needed to any given loop order

The expansion of the plaquette action in terms of the Aµ’s can be derived by
means of the Baker-Campbell-Hausdorff formula

eAeB = exp

{
A+B+

1

2

[
A,B

]
+

1

12

[
A−B,

[
A,B

]]
+

1

24

[[
A,
[
A,B

]
, B
]]

+· · ·

}
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From the definition of the U ’s it follows that the entries of the matrices
ag0Aµ(x) are angular variables – they take values between zero and 2π

In perturbation theory the range of integration of the fields Aa
µ(x) is extended

to infinity

It is only after Aa
µ(x) has been decompactified that the tree-level propagators

can be explicitly computed (Gaussian functional integral)

The 3-gluon vertex is (with p+ q + r = 0, and gluons are all incoming and
assigned clockwise):

W abc
µνλ(p, q, r) = −ig0 f

abc 2

a

{
δµν sin

a(p− q)λ

2
cos

arµ

2

+δνλ sin
a(q − r)µ

2
cos

apν

2
+ δλµ sin

a(r − p)ν

2
cos

aqλ

2

}

In the formal a→ 0 limit this reduces to the continuum expression

−ig0 f
abc
{
δµν (p− q)λ + δνλ (q − r)µ + δλµ (r − p)ν

}

Bielefeld – p.38



Feynman rules

It is useful to introduce the shorthand notation k̂µ =
2

a
sin

akµ

2

The 4-gluon vertex is quite complicated: W abcd
µνλρ(p, q, r, s) =

−g2
0

{∑

e

fabefcde

[
δµλδνρ

(
cos

a(q − s)µ

2
cos

a(k − r)ν

2
−
a4

12
k̂ν q̂µr̂ν ŝµ

)

−δµρδνλ

(
cos

a(q − r)µ

2
cos

a(k − s)ν

2
−
a4

12
k̂ν q̂µr̂µŝν

)

+
1

6
δνλδνρa

2 (ŝ− r)µ k̂ν cos
aqµ

2
−

1

6
δµλδµρa

2 (ŝ− r)ν q̂µ cos
akν

2

+
1

6
δµνδµρa

2 (q̂ − k)λ r̂ρ cos
asλ

2
−

1

6
δµνδµλa

2 (q̂ − k)ρ ŝλ cos
arρ

2

+
1

12
δµνδµλδµρa

2
∑

σ

(q̂ − k)σ(ŝ− r)σ

]

+(b↔ c, ν ↔ λ, q ↔ r) + (b↔ d, ν ↔ ρ, q ↔ s)

}
+
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+
g2
0

12
a4

{
2

3
(δabδcd + δacδbd + δadδbc) +

∑

e

(δabeδcde + δaceδbde + δadeδbce)

}

×

{
δµνδµλδµρ

∑

σ

k̂σ q̂σ r̂σ ŝσ − δµνδµλ k̂ρq̂ρr̂ρŝµ

−δµνδµρ k̂λq̂λŝλr̂µ − δµλδµρ k̂ν r̂ν ŝν q̂µ − δνλδνρ q̂µr̂µŝµk̂ν

+δµνδλρ k̂λq̂λr̂µŝµ + δµλδνρ k̂ν r̂ν q̂µŝµ + δµρδνλ k̂ν ŝν q̂µr̂µ

}

In the a→ 0 limit this expression becomes the four-gluon vertex of continuum
QCD

To my knowledge, an explicit expression for the five-gluon vertex has not yet
been given in the literature

General algorithms for the automated calculation of higher-order vertices (for a
given configuration of external momenta) have been reported by Lüscher and
Weisz (1986)
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Feynman rules

The vertices containing five or more gluons are at least of order g3
0 , and thus

they are not necessary for 1-loop calculations

For nonabelian gauge theories, the calculation of the pure gauge part of
course does not end here

One has still to consider the gauge integration measure, which generates an

infinite number of vertices with increasing powers of g0, starting with a 1/a2

mass counterterm to order g2
0

Furthermore, the Faddeev-Popov procedure has to be implemented on the
lattice, from which the Feynman rules for the ghost propagator and the various
ghost vertices can be derived

The effective ghost-gauge field interaction , at variance with the continuum, is
not linear in the gauge potential Aµ

Thus, also in this sector we find an infinite number of new vertices that have no
continuum analog, like for example the vertex involving two ghosts and two
gluons
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Gauge fixing:

Although in some situations can be convenient, it is not in principle necessary
on the lattice when one works with actions written in terms of the Uµ’s
(as done in Monte Carlo simulations)

Reason: unlike what happens in the continuum, the whole volume of the
gauge group is finite – it is the product of a countable number of factors each
equal to the volume of the SU(3) group, V =

∏
x
v(SU(3))

This factor cancels out in normalizing expectation values of operators

In perturbation theory: saddle-point approximation of the functional integral
around Uµ = 1, and the Aµ’s become the actual degrees of freedom

Thus, gauge fixing is necessary in LPT

A gauge has to be fixed in order to eliminate the zero modes in the quadratic
part of the action (expressed in terms of the Aµ’s)

We can see why it is necessary to fix a gauge in perturbative lattice QCD also
from the following argument
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Perturbation theory: expansion around the minimum of the plaquette action

Looking at the form of the Wilson action we see that Pµν(x) = 1 minimizes the
pure gauge action – but this does not yet imply Uµ(x) = 1

On the contrary, even if one fixes Uµ(x) = 1 for each link from the beginning, a
gauge transformation will lead to 1 → Ω(x) Ω−1(x+ aµ̂), a group element
which can take any value

In order to avoid this, and for perturbation theory to be a weak coupling
expansion around the configuration Uµ(x) = 1, one must fix the gauge
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Perturbation theory: expansion around the minimum of the plaquette action

Looking at the form of the Wilson action we see that Pµν(x) = 1 minimizes the
pure gauge action – but this does not yet imply Uµ(x) = 1

On the contrary, even if one fixes Uµ(x) = 1 for each link from the beginning, a
gauge transformation will lead to 1 → Ω(x) Ω−1(x+ aµ̂), a group element
which can take any value

In order to avoid this, and for perturbation theory to be a weak coupling
expansion around the configuration Uµ(x) = 1, one must fix the gauge

Gauge fixing is thus essential in lattice perturbative calculations, and can be
implemented by a lattice Faddeev-Popov procedure, similarly to the continuum

The final result, however, is rather different

Indeed, as another consequence of the lattice gauge invariance, one obtains
from the Faddeev-Popov procedure an infinite number of vertices

Although cumbersome, this procedure is perfectly consistent and gives a
precise meaning to the lattice functional integral
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The result for the Faddeev-Popov determinant is indeed very reminiscent of
the continuum:

∆FP [Aµ] = det (−∇⋆
µD̂µ[A])

The important difference with respect to the continuum case is that the lattice

operator D̂µ[A] is not linear in A

So, we get an infinite number of ghost-gluon vertices

Using the well-known formula for Grassmann spin-zero variables c and c

∫
D(cc) exp

−a4
∑

ij

ciQijcj

= detQ

we can write the Faddeev-Popov determinant in terms of an action involving
ghosts:

∆FP [Aµ] =

∫ (∏

a,x

dca(x)ca(x)
)

exp
(
a4
∑

x

ca(x)∇⋆
µD̂

ab
µ [Aµ]cb(x)

)

Bielefeld – p.44



Feynman rules

Lattice analog of the covariant Lorentz gauge:

Fa
x [Aµ, χ] = ∇⋆

µA
a
µ(x) − χa(x) = 0

(χ are some arbitrary fields)

The expectation value of a generic gauge-invariant operator is then

〈O〉 =

∫
DψDψDADcDc ·O · exp(−SQCD + a4

∑
x
ca(x)∇⋆

µD̂
ab
µ [A]cb(x) − Smeas − Sgf )

∫
DψDψDADcDc · exp(−SQCD + a4

∑
x
ca(x)∇⋆

µD̂
ab
µ [A]cb(x) − Smeas − Sgf )

In the above equation the gauge-fixing term has been written, thanks to the

δ-function δ(Fa
x [Aµ, χ]), as

Sgf =
a4

2α

∑

x

(∑

µ

∇⋆
µAµ(x)

)2

=
a2

2α

∑

x

(∑

µ

(
Aµ(x) −Aµ(x− aµ̂

))2

Ghosts are spin-zero Grassmann variables transforming according to the
adjoint representation of SU(3)
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The gluon propagator in the covariant gauge ∂µAµ = 0 is

Gab
µν(k) = δab 1

4

a2

∑
λ

sin2 akλ

2

{
δµν − (1 − α)

sin
akµ

2
sin

akν

2∑
λ

sin2 akλ

2

}
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The gluon propagator in the covariant gauge ∂µAµ = 0 is

Gab
µν(k) = δab 1

4

a2

∑
λ

sin2 akλ

2

{
δµν − (1 − α)

sin
akµ

2
sin

akν

2∑
λ

sin2 akλ

2

}

In shorthand form it looks quite simple:

δab ·
1

k̂2

[
δµν − (1 − α)

k̂µk̂ν

k̂2

]
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The gluon propagator in the covariant gauge ∂µAµ = 0 is

Gab
µν(k) = δab 1

4

a2

∑
λ

sin2 akλ

2

{
δµν − (1 − α)

sin
akµ

2
sin

akν

2∑
λ

sin2 akλ

2

}

In shorthand form it looks quite simple:

δab ·
1

k̂2

[
δµν − (1 − α)

k̂µk̂ν

k̂2

]

So, it is easy to see that in the limit a→ 0 the lattice gluon propagator reduces
to the well-known continuum expression

δab ·
1

k2

[
δµν − (1 − α)

kµkν

k2

]
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Feynman rules

We stress once again that one needs to fix a gauge even on the lattice, in
order to do perturbation theory
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We stress once again that one needs to fix a gauge even on the lattice, in
order to do perturbation theory

The ghost propagator is
δab ·

1
4

a2

∑
λ

sin2 akλ

2

The ghost-ghost-gluon vertex is

ig0fabc (p̂2)µ cos
(ap1)µ

2
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Feynman rules

We stress once again that one needs to fix a gauge even on the lattice, in
order to do perturbation theory

The ghost propagator is
δab ·

1
4

a2

∑
λ

sin2 akλ

2

The ghost-ghost-gluon vertex is

ig0fabc (p̂2)µ cos
(ap1)µ

2

The ghost-ghost-gluon-gluon vertex is

1

12
g2
0a

2 {ta, tb}cd δµν (p̂1)µ (p̂2)µ

This is a lattice artifact, which vanishes in the formal continuum limit a→ 0
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We stress once again that one needs to fix a gauge even on the lattice, in
order to do perturbation theory

The ghost propagator is
δab ·

1
4

a2

∑
λ

sin2 akλ

2

The ghost-ghost-gluon vertex is

ig0fabc (p̂2)µ cos
(ap1)µ

2

The ghost-ghost-gluon-gluon vertex is

1

12
g2
0a

2 {ta, tb}cd δµν (p̂1)µ (p̂2)µ

This is a lattice artifact, which vanishes in the formal continuum limit a→ 0

Vertices containing three or more ghosts are at least of order g3
0 and do not

enter in 1-loop calculations
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The definition of the gauge-invariant integration measure on the lattice turns
out to be nontrivial for nonabelian gauge groups – and generates an infinite
number of vertices

It is convenient to write this measure term in the form

DU = e−Smeas[A] DA

This can be done using det g = exp(Tr log g), so that we obtain

Smeas[A] = −
1

2

∑

x,µ

Tr log
2(1 − cos(ag0A

a
µt

a))

(ag0Aa
µta)2

= −
1

2

∑

x,µ

Tr log

[
1 + 2

∞∑

l=1

(−1)l

(2l + 2)!

(
ag0A

a
µt

a
)2l

]

The new factor 2 at numerator (irrelevant constant) is because we want
log(1 + x)

From this expression one can read off all vertices
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To lowest order one gets

Smeas[A] =
g2
0

8a2

∑

x,a,µ

(Aa
µ)2

This term, quadratic in Aµ, is part of the interaction and not a kinetic term,

because of the presence of the factor g2
0

It acts like a mass counterterm of order g2
0 , and is needed to restore gauge

invariance in lattice Feynman amplitudes

For example, it cancels the quadratic divergence in the 1-loop gluon
self-energy (as we have seen before . . . )

In momentum space this mass counterterm is

−
g2
0

4a2
δµνδab

The higher orders (starting with g3
0) give self-interaction vertices of the gluons
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The quark propagator can be computed by inverting the lattice Dirac operator
in momentum space, and is given by

Sab(k,m0) = δab · a
−i
∑

µ
γµ sin akµ + am0 + 2r

∑
µ

sin2 akµ

2
∑

µ
sin2 akµ +

(
2r
∑

µ
sin2 akµ

2
+ am0

)2

In the formal continuum limit it reduces to the well-known expression

δab ·
−i
∑

µ
γµkµ +m0∑

µ
k2

µ +m2
0

The quark-antiquark-gluons vertices are obtained by expanding the fermionic
part of the action in powers of g0A

We get again an infinite tower of vertices, which involve a qq pair and any
number of gluons

Fortunately, only a finite number of these vertices is needed to any given order
in g0
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The expression of the quark-quark-gluon vertex is

(V a
1 )bc

µ (p1, p2) = −g0(T
a)bc

(
iγµ cos

a(p1 + p2)µ

2
+ r sin

a(p1 + p2)µ

2

)

where p1 and p2 are the quark momenta flowing in and out of the vertex

For a→ 0 this becomes the familiar continuum QCD vertex −g0(T
a)bc iγµ

The quark-quark-gluon-gluon vertex is (V ab
2 )cd

µν(p1, p2) =

−
1

2
ag2

0 δµν

(
1

Nc
δab + dabeT e

)cd

(
− iγµ sin

a(p1 + p2)µ

2
+ r cos

a(p1 + p2)µ

2

)

This vertex vanishes as a→ 0 and thus has no continuum analog

However it can still give nonvanishing contributions to a Feynman diagram,
because of power divergences in loops (∼ 1/an) that can compensate the
explicit factor a in front of V2
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Propagators and vertices needed for 1-loop calculations in lattice QCD
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These are all quark-gluon vertices which are needed for 1-loop calculations

Vertices with two quarks and n gluons are associated with factors an−1gn
0

In spite of the fact that the lattice gauge theory has an infinite number of
fundamental vertices, it is still renormalizable

It turns out that the superficial degree of divergence of a Feynman diagram
depends only on the number of its external lines (Kawai et al., 1981) :

D = 4 − EG − Eg −
3

2
Eq

where EG, Eg and Eq represent the number of external gluons, ghosts and
quarks

Vertices of higher order in a and g0 do not modify this continuum picture

In the language of the renormalization group, they are irrelevant operators, and
they do not affect the scaling behavior of the theory

The factors an in front of these irrelevant vertices contribute to keep the theory
renormalizable
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Tadpoles

Typical lattice diagrams are the tadpoles

Example: 1-loop quark self-energy
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Tadpoles

Typical lattice diagrams are the tadpoles

Example: 1-loop quark self-energy

Wave-function renormalization:

g2
0

16π2
CF ·

(
log a2p2 − 0.380646

)
g2
0

16π2
CF · 12.23305

Critical mass:

−
1

a

g2
0

16π2
CF · 2.502511 −

1

a

g2
0

16π2
CF · 48.932201

This shows an often occurring phenomenon in LPT: tadpole dominance
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Diagrams

(a) vertex��� ����������� �� �� �� �� �� �� �� ����������������w ����� ��� (b) sail����������
���
����� ���� ��������w��������

() sail�������
�w����� ���� ����� 	�� �������������� (d) operator tadpole�������
�w��������
����� ���� ����� 	�� ������
��	��������

(e) leg self-energy(exluding tadpoles)�����������

����� ���� ����������w�������� (f) leg self-energy(exluding tadpoles)�������
�w�������� ���� ����� 	�� �����������

(g) leg tadpole���������
��	��������
�
���� ���� ����� 	�� �����w�������� (h) leg tadpole ������������
�
���� ���� ����� 	�� ������
��	����w��������
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Diagrams

(a) vertex��� ����������� �� �� �� �� �� �� �� ����������������w ����� ��� (b) sail����������
���
����� ���� ��������w��������

() sail�������
�w����� ���� ����� 	�� �������������� (d) operator tadpole�������
�w��������
����� ���� ����� 	�� ������
��	��������

(e) leg self-energy(exluding tadpoles)�����������

����� ���� ����������w�������� (f) leg self-energy(exluding tadpoles)�������
�w�������� ���� ����� 	�� �����������

(g) leg tadpole���������
��	��������
�
���� ���� ����� 	�� �����w�������� (h) leg tadpole ������������
�
���� ���� ����� 	�� ������
��	����w��������

These are the 1-loop diagrams
needed for the renormalization
of currents and operators

In general, operators may con-
tain gauge fields

Examples:

ψ γµ Dν ψ (covariant derivative)

1

2

(
ψ(x) (γµ−r)Uµ(x)

λf

2
ψ(x+aµ̂)

+ψ(x+aµ̂) (γµ+r)U†
µ(x)

λf

2
ψ(x)

)

This generates the sails, and
the operator tadpole

Bottom-half diagrams: corrections
to the external legs...
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Some technical issues

The Feynman rules on the lattice are quite different from the continuum ones

The number of Feynman diagrams is in general larger

The structure of the lattice integrals is also completely different

The integrands are periodic in the momenta, and the basic objects are
trigonometric functions and not simple polynomials of the momenta

Many standard methods in continuum perturbation theory, like Feynman
parameterization and partial integration, are then not of much use for
perturbative lattice calculations.

Also the γ-algebra becomes soon too involved to be worked out still by hand

At the end of the day, perturbation theory on the lattice, even only for simple
actions at the 1-loop level, is rather cumbersome

Compared to an equivalent continuum calculation, vertices and propagators
are more complicated, usually there are more diagrams, and each diagram
produces many more integrals (involving trigonometric functions)

⇒ fewer loops and fewer legs than in the continuum
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Some technical issues

Computer codes are then necessary if one wants to compute but the simplest
matrix elements
(for example: use the algebraic manipulation program FORM)

These codes take the Feynman rules for the particular combination of
operators, propagators and vertices in each diagram, expand them in the
lattice spacing a to the appropriate order, evaluate the γ-algebra on the lattice,
and then work out everything until the final expressions are obtained

Due to the enormous number of terms in the initial stages of the manipulations
one needs in many cases a large working memory

These codes turn out to be necessary also because they can provide the
result of the analytic manipulations as an output file which is already formatted
(for example in Fortran) as an input file for the numerical integration

Lattice perturbative calculations generally involve the manipulation of a huge
number of terms, but often a large number of terms remain also in the final
analytic expressions which have to be numerically integrated

The numerical integrations then require a lot of computer time, which in some
cases can be of the order of thousands of hours
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Some technical issues

The increasing complexities can be easily seen in the calculation of the
renormalization of the moments of unpolarized structure functions

Reason: the covariant derivative is proportional to the inverse of the lattice
spacing, D ∼ 1/a, and so

〈xn〉 ∼ 〈ψ γµ Dµ1
· · · Dµn ψ〉 ∼

1

an

This means that in order to compute the n-th moment, one needs to perform a
Taylor expansion in a to order n of every single quantity (propagators, vertices,
operator insertions, counterterms)

It is not difficult to see how many terms can come out of that

It is sufficient to look at the Wilson quark-quark-gluon vertex to order a2

(V a)bc
µ (k, ap) = −g0 (T a)bc ·

{
iγµ

[
cos

kµ

2
−

1

2
apµ sin

kµ

2
−

1

8
a2p2

µ cos
kµ

2

]

+r
[

sin
kµ

2
+

1

2
apµ cos

kµ

2
−

1

8
a2p2

µ sin
kµ

2

]
+O

(
a3p3

µ

)}

or to the expansion of the Wilson quark propagator just only to order a:
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Some technical issues

Sab(k + aq, am0) = δab ·

{
−i
∑

µ
γµ sin kµ + 2r

∑
µ

sin2 kµ

2
∑

µ
sin2 kµ +

[
2r
∑

µ
sin2 kµ

2

]2

+a ·

[
−i
∑

µ
γµqµ cos kµ + r

∑
µ
qµ sin kµ +m0

∑
µ

sin2 kµ +

[
2r
∑

µ
sin2 kµ

2

]2

−

(
− i
∑

ρ

γρ sin kρ + 2r
∑

ρ

sin2 kρ

2

)∑
µ
qµ sin 2kµ + 4r

∑
µ

sin2 kµ

2

(
r
∑

ν
qν sin kν +m0

)

{∑
µ

sin2 kµ +

[
2r
∑

µ
sin2 kµ

2

]2}2

]}

+O

(
a2q2µ

)

The algebraic manipulations become thus quite complex

Overlap or domain-wall fermions, improved gauge actions, . . . , produce even

more complicated expressions

Main consequence of all this: generation of a huge number of terms, at least in

the initial stages of the manipulations, even in the case of matrix elements
where all Lorentz indices are contracted Bielefeld – p.59



Some technical issues

The multiplication of two vertices and two quark propagators which have been
expanded to order a generates about 42 · 112 ∼ 2000 monomial terms

Initial expansions of Feynman diagrams for the operators of the second and
third moment of parton distributions can easily reach the order of 106 terms

This slows down considerably the execution of the algebraic codes

Most of these terms either become zero after doing the Dirac algebra, or do
not contribute to the sought Dirac structure, or are zero after integration

The terms which do not contribute to the final expression have to be discarded
as early as possible to speed up the computations

Thus, the fact that an operator with n covariant derivatives requires Taylor
expansions in a to order n also implies a limitation on the number of moments
of structure functions that one can practically compute on the lattice

This is something different from the limitation coming from operator mixings,
and the combination of these two computational challenges renders in practice
the computation of the renormalization of the fourth moment or higher very
difficult
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Some technical issues

Typical structure of a lattice integral from a Feynman diagram:

1

an

∫ π

π

(
c(0) + c(1)µ apµ + · · · + c

(n)
µ1···µn

anpµ1
· · · pµn + · · ·

)

So, in general one can have power divergences

∼
1

ak

Terms with a positive power of the lattice spacing are generally set to zero
(unless you are interested in Symanzik improvement. . . )

Example:

1

a

∫ π

π

(
c(0) + c(1)µ apµ + c(2)µν a

2pµpν + c
(3)
µνλ a

3pµpνpλ + · · ·
)

=
1

a

∫ π

π

c(0) + pµ

∫ π

π

c(1)µ + apµpν

∫ π

π

c(2)µν + a2pµpνpλ

∫ π

π

c
(3)
µνλ + · · ·

︸ ︷︷ ︸
all these terms vanish

Be aware of this when doing the exercises!
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Some technical issues

Lorentz symmetry is broken on the lattice

for example, one cannot make a rotation of an arbitrary degree

A whole new kind of problems stem from this fact, for example the non-validity
of the Einstein summation convention (kµk

µ = k2)

One of the biggest challenges of computer codes for lattice perturbation theory
is to deal with the fact that the summation convention on repeated indices is
suspended

FORM, and other similar symbolic manipulations programs, have been
developed having in mind the usual continuum calculations

There are therefore many useful built-in features of FORM that are in principle
somewhat of a hindrance when one does lattice perturbative calculations

These built-in functions cannot then be used straightforwardly in the lattice
computations
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Some technical issues

This is for example what FORM would do by default, because it assumes that
two equal indices have to be contracted:

∑

λ

γλpλ −→ 6p

∑

λ

γλpλ sin kλ −→ 6p sin kλ

∑

λ

γλ sin kλ cos2 kλ −→ (γ · sin k) cos2 kλ

∑

λ,ρ

γργλγρ sin kλ cos2 kρ −→ −2
∑

λ

γλ sin kλ cos2 kρ
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Some technical issues

This is for example what FORM would do by default, because it assumes that
two equal indices have to be contracted:

∑

λ

γλpλ −→ 6p

∑

λ

γλpλ sin kλ −→ 6p sin kλ

∑

λ

γλ sin kλ cos2 kλ −→ (γ · sin k) cos2 kλ

∑

λ,ρ

γργλγρ sin kλ cos2 kρ −→ −2
∑

λ

γλ sin kλ cos2 kρ

On the lattice however monomials typically contain more than twice the same
index

Only the first case is then correctly handled by FORM

For example, in the last case the right answer is instead

−
∑

λ,ρ

γλ sin kλ cos2 kρ + 2
∑

ρ

γρ sin kρ cos2 kρ
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Some technical issues

For this reason one must develop special routines to deal with the γ-algebra on
the lattice

One solution could be to introduce generalized Kronecker δ-symbols

δµ1µ2...µn

which are equal to one only if all indices are equal, µ1 = µ2 = . . . = µn, and
zero otherwise (Lüscher and Weisz, 1995)

In general one needs special routines, which introduce suitable modifications
to the usual FORM commands, to properly treat Dirac matrices and handle
terms like in the above examples

Since the computations cannot be carried out by hand and because of these
special routines for the γ’s, a number of additional checks is desirable

One can use different regularizations, like a mass regularization and
dimensional regulation (in its various forms), and one can develop various
routines which use different methods

Gauge invariance is also used as a check, by repeating the calculations in
Feynman and Landau gauge
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Hypercubic group

It is useful to discuss the symmetry group of the lattice and see what are the
consequences of the breaking of Lorentz invariance

On the lattice one inevitably ends up with a discrete group

The symmetry group of the discrete rotations of a four-dimensional hypercubic
lattice onto itself is a crystallographic group, denoted by W4 and called the
hypercubic group

It consists of π/2 rotations on the six lattice planes and reflections
(so that parity transformations are also included)

It has 384 elements and 20 irreducible representations

W4 is a subgroup of the orthogonal group O(4), which is the Lorentz group
analytically continued to Euclidean space

A major difficulty in doing perturbative calculations on the lattice arises from
the fact that the (Euclidean) Lorentz symmetry breaks down to the hypercubic
W4 symmetry

Since the lattice has a reduced symmetry with respect to the continuum, more

operator mixings are allowed
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Hypercubic group

Let us first consider the special hypercubic group, SW4, consisting of proper
rotations without reflections

It has 192 elements and 13 irreducible representations

5 of these representations (of dimensions 1, 1, 2, 3 and 3) are connected to the
4-element permutation group, S4, because the latter is a subgroup of SW4 and
the 5 representations of S4 can be taken as nonfaithful representations of SW4

There are then four representations of SW4 which can be identified by the fact
that they correspond to representations of O(4) which remain irreducible under
SW4:

(1,0), (0,1), (
1

2
,
1

2
), (

3

2
,
1

2
)

The direct product of each the first three representations with the completely
antisymmetric representation of the permutation group S4 generates three
other irreducible representations of SW4 (which maintain the same
dimensionality), while (3

2
, 1

2
) is invariant under this operation

The representation (1

2
, 3

2
) turns out to give the same hypercubic

representation as (3

2
, 1

2
)
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Hypercubic group

So far we have then been able to identify 12 representations

There is yet another representation, which has dimension 6

The complete list of the representations of the special hypercubic group SW4

is thus given by

11,12,2,31,32,33,34,35,36,41,42,6,8

where the subscripts label different representations with the same
dimensionality

This group is a subgroup of SO(4), the special orthogonal group

We now discuss the irreducible representations of W4

Including the reflections doubles the number of group elements, but not the
number of representations
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Hypercubic group

This happens because, contrary to the cubic group in three dimensions, the
hypercubic group is not the direct product of the rotation group and the
reflection group

The reason is that the reflection of all four axes is still a rotation, which is not
true for the reflection of three axes in three dimensions

Therefore, going from SW4 to W4 the number of representations only
increases from 13 to 20

What happens is that 9 of these 13 representations just double (generating the
representations with opposite parity), while the remaining 4, all of dimension 3,
merge into two 6-dimensional representations which are reflection invariant

In particular, the 33 and 34 of SW4 merge into the 61 of W4, and the 35 and 36

of SW4 merge into the 62 of W4

We can then give the complete list of the representations of W4:

11,12,13,14,21,22,31,32,33,34,41,42,43,44,61,62,63,64,81,82
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Hypercubic group

The representation 41 is the canonical one, corresponding to an object with
a Lorentz index , like (1

2
, 1

2
) is in the continuum

When interested in the behavior of lattice operators which have more than one
Lorentz index, we must identify the representations of the hypercubic group
contained in the tensor products of the 41 with itself

Then, we compare the result with what happens in the continuum, where one
has to consider the tensor products of the (1

2
, 1

2
) with itself

The relation between these two expansions determines what kind of mixings
arise when one computes radiative corrections of lattice matrix elements

All this of course apart from additional mixings due to the breaking of chiral
symmetry or of other symmetries

More on this in:

Baake, Gemünden and Oedingen, J. Math. Phys. 23 (1982) 944

Baake, Gemünden and Oedingen, J. Math. Phys. 24 (1983) 1021

Mandula, Zweig and Govaerts, Nucl. Phys. B228 (1983) 91
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Operator mixing

Since W4 is a subgroup of O(4), a continuum operator belonging to a given

irreducible representation of the (Euclidean) Lorentz group becomes in general
a sum of irreducible representations of the hypercubic group

The continuum operator can then belong to various distinct lattice
representations, depending on the way in which its indices are chosen

This implies than on the lattice the possibilities for mixing under
renormalization are larger than in the continuum

The number of independent renormalization factors in a lattice calculation is so
in general larger than in the continuum

In particular, operators which are multiplicatively renormalizable in the
continuum may lose this property on the lattice

This feature also occurs in other regularizations

For example, in continuum calculations using dimensional regularization in the
version known as DRED, “evanescent” operators, coming from the additional
−2ǫ dimensions, are generated in the intermediate stages of the calculations
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Operator mixing

For Wilson fermions additional mixings (beside those due to the breaking of
Lorentz invariance) can arise because of the breaking of chiral symmetry

For staggered fermions, the loss of flavor invariance also opens the door for
more mixings

All these additional mixings are unphysical – are just lattice artifacts which
have to be subtracted in order to extract physical results from the lattice

In practical terms the worst situation occurs in the case of mixings with
operators of lower dimensions , with lattice renormalization factors containing
a power divergent coefficient, proportional to 1/an

These lattice artifacts ought to be subtracted nonperturbatively

In short, Lorentz breaking, as well as the possible breaking of chiral, flavor or
other symmetries, may spoil in general the multiplicative renormalizability of
continuum operators – in some cases even with power divergences

The necessary condition for not having any (hypercubic-related) mixing at all
is that the operator belongs to an irreducible representation of W4 – but this is
sometimes not sufficient , as we will see shortly
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Operator mixing

Let us see some examples involving operators which measure moments of
unpolarized structure functions

These operators appear in the operator product expansion of two
electromagnetic or weak hadronic currents, are symmetric in all their indices
and traceless and have the form

O{µµ1···µn}(x) = ψ(x) γ{µ Dµ1
· · ·Dµn} ψ(x)

The operator O{µµ1···µn} measures the n-th moment, 〈xn〉, of the unpolarized
structure functions

All mixings which we discuss for these operators are artifacts of the lattice, and
are only due to the breaking of Lorentz invariance

They have nothing to do with the breaking of chiral symmetry for Wilson
fermions, and therefore they are still present, in exactly the same form, even
when one uses Ginsparg-Wilson fermions

In the continuum each of the above operators belongs to an irreducible
representation of the Lorentz group
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Operator mixing

On the lattice instead they are in general reducible , and they become linear
combinations of irreducible representations of the hypercubic group

This why mixings appear when radiative corrections are computed
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Operator mixing

On the lattice instead they are in general reducible , and they become linear
combinations of irreducible representations of the hypercubic group

This why mixings appear when radiative corrections are computed

First moment: the operator is O{µν} = ψ γ{µ Dν} ψ, symmetric and traceless

An object with a single Lorentz index belongs in the continuum to the (1

2
, 1

2
)

representation of the Euclidean Lorentz group O(4), while on the lattice it
belongs to the 41 representation of the hypercubic group W4

The general decomposition of the 16 (nonsymmetrized) tensor components is
in the continuum:

(
1

2
,
1

2
) ⊗ (

1

2
,
1

2
) = (0,0) ⊕ (1,0) ⊕ (0,1) ⊕ (1,1)

while on the lattice is:

41 ⊗ 41 = 11 ⊕ 31 ⊕ 61 ⊕ 63
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Operator mixing

Here we have essentially two choices for the symmetrized operators, that is
the two indices can be different or can be equal

In the latter case, one has also to subtract the trace component

The first case can be exemplified by considering the operator O{01}, which
belongs to the 61 and is multiplicatively renormalizable

A representative of the second case is O{00} − 1
3
(O{11} +O{22} +O{33}),

which belongs to the 31 and is also multiplicatively renormalizable

The subtracted trace part belongs to the 11

Finally, the antisymmetric components (which do not enter in the operator
product expansion for the moments), for example the operator O[01], belong to
the remaining representation in the expansion, the 63

Since they belong to different representations of W4, the lattice renormalization
factors of the operators O{01} and O{00} − 1

3
(O{11} +O{22} +O{33}) are

different, as has been verified by explicit calculations

In the continuum however they are equal, as both operators belong to the (1,1)
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Operator mixing

From the point of view of Monte Carlo simulations choosing two different
indices is worse, because in this case one component of the hadron
momentum must be different from zero – and this leads to larger systematic
effects due to the granularity of the lattice
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Operator mixing

From the point of view of Monte Carlo simulations choosing two different
indices is worse, because in this case one component of the hadron
momentum must be different from zero – and this leads to larger systematic
effects due to the granularity of the lattice

Second moment: the operator is O{µνσ} = ψ γ{µ DνDσ} ψ, symmetric and
traceless

The general decomposition of the 64 (nonsymmetrized) tensor components of
this rank-three operator is in the continuum:

(
1

2
,
1

2
) ⊗ (

1

2
,
1

2
) ⊗ (

1

2
,
1

2
) = 4 · (

1

2
,
1

2
) ⊕ 2 · (

3

2
,
1

2
) ⊕ 2 · (

1

2
,
3

2
) ⊕ (

3

2
,
3

2
)

while on the lattice is:

41 ⊗ 41 ⊗ 41 = 4 · 41 ⊕ 42 ⊕ 44 ⊕ 3 · 81 ⊕ 2 · 82

We have essentially three choices here for the symmetrized components
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Operator mixing

One is represented by the operator O{123}, which belongs to the 42 and is
multiplicatively renormalizable

This choice however is quite unsatisfactory from the point of view of
simulations, because two components of the hadron momentum have to be
different from zero and from each other, leading to rather large systematic
errors

One should minimize these systematic errors by including as few nonzero
components of the hadron momentum as possible

From this point of view, the optimal choice is the operator O{111}, which
belongs to the 41

Unfortunately this operator mixes with ψ γ1 ψ, which is a 41 as well

Moreover, the coefficient of this mixing can be seen from dimensional
arguments to be power divergent , 1/a2, and thus this mixing cannot be
resolved in perturbation theory
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Operator mixing

There is an intermediate choice between having the indices all different or all
equal, and is given by the operator

OS = O{011} −
1

2
(O{022} +O{033})

which does not have any power divergences due to the particular combination
chosen

This operator belongs to an irreducible representation of W4

Nonetheless, is not multiplicatively renormalizable, and undergoes a mixing
with another operator

The way in which this happens is not trivial

The point is that the operator OS belongs to the 81, but this representation is
present three times in the lattice decomposition of Oµνσ

It turns out that two of these 81 representations mix with each other, at least at
the 1-loop level
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Operator mixing

This mixing can be best seen in the following way

The nonsymmetrized operators

OA = O011 −
1

2
(O022 +O033)

OB = O101 +O110 −
1

2
(O202 +O220 +O303 +O330)

turn out to have different 1-loop corrections on the lattice, and they renormalize
with different numerical factors which form a nontrivial mixing matrix:

ÔA = ZAA OA + ZAB OB

ÔB = ZBA OA + ZBB OB

Notice that the two covariant derivatives have the same index in OA but two
different indices in OB , and the two operators have different tree levels,
γ0p

2
1 −

1
2
(γ0p

2
2 + γ0p

2
3) and 2γ1p0p1 − (γ2p0p2 + γ3p0p3) respectively
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Operator mixing

The operator that we want to measure,

OS = O{011} −
1

2
(O{022} +O{033}) =

1

3
(OA +OB),

does not transform into itself under 1-loop renormalization,

ÔS =
1

3
(ZAA + ZBA)OA +

1

3
(ZAB + ZBB)OB ,

because on the lattice ZAA + ZBA is not equal to ZAB + ZBB

(as explicit calculations have shown)

In other words, the symmetric combination is lost and OS mixes under
renormalization with an operator of mixed symmetry (nonsymmetrized)

The choice of indices for this operator is thus very important , for the Monte
Carlo simulations as well as for the calculation of renormalization factors

In the continuum all O{µνσ} cases discussed above, including O{111}, belong
to the (3

2
, 3

2
)

Thus, they have the same renormalization constant, and no mixing problem
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Divergent integrals

It is convenient to use a method introduced by Kawai, Nakayama and Seo
(1981) (This article is a treasure mine)

One makes a Taylor expansion in the external momenta, and computes on the
lattice only integrals with vanishing momentum (technically much simpler)

Consider the case of a quadratically divergent integral, depending on two
external momenta p and q:

I =

∫
dk I(k, p, q)
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Divergent integrals

It is convenient to use a method introduced by Kawai, Nakayama and Seo
(1981) (This article is a treasure mine)

One makes a Taylor expansion in the external momenta, and computes on the
lattice only integrals with vanishing momentum (technically much simpler)

Consider the case of a quadratically divergent integral, depending on two
external momenta p and q:

I =

∫
dk I(k, p, q)

This integral can be split as

I = J + (I − J)

where

J =

∫
dk I(k, 0, 0) +

∑

ρ,σ

[
pρqσ

∫
dk

∂2I(k, p, q)

∂pρ∂qσ

∣∣∣∣∣
p=q=0

+
pρpσ

2

∫
dk

∂2I(k, p, 0)

∂pρ∂pσ

∣∣∣∣∣
p=0

+
qρqσ

2

∫
dk

∂2I(k, 0, q)

∂qρ∂qσ

∣∣∣∣∣
q=0

]

is the Taylor expansion of the original integral to second order
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Divergent integrals

The integrals appearing in J do not depend on the external momenta, and are
so much easier to calculate on the lattice

The whole dependence on the external momenta stays in I − J which,
because of the subtraction, is ultraviolet-finite for a→ 0 and can be computed
by taking the naive continuum limit (power counting theorem of Reisz, 1988)

Thanks to this, only zero-momentum integrals need to be actually computed
on the lattice

For p, q 6= 0 and finite lattice spacing I is well defined, but J and I − J are
infrared divergent

To compute J and I − J separately, one must then introduce an intermediate
regularization

The associated divergences will at the end cancel out in the sum J + (I − J)

This intermediate regularization is completely independent from the main
regularization used in the lattice theory – in particular can be different from it

It just comes out because the splitting is somewhat unnatural
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Divergent integrals

Example: let us take the logarithmically divergent integral

I =

∫ π
a

− π
a

d4k

(2π)4
1(

4

a2

∑

µ

sin2 a(k − p)µ

2

)
·

(
4

a2

∑

µ

sin2 akµ

2

)

The splitting is made as follows:

J = I(p = 0) =

∫ π
a

− π
a

d4k

(2π)4
1(

4

a2

∑

µ

sin2 akµ

2

)2

I − J = lim
a→0

∫ π
a

− π
a

d4k

(2π)4

{
1(

4

a2

∑

µ

sin2 a(k − p)µ

2

)
·

(
4

a2

∑

µ

sin2 akµ

2

)

−
1(

4

a2

∑

µ

sin2 akµ

2

)2

}
=

∫ ∞

−∞

d4k

(2π)4

{
1

(k − p)2 · k2
−

1

(k2)2

}

Taking common denominators, it is easy to see that the degree of divergence
of I − J is negative, and therefore it can be safely computed in the continuum
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Divergent integrals

If we use dimensional regularization we have

J =
1

16π2

(
2

d− 4
− log a2µ2 − log 4π + F0

)

I − J =
1

16π2

(
−

2

d− 4
− log

p2

µ2
+ log 4π − γE − 2

)

where γE = 0.5772156649 . . . and the lattice constant is F0 = 4.3692252338 . . .

Notice: the integral of the second term in I − J is zero in this regularization
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Divergent integrals

If we use dimensional regularization we have

J =
1

16π2

(
2

d− 4
− log a2µ2 − log 4π + F0

)

I − J =
1

16π2

(
−

2

d− 4
− log

p2

µ2
+ log 4π − γE − 2

)

where γE = 0.5772156649 . . . and the lattice constant is F0 = 4.3692252338 . . .

Notice: the integral of the second term in I − J is zero in this regularization

If we instead regularize adding a small mass term m2 in the denominators, we
obtain

Jm =
1

16π2

(
− log a2m2 − γE + F0

)

(I − J)m =
1

16π2

(
− log

p2

m2
− 2
)

With either regularization, adding up J and I − J we obtain for our original
integral the result

I = − log a2p2 − γE + F0 − 2
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Divergent integrals

To summarize, in order to evaluate any divergent integral which depends on
external momenta it is sufficient to compute some lattice integrals
at zero momenta, and some continuum integrals

In computer programs, a convenient way to deal with a generic divergent
integral (which has to be processed in an automated way) is to subtract from it
a simple integral with the same divergent behavior, and for which the numerical
value is exactly known

The difference is then finite and can be computed with reasonable precision
using simple integration routines

This is extremely convenient in the case of actions which give rise to
complicated denominators – for example, overlap fermions

In this case, Wilson integrals with the same divergence are subtracted from the
original overlap integral, and then overlap denominators, which are much more
complicated, appear only in the numerical calculation of finite integrals

The calculation of divergent integrals can then be accomplished only using
Wilson fermions
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Reduction of integrals

Using simple integration routines, 1-loop lattice integrals can be evaluated with
a precision of 4–5 significant digits

Algebraic method ( for Wilson fermions ): any integral can be computed in a
completely symbolic way and written in terms of a few basic constants

Once these few basic constants are determined with the desired precision, the
original integral is just some appropriate linear combination of them

This means that a generic integral can then be calculated numerically with a
very large precision with a very small effort

It is now possible to compute any bosonic integral with a very high precision, of
O(102) significant digits

Computing 1-loop integrals with such precisions is absolutely necessary if one
wants to evaluate 2-loop integrals with at least ten significant decimal places
(→ coordinate space methods (Lüscher and Weisz) )

It is sufficient to apply this algebraic method only to integrals with zero external
momenta, since the momentum-dependent part can be evaluated in the
continuum (as we have just seen)
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Reduction of integrals

The general zero-momentum integral for Wilson fermions can always be
written as a sum of terms of the form

F(p, q;nx, ny, nz , nt) =

∫ π

−π

d4k

(2π)4
k̂2nx

x k̂
2ny
y k̂2nz

z k̂2nt
t

DF (k,mf )pDB(k,mb)q

The algebraic method allows to express a generic F(p, q;nx, ny, nz, nt) in
terms of a certain number of basic integrals

The complete reduction is achieved using an iteration procedure which makes
use of appropriate recursion relations (in noninteger dimensions)

At the end of this procedure:

any purely bosonic integral can be expressed in terms of 3 constants

any purely fermionic integral can be expressed in terms of 9 constants

any general integral requires only ( 3 + 9 + 3 = ) 15 constants
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Reduction of integrals

The general zero-momentum integral for Wilson fermions can always be
written as a sum of terms of the form

F(p, q;nx, ny, nz , nt) =

∫ π

−π

d4k

(2π)4
k̂2nx

x k̂
2ny
y k̂2nz

z k̂2nt
t

DF (k,mf )pDB(k,mb)q

The algebraic method allows to express a generic F(p, q;nx, ny, nz, nt) in
terms of a certain number of basic integrals

The complete reduction is achieved using an iteration procedure which makes
use of appropriate recursion relations (in noninteger dimensions)

At the end of this procedure:

any purely bosonic integral can be expressed in terms of 3 constants

any purely fermionic integral can be expressed in terms of 9 constants

any general integral requires only ( 3 + 9 + 3 = ) 15 constants

The purely bosonic case (Wilson plaquette) is not too complicated
(Caracciolo, Menotti and Pelissetto, Phys. Lett. B260 (1991) 401
& Nucl. Phys. B375 (1992) 195)
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Reduction of integrals

Any zero-momentum integral coming from the calculation of lattice Feynman
diagrams in the pure gauge Wilson theory can be expressed as a sum of
terms of the form

B(p;nx, ny, nz , nt) =

∫ π

−π

d4k

(2π)4
k̂2nx

x k̂
2ny
y k̂2nz

z k̂2nt
t

DB(k,m)p

( p and ni positive integers)

It is always possible to rewrite any numerator such that it contains only factors
of sin2 kµ/2 : use sin2 kµ = 4 sin2 kµ/2 − 4 sin4 kµ/2 (similarly for cosines)

The inverse bosonic propagator, taken in general to be massive in order to
regularize the divergences coming from the separation in J and I − J , is

DB(k,m) = k̂2 +m2

Due to the appearance of other kinds of singularities at some intermediate
stages of the reductions, one must consider the more general integrals

Bδ(p;nx, ny, nz , nt) =

∫ π

−π

d4k

(2π)4
k̂2nx

x k̂
2ny
y k̂2nz

z k̂2nt
t

DB(k,m)p+δ

where p is an arbitrary integer (not necessarily positive) and δ is a real number
which will be set to zero at the end of the calculations
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Reduction of integrals

To begin with, each integral Bδ(p;nx, ny, nz, nt) can be reduced through
purely algebraic manipulations to a sum of integrals of the same type, but with
nx = ny = nz = nt = 0 (i.e., pure denominators)

This is achieved by using the recursion relations

Bδ(p; 1) =
1

4
[Bδ(p− 1) −m2Bδ(p)]

Bδ(p;x, 1) =
1

3
[Bδ(p− 1;x) − Bδ(p;x+ 1) −m2Bδ(p;x)]

Bδ(p;x, y, 1) =
1

2
[Bδ(p− 1;x, y) − Bδ(p;x+ 1, y) − Bδ(p;x, y + 1)

−m2Bδ(p;x, y)]

Bδ(p;x, y, z, 1) = Bδ(p− 1;x, y, z) − Bδ(p;x+ 1, y, z)

−Bδ(p;x, y + 1, z) −Bδ(p;x, y, z + 1) −m2Bδ(p;x, y, z)

(when one of the arguments ni is zero, it is omitted)

These recursion relations can be obtained from the trivial identity

DB(k,m) =

4∑

i=1

k̂2
i + m2
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Reduction of integrals

With this first set of recursion relations, one can eliminate each numerator
argument, ni, of a Bδ integral, provided that it has the value 1

When this is greater than 1, one has to lower its value until it reaches 1 – then
it is possible to use the above set of recursion relations

One can lower ni by employing other recursion relations:

Bδ(p; . . . , r) =
r − 1

p+ δ − 1
Bδ(p− 1; . . . , r − 1)

−
4r − 6

p+ δ − 1
Bδ(p− 1; . . . , r − 2) + 4Bδ(p; . . . , r − 1),

obtained integrating by parts the equation (for r > 1)

(k̂2
w)r

DB(k,m)p+δ
= 4

(k̂2
w)r−1

DB(k,m)p+δ
+2

(k̂2
w)r−2

p+ δ − 1
sin kw

∂

∂kw

1

DB(k,m)p+δ−1

Careful: for p = 1 some coefficients in this recursion relation diverge as 1/δ

– therefore in order to correctly evaluate Bδ(1; . . .) for δ = 0 one needs to
compute Bδ(0; . . .) including all terms of order δ

In general, one needs to keep all terms of order δ when computing the
intermediate expressions for integrals Bδ(p;nx, ny, nz , nt) with p ≤ 0
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Reduction of integrals

Using all recursion relations introduced so far, any integral Bδ(p;nx, ny, nz, nt)

can be reduced to a sum of the form

Bδ(p;nx, ny, nz, nt) =

p∑

r=p−nx−ny−nz−nt

ar(m, δ)Bδ(r)

(ar(m, δ) are polynomials in m2, which may diverge as 1/δ for p > 0 and r ≤ 0)

At this point, all that remains to do is to reexpress all Bδ(p)’s appearing in the
above formula in terms of a small finite number of them

To accomplish this, one needs some other recursion relations, which can be
obtained starting from the trivial identity

Bδ(p; 1, 1, 1, 1) − 4Bδ(p+ 1; 2, 1, 1, 1) −m2 Bδ(p+ 1; 1, 1, 1, 1) = 0

One applies to this identity the previous procedure until it is reduced to a
relation between the Bδ(r)’s only
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Reduction of integrals

So, one arrives to a nontrivial relation of the form
p∑

r=p−4

br(p; δ)Bδ(r) + S(p;m, δ) = 0

where S(p;m, δ) = O(m2) for p ≤ 2, while for p > 2 it is a polynomial in 1/m2

(which is finite for δ → 0)

We can now use the last relation to express all Bδ(p)’s in terms of Bδ(r)’s
which are only in the range 0 ≤ r ≤ 3

To do this, when p ≥ 4 we just write Bδ(p) in terms of Bδ(p− 1), . . . ,Bδ(p− 4)
and iterate until needed

When p ≤ −1, we solve the relation in terms of Bδ(p− 4), make the shift
p→ p+ 4, and then use it to write Bδ(p) in terms of Bδ(p+ 1), . . . ,Bδ(p+ 4)

Again we iterate until needed

Applying recursively these two relations we get, for p 6= 0, 1, 2, 3:

Bδ(p) =

3∑

r=0

cr(p; δ)Bδ(r) + T (p;m, δ)

where T (p;m, δ) is a polynomial in 1/m2
Bielefeld – p.91



Reduction of integrals

So, the entire procedure allows the general bosonic integral to be written, after
a finite number of steps, as

Bδ(p;nx, ny, nz, nt) = A(δ)Bδ(0)+B(δ)Bδ(1)+C(δ)Bδ(2)+D(δ)Bδ(3)+E(m, δ)

where E(m, δ) is a polynomial in 1/m2

It can be shown that the limit δ → 0 is safe at this stage, and one finally obtains

B(p;nx, ny, nz , nt) = A(0) +B(0)B(1) + C(0)B(2) +D(0)B(3) +E(m, 0)

in terms of three basic constants : B(1), B(2) and B(3)

This is a minimal set – no further reductions can be done

It is common practice to write the bosonic results in terms of the three
constants Z0, Z1 and F0, defined by

Z0 = B(1)|m=0

Z1 =
1

4
B(1; 1, 1)|m=0

F0 = lim
m→0

(
16π2B(2) + logm2 + γE

)
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Reduction of integrals

Explicitly:

Z0 =

∫ π

−π

d4k

(2π)4
1

4
∑

λ
sin2 kλ

2

Z1 =

∫ π

−π

d4k

(2π)4

sin2 k1

2
sin2 k2

2∑
λ

sin2 kλ

2and
∫ π

−π

d4k

(2π)4
1(

4
∑

λ
sin2 kλ

2

)2

+m2

=
1

16π2

(
− logm2 − γE + F0

)

(γE = 0.57721566490153286 . . . is Euler’s constant )

Values of these basic integrals:

Z0 0.154933390231060214084837208
Z1 0.107781313539874001343391550
F0 4.369225233874758

Bielefeld – p.93



Reduction of integrals

The two basic constants Z0 and Z1 are now known with an incredible high
precision – about 400 significant decimal places

Rewriting B(1) and B(2) in terms of F0 and Z0 is rather trivial

For B(3) one has

B(3) =
1

32π2m2
−

1

128π2

(
logm2 + γE − F0

)
−

1

1024
−

13

1536π2
+

Z1

256
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Reduction of integrals

The two basic constants Z0 and Z1 are now known with an incredible high
precision – about 400 significant decimal places

Rewriting B(1) and B(2) in terms of F0 and Z0 is rather trivial

For B(3) one has

B(3) =
1

32π2m2
−

1

128π2

(
logm2 + γE − F0

)
−

1

1024
−

13

1536π2
+

Z1

256

In general, d− 1 basic constants are enough for all bosonic integrals in d
dimensions, and d− 2 if one only considers finite integrals

This becomes expecially interesting in two spacetime dimensions

On a 2-dimensional lattice, any finite bosonic integral can be written in terms of
rational numbers and factors 1/π2 only

One constant (basic integral) has to be added in case of divergent integrals
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Reduction of integrals

Example of reduction:

B(2; 2, 1) =
1

3

(
B(1; 2) − B(2; 3)

)

=
1

3

((
1

δ
B(0; 1) −

2

δ
B(0) + 4B(1; 1)

)

−
(
2B(1; 2) − 6B(1; 1) + 4B(2; 1)

))

=
1

3

(
1

δ
B(0; 1) −

2

δ
B(0) + 4B(1; 1)

−
2

δ
B(0; 1) +

4

δ
B(0) − 8B(1; 1) + 6B(1; 1) − 4B(2; 1)

)

=
1

3

(
−

1

δ
B(0; 1) +

2

δ
B(0) + 2B(1; 1) − 4B(2; 1)

)

where the limit δ = 0 has been taken when safe

Now,
B(0; 1) =

1

4
B(−1)
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Reduction of integrals

. . . however we need an expression for B(−1) which includes terms of order δ

By applying the recursion relations to the identity

Bδ(3; 1, 1, 1, 1) − 4Bδ(4; 2, 1, 1, 1) −m2 Bδ(4; 1, 1, 1, 1) = 0

we obtain
B(−1) = 8 + δ ·

(
− 20Z0 − 48Z1 + 8

)
+O(δ2)

Then:

−
1

δ
B(0; 1)+

2

δ
B(0) = −

1

4δ

(
8+δ

(
−20Z0−48Z1 +8

))
+

2

δ
= 5Z0 +12Z1−2

which is finite (as it should be) in the limit δ → 0

The remaining integrals are very simple (use the first recursion relation):

B(1; 1) =
1

4
B(0) =

1

4
; B(2; 1) =

1

4
B(1; 0) =

1

4
Z0

So, we can finally obtain the result of the decomposition:

B(2; 2, 1) =
4

3
Z0 + 4Z1 −

1

2
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Reduction of integrals

The general integral which includes quarks in 1-loop calculations of Wilson
fermions requires a much more complicated procedure
(Burgio, Caracciolo and Pelissetto, Nucl. Phys. B478 (1996) 687)

Any lattice zero-momentum integral coming from the calculation of lattice
Feynman diagrams in the general Wilson case can be written as a sum of
terms of the form

F(p, q;nx, ny, nz , nt) =

∫ π

−π

d4k

(2π)4
k̂2nx

x k̂
2ny
y k̂2nz

z k̂2nt
t

DF (k,mf )pDB(k,mb)q

(p, q and ni positive integers)

Unlike the bosonic case, a description of the reduction steps is too long

For fermions, the procedure requires several sets of recursion relations (and
rather complicated, too)

It turns out that every Fδ(p, q;nx, ny, nz, nt) with q ≤ 0 (i.e., a purely fermionic
integral) can be expressed iteratively in terms of nine purely fermionic integrals:

F(1, 0), F(1,−1), F(1,−2), F(2, 0), F(2,−1), F(2,−2), F(3,−2), F(3,−3)

and F(3,−4)
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Reduction of integrals

Purely fermionic integrals can always be expressed in terms of integrals of the
same type – this is a general property of all recursion relations

The integral F(2, 0) appears only in the case of divergent integrals

This is associated to a constant Y0, which appears in the logarithmic divergent
integral

F(2, 0) = −
1

16π2

(
logm2 + γE − F0

)
+ Y0

Only eight constants are then needed if the original purely fermionic integral is
finite (i.e., q ≤ 0 and p ≤ 1)

In the general case in which q can be positive (mixed fermionic-bosonic
integrals) one needs three additional constants, Y1, Y2 and Y3:

Y1 =
1

8
F(1, 1; 1, 1, 1)

Y2 =
1

16
F(1, 1; 1, 1, 1, 1)

Y3 =
1

16
F(1, 2; 1, 1, 1)

Then, including the “bosonic” constants Z0, Z1 and F0, we complete the set
needed for Wilson fermions Bielefeld – p.98



Reduction of integrals

Values of the (new) basic integrals:

F(1, 0) 0.08539036359532067914
F(1,−1) 0.46936331002699614475
F(1,−2) 3.39456907367713000586
F(2,−1) 0.05188019503901136636
F(2,−2) 0.23874773756341478520
F(3,−2) 0.03447644143803223145
F(3,−3) 0.13202727122781293085
F(3,−4) 0.75167199030295682254

Y0 − 0.01849765846791657356
Y1 0.00376636333661866811
Y2 0.00265395729487879354
Y3 0.00022751540615147107

This method depends on the form of the quark propagator, but not on the
vertices

It can thus be applied to O(a) improved Wilson fermions as well
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Reduction of integrals

Using these reduction methods, it is possible to give a purely algebraic result
for the 1-loop quark self-energy

The 1-loop quark self-energy

Σ(p2,m2) = g2
0CF

(
m̃c + i6p Σ̃1(p

2,m2) +m Σ̃2(p
2,m2)

)

in terms of the basic constants is (in Feynman gauge) (Burgio et al., 1996) :

m̃c = −Z0 − 2F(1, 0) ≈ −0.32571411742170157236

Σ̃1(p
2,m2) =

1

16π2
(2G(p2a2,m2a2) + γE − F0) +

1

8
Z0 +

1

192

−
1

32π2
− Y0 +

1

4
Y1 −

1

16
Y2 + 12Y3 −

1

768
F(1,−2)

−
1

192
F(1,−1) +

109

192
F(1, 0) −

1

768
F(2,−2) +

25

48
F(2,−1)

≈
1

8π2
G(p2a2,m2a2) + 0.0877213749
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Reduction of integrals

Σ̃2(p
2,m2) =

1

4π2
(F (p2a2,m2a2) + γE − F0) +

1

48
−

1

4π2

−4Y0 + Y1 −
1

4
Y2 −

1

192
F(1,−2) −

1

48
F(1,−1)

−
83

48
F(1, 0) −

1

192
F(2,−2) +

49

12
F(2,−1)

≈
1

4π2
F (p2a2,m2a2) + 0.0120318529

where

F (p2a2,m2a2) =

∫ 1

0

dx log[(1 − x)(p2x+m2)a2]

G(p2a2,m2a2) =

∫ 1

0

dxx log[(1 − x)(p2x+m2)a2]

The importance of having explicit expressions like these cannot be
underestimated

Thanks to them, the 1-loop self-energy Σ(p2,m2) can be computed with many
significant decimal places, provided the basic constants are determined with
sufficient accuracy

Bielefeld – p.101



Some References on Lattice Perturbation Theory

Books:

I. Montvay and G. Münster, Quantum Fields On A Lattice

H. Rothe, Lattice Gauge Theories: An Introduction

J. Smit, Introduction To Quantum Fields On A Lattice: A Robust Mate

T. DeGrand and C. DeTar, Lattice Methods for Quantum
Chromodynamics

Bielefeld – p.102



Some References on Lattice Perturbation Theory

Books:

I. Montvay and G. Münster, Quantum Fields On A Lattice

H. Rothe, Lattice Gauge Theories: An Introduction

J. Smit, Introduction To Quantum Fields On A Lattice: A Robust Mate

T. DeGrand and C. DeTar, Lattice Methods for Quantum
Chromodynamics

Articles:

H. Kawai, R. Nakayama and K. Seo, Comparison of the lattice Λ
parameter with the continuum Λ parameter in massless QCD,
Nuclear Physics B 189 (1981) 40

M. Lüscher and P. Weisz, Efficient Numerical Techniques For
Perturbative Lattice Gauge Theory Computations,
Nuclear Physics B 266 (1986) 309

M. Lüscher, Selected Topics In Lattice Field Theory, Les Houches 1988

C. T. Sachrajda, Lattice Perturbation Theory, TASI School 1989

S. R. Sharpe, Phenomenology from the lattice, TASI School 1994

S. C., Lattice perturbation theory, Physics Reports 382 (2003) 113
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