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(Lattice) QCD and the weak interaction

New Physics effects expected in the quark flavour sector, because most
extensions of the Standard Model contain

new CP-violating phases

new quark flavour-changing interactions

Changes of quark flavour inside a hadron are weak interaction processes

→ Due to confinement, QCD corrections to the decay rate are significant

→ Non-perturbative QCD effects typically absorbed into hadronic matrix
elements such as decay constants, form factors and bag parameters

⇒ A task for lattice QCD



Scope of heavy quark physics from LQCD

Current computations / studies include
Spectroscopy (charmonium, bottomium, beauty-hadrons)
Heavy quark masses (mc, mb)
Leptonic B-meson decays & B-meson mixing
(e.g., to understand CP-violation in the Standard Model and beyond)
Semi-leptonic decay form factors of D’s & B’s
Analyses of the CKM matrix via the theoretical formula
(

measured
quantity

)
=

(
kinematic

factor

)(
short-distance

factor

)(
QCD
factor

)



Scope of heavy quark physics from LQCD

Current computations / studies include
Spectroscopy (charmonium, bottomium, beauty-hadrons)
Heavy quark masses (mc, mb)
Leptonic B-meson decays & B-meson mixing
(e.g., to understand CP-violation in the Standard Model and beyond)
Semi-leptonic decay form factors of D’s & B’s
Analyses of the CKM matrix via the theoretical formula
(

measured
quantity

)
=

(
kinematic

factor

)(
short-distance

factor

)(
QCD
factor

)

The need for an effective theory

mc ≈ 1.27GeV mb ≈ 4.2GeV mJ/ψ ≈ 3.1GeV mΥ ≈ 9.46GeV

→ To reliably describe these states and treat them in numerical
simulations, the lattice cutoff 1/a should be larger than their m’s

→ Comfortable spatial volumes to accomodate heavy hadrons would
then amount to lattice sizes & O(100)4

⇒ Central idea:
remove the heavy (valence) quark mass as the dominant scale



The CKM matrix . . .

. . . encodes the mixing between quark flavours under weak interactions


d ′

s ′

b ′




︸ ︷︷ ︸

weak int.

= VCKM
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b




︸ ︷︷ ︸

strong int.

VCKM =



Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb




Wolfenstein parametrization of the CKM matrix

Empirically, matrix elements are largest among the diagonal
→ hierarchy gets explicit by expansion in powers of |Vus| = λ ≃ 0.22

∃ unitarity relations such as VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0

→ VCKM represented as unitarity triangle in the complex (ρ,η)–plane

up to O(λ4):
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Impact of LQCD on precision heavy flavour physics

Heavy quark sector constrains UT: angles & sides are related to hadronic

matrix elements of H(eff)

weak, corresponding to mesonic decays/transitions

∆md ∝ F2Bd
B̂Bd

|VtdV
∗
tb|

2 ∆ms

∆md

= ξ2
mBs

mBd

|Vts|
2

|Vtd|2
ξ = FBs

√
B̂Bs

/
FBd

√
B̂Bd

∃ large number of experimental data from heavy flavour-factories
(CLEO, BaBar, Belle, LHCb, . . . )
Inputs of theory and predominantly LQCD computations needed to
◮ interpret results of experimental measurements
◮ determine / pin down heavy quark masses & CKM matrix elements
◮ overconstrain unitarity relations ↔ unveiling New Physics effects
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Vud Vus Vub

π→ ℓν K→ ℓν B→ πℓν

K→ πℓν

Vcd Vcs Vcb

D→ ℓν Ds → ℓν B→ Dℓν

D→ πℓν D→ Kℓν B→ D∗ℓν
Vtd Vts Vtb

Bd ↔ Bd Bs ↔ Bs




”Gold-plated” lattice processes

1 hadron in the initial state,
0 or 1 hadron in the final state

stable hadrons
(or narrow, far from theshold)

controlled χ-extrapolation



Impact of LQCD on precision heavy flavour physics
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Beauty 09

CKM
f i t t e r

Constrain apex (ρ̄, η̄) as precisely as
possible by independent processes

Theory & Exp. sufficiently precise
⇒ New Physics = inconsistent (ρ̄, η̄)
LQCD inputs from the heavy sector:
◮ B-meson decays & mixing: FB,BB

◮ B→ D(∗) decays:
F(1),G(1) →֒ |Vcb|

◮ semi-leptonic B-meson decays:
f+(q

2) →֒ |Vub|
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What is the required precision for key contributions to phenomenology ?

Experiments reach few-% level, even 6 5%⇒ theory error dominates
∆md,s: < 1% [PDG,CDF], B(D(s)→µν): 6 4% [CLEO-c], B(B→D∗ℓν): 1.5% [HFAG]

Lattice calculations with an accuracy of O(5%) or better required
→ incl. all systematics (unquenching, extrapolations, renormalization, . . . )

Verification/Agreement of results using different formulations crucial !
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1 Lecture 1: Introduction to heavy quarks on the lattice
Lattice QCD: Basics & Challenges
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Lecture 1

Introduction to heavy quarks on the lattice

◮ Lattice QCD: Basics & Challenges
◮ Effective theories for heavy quarks

◮ Heavy Quark Effective Theory (HQET) → 2nd lecture
◮ Non-Relativistic QCD (NRQCD)
◮ ”Fermilab” approach

◮ Overview of lattice heavy quark formalisms



Lattice QCD — The principle
‘Ab initio’ approach to determine standard model parameter s

LQCD [g0,mf] = −
1

2g20
Tr {FµνFµν} +

∑

f=u,d,s,...

ψf {γµ (∂µ + g0Aµ) +mf}ψf




Fπ
mπ
mK

mD

mB




︸ ︷︷ ︸

Experiment

LQCD [g0,mf]
=⇒




ΛQCD

Mu,Md

Ms

Mc

Mb




︸ ︷︷ ︸

QCDparameters (RGIs)

+




FD
FB

BK,BB

ξ

· · ·




︸ ︷︷ ︸

Predictions
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︸ ︷︷ ︸

Predictions

Sources of systematic uncertainties in LQCD computations:
Part of the vacuum polarization effects is missed, as long as u, d, s
(and ideally also c) sea quarks are not incorporated
Extrapolations to mu,d guided by χPT to connect to the physical world
Discretization errors, notably from heavy quarks: O

[
(amQ)

n
]

effects
Perturbative vs. non-perturbative renormalization
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L

T

ψ(x)Uµ(x) = e iag0Aµ(x)

a

Lattice cutoff a−1 ∼ ΛUV

Finite volume L3 × T
Lattice action

S[U,ψ,ψ] = SG[U] + SF[U,ψ,ψ]

SG = 1
g20

∑

p

Tr { 1−U(p) }

SF = a4
∑

x

ψ(x)D[U]ψ(x)

Physical quantities:
Expectation values,
represented as path integrals
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Feynman path (resp. functional) integral

〈B|e−Hτ|A〉 =
∫

D[x(t)] e−SE[x]

x(0) = A , x(t) = B
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Z =

∫

D[U]D[ψ,ψ] e−S[U,ψ,ψ] =

∫

D[U]
∏
f det

(
D/ +mf

)
e−SG[U]

〈O〉 =
1

Z

∫
∏
x,µdUµ(x)O

∏
f det

(
D/ +mf

)
e−SG[U] =̂ thermal average
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Stochastic evaluation with Monte Carlo (MC) methods

→ Observables 〈O〉 = 1
N

∑N
n=1On ± ∆O from numerical simulations



One of the challenges: The m ulti-scale problem

Predictivity in a quantum field theory relies upon a large scale ratio

interaction range ≪ physical length scales

momentum cutoff ≫ physical mass scales : Λcut ∼ a
−1 ≫ Ei,mj

This is a challenge in QCD, which has many physical scales:

hierarchy of disparate physical scales to be covered:

ΛIR = L−1 ≪ mπ , . . . , mD , mB ≪ a−1 = ΛUV

↓ ↓
{

O(e−Lmπ )⇒ L &
4

mπ
∼ 6 fm

}

y L/a & 120 x

{

amD .
1

2
⇒ a ≈ 0.05 fm

}



One of the challenges: The multi-scale problem

Predictivity in a quantum field theory relies upon a large scale ratio

interaction range ≪ physical length scales

momentum cutoff ≫ physical mass scales : Λcut ∼ a
−1 ≫ Ei,mj

This is a challenge in QCD, which has many physical scales:

⇒ Difficult to satisfy simultaneously, clever technologies are required
◮ charm just doable, but lattice artefacts may be substantial

◮ given the today’s computing resources, it seems impossible to work
directly with relativistic b-quarks (resolving their propagation) on the
currently simulated lattices

◮ the b-quark scale (mb/mc ∼ 4) has to be separated from the others
in a theoretically sound way before simulating the theory



Illustration: Cutoff effects in the charm sector

High-precision computation of the charm quark’s mass and FDs
(Nf = 0)

Large volume and small lattice spacings: a ≈ (0.09− 0.03) fm

O(a,amq,c) cutoff effects relevant & removed NP’ly [ LPHAA
Collaboration ]

Controlling the CL demands scaling study down to very fine lattices

Lattice artefacts may be large for charm physics [ H. & Jüttner, 2009 ]
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H. & Jüttner, 2008, cA by LANL

(a/r0)
2

r 0
F

D
s



Illustration: Cutoff effects in the charm sector

High-precision computation of the charm quark’s mass and FDs
(Nf = 0)

Large volume and small lattice spacings: a ≈ (0.09− 0.03) fm

O(a,amq,c) cutoff effects relevant & removed NP’ly [ LPHAA
Collaboration ]

Controlling the CL demands scaling study down to very fine lattices

Lattice artefacts may be large for charm physics [ H. & Jüttner, 2009 ]
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⇒ Warning from FDs
:

Symanzik programme works for charm, but a < 0.08 fm mandatory
◮ Note: small lattice spacings are challenging for Nf > 0

◮ Mb ≃ 4Mc s.th. beauty is not yet accomodated
→ for b-quarks: can’t control a→ 0 his way, effective theory needed



Effective theories for heavy quarks — Why ?

λπ = 1/mπ ≈ L

λB ∼ 1/mb < a

◮ Light quarks: too light
◮ Widely spread objects
◮ Finite-volume errors due to

light pions

◮ b-quark: too heavy
◮ Extremely localized object
◮ B-mesons with a propagating

b-quark on the lattice require
finest resolutions (amb ≪ 1),
beyond today’s computing
resources; otherwise:
⋄ large discretization errors
⋄ ”they fall through the lattice”
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b-quark on the lattice require
finest resolutions (amb ≪ 1),
beyond today’s computing
resources; otherwise:
⋄ large discretization errors
⋄ ”they fall through the lattice”

⇒ Discretize an effective theory for the b-quark in heavy-light systems:
Heavy Quark Effective Theory

[ Eichten, 1988; Eichten & Hill, 1990 ]

⇒ Discretize a non-relat. effective Lagrangian for heavy-heavy systems:
Non-Relativistic QCD

[ Caswell & Lepage, 1986; Lepage & Thacker, 1988 & 1991 ]



Philosophy behind effective field theories (EFTs)

EFTs have become increasingly popular in particle physics, because
◮ they provide a realization of Wilson renormalization group ideas
◮ they fully exploit the properties of local quantum field theories

An EFT is a quantum field theory with the following properties:
◮ it contains the relevant aspects (DOFs) of the ”full theory” to describe

phenomena occuring in a certain limited range of energies & momenta,
while ignoring the irrelevant ones

◮ it contains an intrinsic energy scale Λ (e.g., ΛQCD) that sets the limit
of its applicability
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EFTs have become increasingly popular in particle physics, because
◮ they provide a realization of Wilson renormalization group ideas
◮ they fully exploit the properties of local quantum field theories

An EFT is a quantum field theory with the following properties:
◮ it contains the relevant aspects (DOFs) of the ”full theory” to describe

phenomena occuring in a certain limited range of energies & momenta,
while ignoring the irrelevant ones

◮ it contains an intrinsic energy scale Λ (e.g., ΛQCD) that sets the limit
of its applicability

Lagrangian LEFT is organized in operators of increasing dimension
⇒ it is in general non-renormalizable in the usual sense, but
◮ it can be made finite to any finite order in 1/Λ by renormalizing

(matching) the constants (matching coefficients) in front of the
operators in LEFT

◮ more renormalization conditions needed as order in 1/Λ increases

Fixing these constants, e.g., by some experimental input(s), reduces
but does not spoil the predictive power of the EFT



Concepts of EFTs for heavy quarks

As effects of a heavy particle get irrelevant at low energy, it’s useful to
construct some ”easier” low-energy EFT, where it no longer appears
◮ particle physics example: Fermi’s theory of weak interactions
◮ limitation: with increasing E, structure of intermediate particles and

interactions is more and more resolved s.th. EFT is no longer adequate

Technically, integrate out the heavy field’s DOFs in the generating
functional of the Green functions of the theory
◮ non-local effective action SEFT, rewritten as series of local terms (OPE)
◮ disentangle physics at long distances (i.e. low E), where SEFT correctly

reproduces the full theory, from that at short distances (i.e. high E)
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As effects of a heavy particle get irrelevant at low energy, it’s useful to
construct some ”easier” low-energy EFT, where it no longer appears
◮ particle physics example: Fermi’s theory of weak interactions
◮ limitation: with increasing E, structure of intermediate particles and

interactions is more and more resolved s.th. EFT is no longer adequate

Technically, integrate out the heavy field’s DOFs in the generating
functional of the Green functions of the theory
◮ non-local effective action SEFT, rewritten as series of local terms (OPE)
◮ disentangle physics at long distances (i.e. low E), where SEFT correctly

reproduces the full theory, from that at short distances (i.e. high E)

HQET & NRQCD distinguished by the way they classify interactions,
as dictated by the physics (underlying dynamics) of heavy-light and
heavy-heavy hadrons
◮ HQET applies to heavy-light systems only
◮ NRQCD can be used for both heavy-light and heavy-heavy systems

(e.g., heavy quarkonia)
◮ both receive power-law and logarithmic mQ– dependences
◮ only in HQET: 1/mQ– terms can be dealt with as operator insertions



HQET — The physical picture

Energy scale governing dynamics of quarks & gluons inside light hadrons:
QCD scale ΛQCD, characterizing the momentum scale where the
QCD coupling αs becomes large

A heavy quark (Q) introduces a new scale → different QCD dynamics :

q̄, g
Q

m−1

Q

a

L

Λ−1

QCD

In the heavy-light meson the motion of the heavy
quark of mass mQ is hardly affected by the light
DOFs of typical momentum ΛQCD, if mQ ≫ ΛQCD

p
µ
Q = mQv

µ + kµ v2 = 1

with residual momentum: k ∼ O(ΛQCD) ≪ mQv
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QCD scale ΛQCD, characterizing the momentum scale where the
QCD coupling αs becomes large

A heavy quark (Q) introduces a new scale → different QCD dynamics :

q̄, g
Q

m−1

Q

a

L

Λ−1

QCD

In the heavy-light meson the motion of the heavy
quark of mass mQ is hardly affected by the light
DOFs of typical momentum ΛQCD, if mQ ≫ ΛQCD

p
µ
Q = mQv

µ + kµ v2 = 1

with residual momentum: k ∼ O(ΛQCD) ≪ mQv

Typical momentum scales in heavy-light (Qq) mesons:

Q almost at rest at bound state’s center, surrounded by the light DOFs

Motion of the heavy quark is suppressed by ΛQCD/mQ



HQET — The physical picture

More formally, e.g., in case of the B-meson system:

LHQET = asymptotic 1/mb– expansion of continuum QCD

ψb {γµDµ +mb}ψb −→

LHQET(x) = ψh(x)
[
D0 +mb︸ ︷︷ ︸
static limit

− ωkin︸︷︷︸
∼

1
mb

D2 − ωspin
︸ ︷︷ ︸
∼

1
mb

σ · B
]
ψh(x) + . . .

= Lstat(x) + O

(
1

mb

)

P+ψh = ψh with P+ = 1
2
(1+ γ0) ⇒ only 2 independent DOFs

Lstat represents a non-moving heavy quark, acting only as a static
color source

Systematic & accurate expansion for mb/ΛQCD ≫ 1

Respects heavy quark spin-symmetry in the static limit

. . . → 2nd lecture



NRQCD — The physical picture

The dynamics of quarkonium is governed by different energy scales:

Q̄Q

m−1

Q

a

L

(mQv)
−1 Classically, in the heavy-heavy meson the non-

relativistic kinetic energy
〈
p2

〉
/(2mQ) and the po-

tential energy − 4
3
αs

〈
1
r

〉
have to be balanced, and

the heavy quarks move around each other

〈p〉 : typ. size of the relative spatial momentum〈
1
r

〉
: typ. distance between Q and Q

⇒ 〈p〉 ∼ αsmQ (uncertainty relation 〈p〉 ∼ 〈1/r〉)
⇒ typical velocity v ∼ 〈p〉 /mQ ∼ O(αs)
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tential energy − 4
3
αs

〈
1
r

〉
have to be balanced, and

the heavy quarks move around each other

〈p〉 : typ. size of the relative spatial momentum〈
1
r

〉
: typ. distance between Q and Q

⇒ 〈p〉 ∼ αsmQ (uncertainty relation 〈p〉 ∼ 〈1/r〉)
⇒ typical velocity v ∼ 〈p〉 /mQ ∼ O(αs)

Typical momentum scales in heavy-heavy (QQ) mesons:

Heavy quark’s mass mQ (hard)

Spatial momentum 〈p〉 ≈ mQv (soft)

Binding energy
〈
p2

〉
/mQ ≈ mQv

2 (ultrasoft)

Scale hierarchy, ordered via velocity v≪ 1 : mQ ≫ mQv≫ mQv
2



Effective Lagrangian for heavy quarks

Non-pert. QCD dynamics gets important only in low-energy regime (∼ΛQCD)

◮ idea: remove / separate dominant scale mQ from low-energy DOFs

◮ sufficient to work with an effective Lagrangian, which only treats the
low-energy part in the lattice simulation

◮ high-energy part may be reliably treated in perturbation theory

Consider a heavy hadron in its rest frame (vµ = (1, 0)) and decompose

p
µ
Q = (mQ + k0,k)

⇒ Decomposition of the 4–component heavy quark Dirac spinor into

ψb = e− imQt

(
ψh

ΨH

)
ψh

ΨH

}

=

{
e imQt P+ψb(x)

e imQt P−ψb(x)

in terms of 2–component ”large” and ”small” spinors ψh and ΨH
◮ separates the phase factor with the trivial dependence on mQ due to

the heavy quark’s free motion with mQv
µ



Effective Lagrangian for heavy quarks

⇒ Dirac equation (iγµDµ −mQ)ψb = 0 splits into two parts:

iD0ψh = iσ ·DΨH
(2mQ + iD0)ΨH = iσ ·Dψh

⇒ small component field ΨH is suppressed w.r.t. ψh by a factor ∝ 1
mQ

◮ upon neglecting the small time-dependence of ΨH (i.e. iD0 ΨH)
and substituting ΨH = [ iσ ·D/(2mQ) ]ψh into the 1st equation:

iD0ψh = −

[
D2

2mQ

+
σ · gB
2mQ

]
ψh (NR Schrödinger eq. & Pauli term)

g : QCD coupling, Bi = 1
2
ǫijkFjk : magnetic QCD field strength components

◮ repeating this, finally translates into a (classical) Lagrangian as:

Lheavy = ψh

[
iD0 +

D2

2mQ

+
σ · gB
2mQ

+
D · gE− gE ·D

8m2
Q

+
σ · (iD× gE− gE× iD)

8m2
Q

+
(D2)2

8m3
Q

+ · · ·
]
ψh



The NRQCD Lagrangian

In a heavy-light hadron:
Light DOFs (light quarks and gluons) have k ∼ O(ΛQCD), while exchange
of spatial momenta with Q occurs through 1/mQ– and higher-order terms
⇒ motion of Q suppressed by powers of ΛQCD/mQ → HQET: 2nd lecture

In a heavy-heavy hadron:

◮ balance between potential and kinetic energy determines the
momentum of the heavy (anti-)quark

◮ to satisfy the Pauli equation, one must have

〈 iD0ψh 〉 ∼

〈
D2

2mQ
ψh

〉

◮ the heavy quark potential, described by the Coulomb form, implies

〈αs

r

〉
∼ 〈αsp〉 ∼

〈
p2

〉

mQ

⇒ 〈p〉 ∼ αsmQ , v ∼
〈p〉
mQ

∼ O(αs)

NRQCD is an effective theory constructed such as to explicitly separate
the dominant energy scales mQ ≫ mQv≫ mQv

2



The NRQCD Lagrangian

Separation of the energy scales is provided by the velocity v≪ 1 :

(heavy quark mass mQ) ≫ (momentum mQv) ≫ (binding energy mQv
2)

⇒ In NRQCD the counting of terms in Lheavy is done by powers of v:

◮ power counting of the various operators

ψh ∼ (mQv)
3/2 D ∼ mQv D0 ∼ mQv

2

gE ∼ m2
Qv

3 gB ∼ m2
Qv

4

◮ therefore, the leading contributions in LNRQCD are

ψh (iD0)ψh ψh

(
−

D2

2mQ

)
ψh

other terms are suppressed by a relative power v2, and higher-order
ones can also be included systematically

◮ αs to be evaluated at the momentum scale of the exchanged gluons,
i.e., at mQv ∼ αsmQ

⇒ v2– expansion effective for bb̄ (v2 ∼ 0.1), but marginal for cc̄ (v2 ∼ 0.3)



The NRQCD Lagrangian

Remarks
Previous NR expansion of the heavy quark’s Dirac Lagrangian
corresponds to a Foldy-Wouthuysen-Tani transformation (FWT)
⇒ decoupling of heavy quarks & anti-quarks in 2–comp. spinors ψh,ψh̄

⋄ in QFT / functional integral language, the FWT trafo is just a change of
variables (corresponding to integrating out the small component field ΨH)

⋄ physics described by theories before & after this trafo is the same up to
neglected higher-order terms



The NRQCD Lagrangian

Remarks
Previous NR expansion of the heavy quark’s Dirac Lagrangian
corresponds to a Foldy-Wouthuysen-Tani transformation (FWT)
⇒ decoupling of heavy quarks & anti-quarks in 2–comp. spinors ψh,ψh̄

⋄ in QFT / functional integral language, the FWT trafo is just a change of
variables (corresponding to integrating out the small component field ΨH)

⋄ physics described by theories before & after this trafo is the same up to
neglected higher-order terms

NRCD = Expansion of the heavy quark action around its NR limit
⇒ infinitely massive (static) quark is only a colour source, carries no spin

L
(n)
HQET consists of all interactions of dimension n+ 4,

L
(n)
NRQCD consists of all terms that scale like v2+n

⇒ kinetic energy term ψh

(
− D2

2mQ

)
ψh is essential effect in NRQCD,

but sub-leading in HQET
⋄ leading O(mQv

2) terms: e.g., spin-independent splittings in quarkonia

⋄ relativistic O(mQv
4) corrections:

spin-independent & spin-dependent contributions
→ spin-splittings are O(v2) smaller than spin-independent splittings



The NRQCD Lagrangian

Remarks

Power-counting rules
⇒ truncate # operators included in LNRQCD at fixed order in v2/c2 (≪ 1)

On the quantum level, ultraviolet divergences appear through loops,
which render EFTs such as HQET and NRQCD non-renormalizable
⇒ In practice, Lheavy is truncated at some finite order (in 1/mQ or v2) s.th.

⋄ # renormalization conditions is finite & calculations are feasible

⋄ # EFT parameters is still finite and its predictivity thus remains
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Remarks

Power-counting rules
⇒ truncate # operators included in LNRQCD at fixed order in v2/c2 (≪ 1)

On the quantum level, ultraviolet divergences appear through loops,
which render EFTs such as HQET and NRQCD non-renormalizable
⇒ In practice, Lheavy is truncated at some finite order (in 1/mQ or v2) s.th.

⋄ # renormalization conditions is finite & calculations are feasible

⋄ # EFT parameters is still finite and its predictivity thus remains

Relevant effect of the integrated-out high-energy modes on the
low-energy physics is encoded in matching coefficients ci
(multiplying the operators in Lheavy) and new local interactions
⇒ to obtain useful results: restrict momenta to p < Λ < mQ (Λ: cutoff)

⋄ ci = 1 at tree-level

⋄ excluded momenta (e.g., in gluon loops) reappear in renormalization of
the coefficients ci

⋄ ci are dominated by ultraviolet scales for Λ≫ ΛQCD and can thus be
computed in perturbation theory by matching low-energy scattering
amplitudes to full QCD to some order in αs and p/mQ



NRQCD on the lattice

The lattice discretization of LNRQCD is straightforward
◮ Wick rotation to Euclidean space-time (x0 ≡ i x4)

◮ Covariant (forward and backward) derivatives:

∆(+)
µ ψh(x) ≡ Uµ(x)ψh(x+ µ̂) −ψh(x) ∆(−)

µ ψh(x) ≡ . . .

∆(±)
µ ≡ 1

2

(
∆(+) + ∆(−)

)
∆(2) ≡

∑

i

∆
(+)

i ∆
(−)

i

◮ Hamiltonian H = H0 + δH ordered in powers of Q’s squared velocity:

H0 = −
∆(2)

2mQ

(leading NR & spin-independent, kinetic term)

δH = − c1

(
∆(2)

)2

8m3
Q

− c2
∆(±) · gE − gE ·∆(±)

8m2
Q

(spin-independent relativistic corrections)

− c3
σ ·

(
∆(±) × gE − gE×∆(±)

)

8m2
Q

− c4
σ · gB
2mQ

(leading spin-dependent corrections)
+ · · ·



NRQCD on the lattice

◮ In the mQ →∞ limit the heavy quark Q is static:
world line = string of SU(3) link matrices in time direction (Wilson line)

� � � � � �0 T

◮ The heavy quark propagator (as a function of spatial indices) on a
given time slice obeys an evolution equation:

U4,tGt+1 − Gt = −aHGt

⇔ Gt+1 = U
†
4,t−1 (1 − aH)Gt

→ calculable on one pass through the lattice in the time direction

◮ Explicit form of the lattice action via a time-evolution kernel Kt:

S =
∑

t,x

ψh(t, x) [ψh(t, x) − Ktψh(t− 1, x) ]

Kt =
(
1− aH0

2n

)n
t

(
1− aδH

2

)
t
U

†
4,t−1

(
1− aδH

2

)
t−1

(
1− aH0

2n

)n
t−1

(parameter n affects only the cutoff scale and stabilizes the evolution equation by

suppressing unphysical momenta s.th. reasonable amQ ∼ O(1) can be reached)



NRQCD on the lattice

Remarks

Coefficients ci have to be determined s.th. H = H0 + δH matches
the Hamiltonian of QCD
⇒ adjustment to compensate for neglected high-momentum interactions

⋄ investigated in lattice perturbation theory by matching scattering
amplitudes between lattice NRQCD and full QCD in the continuum

⋄ ci have expansion in αs(1/a), where the p2/mQ– term in the heavy
quark propagator gives additional explicit 1/(amQ)– contributions
(power ultraviolet divergences) that diverge as a→ 0

⋄ tadpole-improvement captures most of the renormalization of the ci
→ actual computations mostly employ tadpole-improved tree-level ci



NRQCD on the lattice

Remarks

Coefficients ci have to be determined s.th. H = H0 + δH matches
the Hamiltonian of QCD
⇒ adjustment to compensate for neglected high-momentum interactions

⋄ investigated in lattice perturbation theory by matching scattering
amplitudes between lattice NRQCD and full QCD in the continuum

⋄ ci have expansion in αs(1/a), where the p2/mQ– term in the heavy
quark propagator gives additional explicit 1/(amQ)– contributions
(power ultraviolet divergences) that diverge as a→ 0

⋄ tadpole-improvement captures most of the renormalization of the ci
→ actual computations mostly employ tadpole-improved tree-level ci

Since NRQCD is non-renormalizable and the ci diverge as a→ 0,
the continuum limit cannot be taken
⇒ demonstrate results to be independent of the lattice spacing a within

some limited scaling window, staying at relatively large a (amQ & 0.8)

Generically, lattice actions of EFTs contain higher-dimensional
operators inducing 1/(amQ)

n power divergences that spoil the CL
in case of only perturbative matching & renormalization



Aspects of lattice NRQCD calculations

Problem of discretization errors:
Since the lattice spacing has to be kept finite in NRQCD, discretization
errors must be corrected for (e.g., momenta are O(1GeV in heavyonia)

◮ improved discretization of derivatives to include higher-order terms

◮ yields improvement terms to be added s.th. residual discretization
errors become negligible against other sources of error:

δH → δH + δHdisc δHdisc = c5a
2

∑
i ∆

(4)
i

24mQ

− c6a

(
∆(2)

)2

16nm2
Q

(only sensible to correct for discretization up to an order, which is comparable with the
order of included relativistic corrections)



Aspects of lattice NRQCD calculations

Problem of discretization errors:
Since the lattice spacing has to be kept finite in NRQCD, discretization
errors must be corrected for (e.g., momenta are O(1GeV in heavyonia)

◮ improved discretization of derivatives to include higher-order terms

◮ yields improvement terms to be added s.th. residual discretization
errors become negligible against other sources of error:

δH → δH + δHdisc δHdisc = c5a
2

∑
i ∆

(4)
i

24mQ

− c6a

(
∆(2)

)2

16nm2
Q

(only sensible to correct for discretization up to an order, which is comparable with the
order of included relativistic corrections)

Meson correlation functions:
ψ†,χ†: 2–component quark/anti-quark creation operators, Ω: (2× 2) spin matrix

〈(
χφ†Ω†ψ

)
T

(
ψ†Ωφχ†

)
0

〉
=

〈
Tr

[
GΩ†φ†G†φΩ

]〉 T→∞−→ Φ1e
−E1T +Φ2e

−E2T + · · ·

→ smearing techniques to optimize computation of radial & orbital excitations



Typical applications of lattice NRQCD include . . .

Heavy quarkonium spectra;
radial, orbital & spin splittings, ...

Left: radial & orbital levels of the
bottomium (Υ), hyperfine splittings
in Υ, Bs in (2+ 1)–flavour QCD
[ from HPQCD, Gray et al., PRD(2005)094507) ]

Heavy hybrid mesons

Heavy-light (resp. B-meson) systems

◮ different dynamics and power
counting rules (i.e., in ΛQCD/mQ)

◮ properties of states determined
by the light quarks & glue

◮ Quantities under study:
⋄ B-meson masses & splittings

(B,Bs, Bc, B
∗
c )

⋄ decay constants FB, FBs ;
B-meson mixing parameters

[ see recent work of HPQCD Collab., Davies et al. ]



”Fermilab” approach [ El-Khadra, Kronfeld & Mackenzie, PRD55(1997)3933 ]

Adapts standard Wilson light fermion action plus higher-dim. operators
(spatial derivatives) to reduce (apQ)

n– errors & better match contin. QCD

Different split of Symanzik’s expansion into ”large”+ ”small” suitable for
amQ > 1, rearrangement absorbed in short-distance coefficients of Lint

LSymanzik = Lgauge + ψb

(
γ4D4 +

√
m1

m2

γ ·D+m1

)
ψb + L ′

int

◮ Coefficients are perturbative series in αs, but to all orders in amQ

◮ rest mass & kinetic mass m1,m2 in E(p) = m1 + p2/(2m2) + O(p4)

differ sizably, lattice parameters to be NP’ly adjusted s.th. m1 = m2

◮ finite –a effects estimated via Symanzik effective theory interpretation
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Adapts standard Wilson light fermion action plus higher-dim. operators
(spatial derivatives) to reduce (apQ)

n– errors & better match contin. QCD

Different split of Symanzik’s expansion into ”large”+ ”small” suitable for
amQ > 1, rearrangement absorbed in short-distance coefficients of Lint

LSymanzik = Lgauge + ψb

(
γ4D4 +

√
m1

m2

γ ·D+m1

)
ψb + L ′

int

◮ Coefficients are perturbative series in αs, but to all orders in amQ

◮ rest mass & kinetic mass m1,m2 in E(p) = m1 + p2/(2m2) + O(p4)

differ sizably, lattice parameters to be NP’ly adjusted s.th. m1 = m2

◮ finite –a effects estimated via Symanzik effective theory interpretation

Formalism covers entire mass regions (from light to heavy) with a single
fermion action, achievable accuracy varies depending on amQ:

◮ at large amQ (heavy quark regime) the Lagrangian becomes EFT-like,
(i.e.,its accuracy is estimated in terms of HQET / NRQCD counting rules)

◮ at small amQ it reduces to Symanzik improvement of light quarks

⇒ Fermilab action ”smoothly interpolates” the static & light quark

As discretization & perturbative errors depend on amQ, continuum limit of
B-meson observables is non-trivial and source of systematic uncertainty



Overview of lattice heavy quark formalisms

Lattice heavy quark physics has to deal with the presence of

strong lattice artefacts : amc . 1 amb > 1

Heavy quarks introduced as valence quarks = ”Partially quenched” setting



Overview of lattice heavy quark formalisms

Lattice heavy quark physics has to deal with the presence of

strong lattice artefacts : amc . 1 amb > 1

Heavy quarks introduced as valence quarks = ”Partially quenched” setting

Relativistic formulations → mainly for D-physics applications

Wilson-like (clover or twisted mass) quarks
◮ O

[
(amc)

2
]

discretization effects
◮ amc 6 1/2≪ 1 desirable ALPHA, ETMC

Fermilab approach & its variants = RHQ actions
◮ relativistic clover actions with HQET interpretation
◮ adopted for charm & beauty FNAL & MILC, PACS-CS, RBC & UKQCD

Highly Improved Staggered Quarks = HISQ [ HPQCD, Follana et al., 2007 ]

◮ perturbative Symanzik-improvement / smearing of the gauge fields
⇒ no tree-level O(a2), O

[
(amQ)

4,αs(amQ)
2
]

errors to LO in v/c
◮ 1– loop taste-changing interactions reduced by a factor ∼ 3

◮ e.g., allows in principle a direct computation of heavy-to-light quark
mass ratios (mc/ms), as both fermion discretizations are the same

◮ now also being tried towards the bottom region HPQCD



Overview of lattice heavy quark formalisms

Lattice heavy quark physics has to deal with the presence of

strong lattice artefacts : amc . 1 amb > 1

Heavy quarks introduced as valence quarks = ”Partially quenched” setting

Non-relativistic / effective field theory strategies → B-physics applications

NRQCD = Discretized, non-relativistic expansion of continuum LD

◮ improved through O
(
1/m2

Q,a
2
)

and leading relativistic O
(
1/m3

Q

)

◮ O
[
αns /(amQ)

]
divergences HPQCD

Static approximation = Leading-order HQET
◮ HQET-guided extrapolations (HQ scaling laws) of relativistic simulations

in the charm regime, turning into interpolations if the static limit known
◮ also in conjunction with finite-volume / finite-size scaling techniques

INFN-TOV, ALPHA, ETMC

HQET for the b-quark = Systematic expansion in ΛQCD/mb

◮ NP fine-tuning of parameters to O(1/mb) & impr. statistical precision
◮ connect different volumes iteratively with ”step scaling functions”

ALPHA



Overview of light sea quark configurations in use
[ in current studies of lattice heavy quark physics ]

Quenched approximation (Nf = 0)

No dynamical fermions, not suitable for phenomenology

Still useful test laboratory, e.g., to understand methodologies etc.

Two-flavour QCD (Nf = 2)

NP’ly O(a) improved Wilson (= clover) fermions ALPHA, QCDSF

◮ theoretically sound and ”simple”

◮ algorithmic progress (e.g., ”Hasenbusch trick” and M. Lüscher’s
DD-HMC) render simulations competitive in the chiral regime

Twisted mass Wilson fermions ETMC

◮ tree-level Symanzik-improved gluon action

◮ O(a) improved by tuning to maximal twist; keep an exact χ-symmetry
at the price of breaking part of the flavour symmetries and parity

Stout-smeared, chirally improved fermions BGR

◮ 1–loop improved Lüscher-Weisz gluon action



Overview of light sea quark configurations in use

[ in current studies of lattice heavy quark physics ]

Three-flavour QCD (Nf = 2+ 1)

AsqTad-improved staggered quarks MILC & FNAL, HPQCD

◮ Lüscher-Weisz-improved gluon action

◮ computationally ”cheap”, permit simulations within the chiral regime

◮ debated rooting prescription
[
det(4)(Dst +m)

] 1
4 ≡ det(1)(γµDµ +m),

but effects seem to disappear in the CL; results agree with experiment

Domain wall fermions RBC & UKQCD

◮ Iwasaki gauge action

◮ chirality preserving (realized as 5th dimension Ls = ∞)

NP’ly O(a) improved Wilson fermions PACS-CS

◮ Iwasaki gauge action

Four-flavour QCD (Nf = 2+ 1+ 1) in progress, e.g., by ETMC

Light valence quarks usually discretized in the same way as the sea



Summary of current LHQP calculations

group a [ fm ] m
(min)
π [MeV ] q Q

Nf = 2

ETMC 0.05, 0.065, 0.085, 0.10 270 TM static / TM

Regensburg 0.08 170 clover clover

ALPHA 0.08, 0.07, 0.05 250 clover static + 1/m

Nf = 2+ 1

FNAL & MILC I 0.09, 0.12, 0.15 230 AsqTad Fermilab

FNAL & MILC II 0.06, 0.09, 0.12, 0.15 230 AsqTad Fermilab

HPQCD I 0.09, 0.12 260 AsqTad NRQCD

HPQCD II 0.09, 0.12, 0.15 320 HISQ NRQCD

HPQCD III 0.045, 0.06, 0.09, . . . 320 HISQ HISQ

RBC & UKQCD 0.08, 0.11 330 (300) DW static / RHQ

PACS-CS 0.09 200 clover RHQ

Nf = 2+ 1+ 1

ETMC 0.06, 0.079, 0.09 270 (230) TM Osterw.-Seiler

static ≡ smeared static (HYP, APE) [ Status: Lattice Conference 2010 ]



A glimpse of the status of B-physics parameters
Heavy quark masses Hadronic weak matrix elements FB & FBs

= Inputs to many (B)SM calculations → Extract |Vub| via B(B− → τ−ν̄τ)
︸ ︷︷ ︸

experiment

∝ |Vub|
2 F2B︸︷︷︸
lattice
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= Inputs to many (B)SM calculations → Extract |Vub| via B(B− → τ−ν̄τ)
︸ ︷︷ ︸

experiment

∝ |Vub|
2 F2B︸︷︷︸
lattice

Caveat:
Lattice computations based on NRQCD, Fermilab and HQ scaling laws are
standard, however, they all involve perturbative renormalization / matching
⇒ Is this accurate enough for precision flavour physics ?



A glimpse of the status of B-physics parameters
Heavy quark masses Hadronic weak matrix elements FB & FBs

= Inputs to many (B)SM calculations → Extract |Vub| via B(B− → τ−ν̄τ)
︸ ︷︷ ︸

experiment

∝ |Vub|
2 F2B︸︷︷︸
lattice

Caveat:
Lattice computations based on NRQCD, Fermilab and HQ scaling laws are
standard, however, they all involve perturbative renormalization / matching
⇒ Are the claimed small (particularly systematic) errors too optimistic ?



Lecture 2

Non-perturbative Heavy Quark Effective Theory

◮ Introduction to HQET

◮ Non-perturbative formulation of HQET

◮ Mass dependence at leading order in 1/m

◮ Strategy to determine HQET parameters at O(1/m)

◮ First physical results in two-flavour QCD
→ PoS LATTICE2010 (2010) 308 & in progress by

LPHAA
Collaboration

B. Blossier, J. Bulava, M. Della Morte,
M. Donnellan, P. Fritzsch, N. Garron,

J. H., G.M. von Hippel, N. Tantalo,
H. Simma, R. Sommer

Scale & Quark masses from light sector:
F. Knechtli, B. Leder, S. Schaefer, F. Virotta



Motivation — Precision CKM physics

FB
◮ B(B− → τ−ν̄τ)

︸ ︷︷ ︸
experiment

∝ |Vub|
2 F2B︸︷︷︸
lattice

◮ Process is sensitive probe of
charged Higgs boson effects

◮ 1.9σ deviation of exp. determ.
from LQCD (when using |Vub|

exclusive from the lattice)
FBs

◮ Relevant for CKM analysis
& BSM effects in Bs → µ+µ−

(decay will be measured at LHCb)

B

b

ū

W

leptons



Motivation — Precision CKM physics

FB
◮ B(B− → τ−ν̄τ)

︸ ︷︷ ︸
experiment

∝ |Vub|
2 F2B︸︷︷︸
lattice

◮ Process is sensitive probe of
charged Higgs boson effects

◮ 1.9σ deviation of exp. determ.
from LQCD (when using |Vub|

exclusive from the lattice)
FBs

◮ Relevant for CKM analysis
& BSM effects in Bs → µ+µ−

(decay will be measured at LHCb)

B

b

ū

W

leptons

Semi-leptonic decay form factor B→ D∗ℓνℓ
◮ Determination of |Vcb|,

which normalizes the whole UT
◮ ∼ 2.3σ tension between inclusive and exclusive |Vcb|

(latter relying on B→ D∗ℓνℓ from FNAL & MILC 2008)

B D(∗),π, ρ

leptons
b c,u



Introduction to HQET

HQET is constructed to provide a simplified description of processes, in
which a heavy quark (Q) strongly interacts with light DOFs by exchange
of soft gluons that can only resolve distances≫ 1/mQ ⇔ EFT

mQ ≫ ΛQCD = high-energy scale

ΛQCD ∼ 1/Rhad = low-energy scale of hadronic physics of interest

Lagrangian = systematic expansion in powers of ΛQCD/mQ

λQ ∼ 1/mQ ≪ Rhad ∼ 1 fm ⇒ mQ unimportant for low –E properties of Qq



Introduction to HQET

HQET is constructed to provide a simplified description of processes, in
which a heavy quark (Q) strongly interacts with light DOFs by exchange
of soft gluons that can only resolve distances≫ 1/mQ ⇔ EFT

mQ ≫ ΛQCD = high-energy scale

ΛQCD ∼ 1/Rhad = low-energy scale of hadronic physics of interest

Lagrangian = systematic expansion in powers of ΛQCD/mQ

λQ ∼ 1/mQ ≪ Rhad ∼ 1 fm ⇒ mQ unimportant for low –E properties of Qq

◮ Light DOFs are blind to flavour & spin of Q and only experience its
colour field extending over large distances because of confinement

◮ Heavy quark symmetry: invariance under changes of flavour & spin
orientation of Q (leading symmetry breaking corrections at O(1/mQ))



Introduction to HQET

HQET is constructed to provide a simplified description of processes, in
which a heavy quark (Q) strongly interacts with light DOFs by exchange
of soft gluons that can only resolve distances≫ 1/mQ ⇔ EFT

mQ ≫ ΛQCD = high-energy scale

ΛQCD ∼ 1/Rhad = low-energy scale of hadronic physics of interest

Lagrangian = systematic expansion in powers of ΛQCD/mQ

λQ ∼ 1/mQ ≪ Rhad ∼ 1 fm ⇒ mQ unimportant for low –E properties of Qq

Heavy Quark Effective Theory

-

ΛQCD mQ ≫ ΛQCD mW

Electroweak
theory

HQET QCD

︸ ︷︷ ︸ ︸ ︷︷ ︸

Long distance physics: Short distance physics:
non-perturbative techniques perturbation theory, renormalization group

-�
µ ∼ nΛQCD



Introduction to HQET

Derivation of the HQET Lagrangian :

Start from the Euclidean Dirac-Lagrangian in the continuum

L = ψ(Dµγµ +m)ψ = ψ†Dψ

D ≡ mγ0 +D0 + γ0Dkγk

At the classical level:
One can assume smooth fields and thus can perform an expansion in Dµ,
counting Dµ = O([ 1/m ]0)
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Introduction to HQET

Derivation of the HQET Lagrangian :

Start from the Euclidean Dirac-Lagrangian in the continuum

L = ψ(Dµγµ +m)ψ = ψ†Dψ

D ≡ mγ0 +D0 + γ0Dkγk

Kinematical situation
Dynamics of a hadron at rest containing one heavy quark
m = ∞: heavy quark propagates only in time

⇒ D0/m = O (1) Dk/m = O (ǫ)

when the derivatives act on heavy fields — ”power counting scheme”
(O(ǫ) ∼ O(1/m) ; in the quantum theory: ǫ = ΛQCD/m )
At lowest order, the ”large components” (anti-)quark field propagates
forward (backward) in time:

P+ψh = ψh ψhP+ = ψh P± =
1± γ0

2

P−ψh̄ = ψh̄ ψh̄P− = ψh̄



Introduction to HQET

Quark and anti-quark fields are connected by the O(1/m) terms in L

L = Lstat
h + Lstat

h̄
+ O (1/m)

Lstat
h = ψh(D0 +m)ψh Lstat

h̄
= ψh̄(−D0 +m)ψh̄

but they can be decoupled through a field rotation (Foldy-Wouthuysen
transformation):

ψ → φ = eSψ ψ† → φ† = ψ†e−S

⇒ L = φ†D ′φ

with D ′ = eSDe−S , S ≡ 1

2m
Dkγk = −S† = O (1/m)

( Recall that D = O(m) and that in this way the Dkγk– term is rotated away )



Introduction to HQET

ψ → φ = eSψ ψ† → φ† = ψ†e−S

⇒ L = φ†D ′φ

with D ′ = eSDe−S , S ≡ 1

2m
Dkγk = −S† = O (1/m)

Explicitly:

D ′ = D+
1

2m
[Dkγk,D ] +

1

8m2
[Dlγl, [Dkγk,D] ] + O

(
1/m2

)

= D+
1

2m
[Dkγk,D ] −

1

4m
[Dlγl,γ0Dkγk ] + O

(
1/m2

)

= γ0

{

γ0D0 +m+
1

2m

(
−DkDk −

1

2i
Fklσkl

)
+

1

2m
Fk0γ0γk

}

+O
(
1/m2

)

L = Lstat
h + Lstat

h̄
+

1

2m

{

L
(1)

h + L
(1)

h̄
+ L

(1)

hh̄

}

+ O
(
1/m2

)



Introduction to HQET

D ′ = D+
1

2m
[Dkγk,D ] +

1

8m2
[Dlγl, [Dkγk,D] ] + O

(
1/m2

)

= D+
1

2m
[Dkγk,D ] −

1

4m
[Dlγl,γ0Dkγk ] + O

(
1/m2

)

= γ0

{

γ0D0 +m+
1

2m

(
−DkDk −

1

2i
Fklσkl

)
+

1

2m
Fk0γ0γk

}

+O
(
1/m2

)

L = Lstat
h + Lstat

h̄
+

1

2m

{

L
(1)

h + L
(1)

h̄
+ L

(1)

hh̄

}

+ O
(
1/m2

)

with

L
(1)

h = ψh

(
−DkDk −

1

2i
Fkl σkl

)
ψh

= −
1

2m
ψh

(
D2 + σ · B

)
ψh ≡ −

1

2m
(Okin + Ospin)

σµν = i
2
[γµ,γν ] Fkl = [Dk,Dl ]



Introduction to HQET

Only double insertions of L
(1)

hh̄
contribute for heavy-light hadrons

⇒ O(1/m2) and may be dropped in L here
L ≡ Leff = low-energy effective Lagrangian

describes long wave length modes of the fields accurately and has
truncation errors of increasing relevance for shorter wave lengths
removal of the mass terms
⇔ energy shift by m of all states containing a single heavy quark
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describes long wave length modes of the fields accurately and has
truncation errors of increasing relevance for shorter wave lengths
removal of the mass terms
⇔ energy shift by m of all states containing a single heavy quark

Quantum fluctuations:
are not smooth, but rather than modifying the structure of Leff , the
coefficients of the various terms receive non-trivial renormalizations
due to these short-distance fluctuations
long-wavelength terms
⇔ local interaction terms, renormalized as in (effective) local QFT



Introduction to HQET

Only double insertions of L
(1)

hh̄
contribute for heavy-light hadrons

⇒ O(1/m2) and may be dropped in L here
L ≡ Leff = low-energy effective Lagrangian

describes long wave length modes of the fields accurately and has
truncation errors of increasing relevance for shorter wave lengths
removal of the mass terms
⇔ energy shift by m of all states containing a single heavy quark

Quantum fluctuations:
are not smooth, but rather than modifying the structure of Leff , the
coefficients of the various terms receive non-trivial renormalizations
due to these short-distance fluctuations
long-wavelength terms
⇔ local interaction terms, renormalized as in (effective) local QFT

Therefore:
Prefactors of the various operators to be determined by a non-trivial
( — ideally non-perturbative — ) matching of HQET to QCD in the
quantum theory



The effective quantum field theory

Lstat
h contains local fields of a mass dimension d 6 4

⇒ power-counting renormalizable, counterterms restricted by symmetries
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Lstat
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The effective quantum field theory

Lstat
h contains local fields of a mass dimension d 6 4

⇒ power-counting renormalizable, counterterms restricted by symmetries
Symmetries of the static theory:
◮ heavy quark spin-symmetry
◮ local conservation of heavy quark flavour number
◮ gauge invariance, parity & cubic symmetry

⇒ Only one invariant counterterm that is ∝ ψhψh:

Lstat
h = ψh(D0 + δm)ψh (continuum) quantum Lagrangian

Lattice formulation :
Straightforward discretization prescriptions

D0 → ∇∗0 : backward lattice derivative , DkDk → ∇∗k∇k , Fkl → F̂ij



The effective quantum field theory

Lattice formulation :

Static quark lattice action

Sh[W,ψh,ψh] = a4
1

1+ a δm

∑

x

ψh(x) (∇∗0 + δm)ψh(x)

∇∗0ψh(x) = 1
a

[
ψh(x) −W

†(x− a0̂, 0)ψh(x− a0̂)
]

W(x, 0) = U(x, 0) : Eichten-Hill action, but more clever choices for
parallel transporters are possible [ LPHAA

Collaboration , 2004 & 2005 ]

Static quarks propagate only forward in time

⇒ △h(x,y) = W(x− a0̂, 0)−1W(x− 2a0̂, 0)−1 · · · W(y, 0)−1

× θ(x0 − y0)δ(x− y)(1+ a δm)−(x0−y0)/a P+

( timelike Wilson line, δm cancels divergence in the static quark self-energy )



The effective quantum field theory

Lattice formulation :

Static quark lattice action

Sh[W,ψh,ψh] = a4
1

1+ a δm

∑

x

ψh(x) (∇∗0 + δm)ψh(x)

∇∗0ψh(x) = 1
a

[
ψh(x) −W

†(x− a0̂, 0)ψh(x− a0̂)
]

W(x, 0) = U(x, 0) : Eichten-Hill action, but more clever choices for
parallel transporters are possible [ LPHAA

Collaboration , 2004 & 2005 ]

O(a) improvement:
Preserving on the lattice the above symmetries of the static theory
guarantees that both universality class and O(a) improvement are
unchanged w.r.t. the static action, i.e. the static-light action is already
improved if the light quark sector is [ Kurth & Sommer, 2001 ]



The effective quantum field theory

Lattice formulation :

Static quark lattice action

Sh[W,ψh,ψh] = a4
1

1+ a δm

∑

x

ψh(x) (∇∗0 + δm)ψh(x)

∇∗0ψh(x) = 1
a

[
ψh(x) −W

†(x− a0̂, 0)ψh(x− a0̂)
]

W(x, 0) = U(x, 0) : Eichten-Hill action, but more clever choices for
parallel transporters are possible [ LPHAA

Collaboration , 2004 & 2005 ]

O(a) improvement:
Preserving on the lattice the above symmetries of the static theory
guarantees that both universality class and O(a) improvement are
unchanged w.r.t. the static action, i.e. the static-light action is already
improved if the light quark sector is [ Kurth & Sommer, 2001 ]

Renormalization:
energy shift δm included but δm ∝ 1/a for dimensional reasons (!)



The effective quantum field theory

Composite fields involving b-quarks also translate to the effective theory:

A0(x) = ψl(x)γ0γ5ψb(x) −→ Astat
0 = ψl(x)γ0γ5ψh(x)

t tA0 A0 : Correlation function of the axial current

∫

d3x
〈
A0(x)A

†
0(0)

〉
QCD

x0≫1/Mb

∼ [CPS (Mb/Λ)]
2

∫

d3x
〈
Astat

0 (x)
(
Astat

0

)†
(0)

〉
stat

+O (1/Mb) Λ ≡ ΛQCD



The effective quantum field theory

Composite fields involving b-quarks also translate to the effective theory:

A0(x) = ψl(x)γ0γ5ψb(x) −→ Astat
0 = ψl(x)γ0γ5ψh(x)

t tA0 A0 : Correlation function of the axial current

∫

d3x
〈
A0(x)A

†
0(0)

〉
QCD

x0≫1/Mb

∼ [CPS (Mb/Λ)]
2

∫

d3x
〈
Astat

0 (x)
(
Astat

0

)†
(0)

〉
stat

+O (1/Mb) Λ ≡ ΛQCD

Generic structure of the HQET-expansion of QCD matrix elements

Φ = 〈B |A0 | 0 〉 : ΦQCD ≡ FB
√
mB = CPS (Mb/Λ)

︸ ︷︷ ︸
×Φstat

RGI︸ ︷︷ ︸
+O (1/Mb)

conversion function
⇐ renormalization

RGI matrix element
in effective theory

In HQET: Absence of chiral symmetry as it is met in (massless) QCD
implies a scale dependence Φstat(µ) ≡ Zstat

A (µ)〈B |Astat
0 | 0 〉

Mb = scale & scheme independent (RG-invariant) quark mass



Non-perturbative formulation of HQET

Action: SHQET(x) = a
4
∑
xLHQET(x) for the b-quark (zero velocity HQET)

[ Eichten, 1988; Eichten & Hill, 1990 ]

LHQET(x) = Lstat(x) −ωkinOkin(x) −ωspinOspin(x)

Lstat(x) = ψh(x)
[
D0 +mbare

]
ψh(x)

1
2
(1+ γ0)ψh(x) = ψh(x)

Okin(x) = ψh(x)D
2ψh(x)

→ kinetic energy from heavy quark’s residual motion

Ospin(x) = ψh(x)σ · Bψh(x)

→ chromomagnetic interaction with the gluon field

Composite fields: axial current, related to the B-meson decay constant
FB
√
mB = 〈B(p = 0) |A0(0) | 0 〉, where A0 = ψlγ0γ5ψb → AHQET

0

AHQET
0 (x) = ZHQET

A

[
Astat

0 (x) + cHQET
A δAstat

0 (x)
]

Astat
0 (x) = ψl(x)γ0γ5ψh(x)

δAstat
0 (x) = ψl(x)

1
2

(←−∇i+
←−∇∗i

)
γiγ5ψh(x)



EVs = Functional integral representation at the quantum level :

〈O〉 = 1

Z

∫

D[ϕ]O[ϕ] e−(Srel+SHQET) Z =

∫

D[ϕ] e−(Srel+SHQET)

Instead of including the NLO term in 1/m of LHQET in the action (as this theory
wouldn’t be renormalizable), the FI weight is expanded in a power series in 1/m

exp {−SHQET} =

exp
{
−a4

∑
xLstat(x)

}

×
{

1− a4
∑
xL

(1)(x) + 1
2

[
a4

∑
xL

(1)(x)
]2

− a4
∑
xL

(2)(x) + . . .
}

⇒ 〈O〉 =
1

Z

∫

D[ϕ] e−Srel−a
4
∑
xLstat(x)O

{

1− a4
∑
xL

(1)(x) + . . .
}



EVs = Functional integral representation at the quantum level :

〈O〉 = 1

Z

∫

D[ϕ]O[ϕ] e−(Srel+SHQET) Z =

∫

D[ϕ] e−(Srel+SHQET)

Instead of including the NLO term in 1/m of LHQET in the action (as this theory
wouldn’t be renormalizable), the FI weight is expanded in a power series in 1/m

exp {−SHQET} =

exp
{
−a4

∑
xLstat(x)

}

×
{

1− a4
∑
xL

(1)(x) + 1
2

[
a4

∑
xL

(1)(x)
]2

− a4
∑
xL

(2)(x) + . . .
}

⇒ 〈O〉 =
1

Z

∫

D[ϕ] e−Srel−a
4
∑
xLstat(x)O

{

1− a4
∑
xL

(1)(x) + . . .
}

Explicitly:

〈O〉 = 〈O〉stat +ωkina
4
∑

x

〈OOkin(x)〉stat +ωspina
4
∑

x

〈OOspin(x)〉stat

≡ 〈O〉stat +ωkin〈O〉kin +ωspin〈O〉spin

〈O〉stat = 1
Z

∫

fields
O exp

{

− a4
∑
x

[
Llight(x) + Lstat

h (x)
]}



EVs = Functional integral representation at the quantum level :

〈O〉 = 1

Z

∫

D[ϕ]O[ϕ] e−(Srel+SHQET) Z =

∫

D[ϕ] e−(Srel+SHQET)

Instead of including the NLO term in 1/m of LHQET in the action (as this theory
wouldn’t be renormalizable), the FI weight is expanded in a power series in 1/m

exp {−SHQET} =

exp
{
−a4

∑
xLstat(x)

}

×
{

1− a4
∑
xL

(1)(x) + 1
2

[
a4

∑
xL

(1)(x)
]2

− a4
∑
xL

(2)(x) + . . .
}

⇒ 〈O〉 =
1

Z

∫

D[ϕ] e−Srel−a
4
∑
xLstat(x)O

{

1− a4
∑
xL

(1)(x) + . . .
}

Important implications of this definition of HQET

1/m – terms appear only as insertions of local operators in CFs
⇒ Power counting: Renormalizability at any given order in 1/m

⇔ Existence of the continuum limit with universality

Effective theory = Continuum asymptotic expansion in 1/m of QCD



Renormalization & Matching

Renormalization
The mixing of operators of different dimension in LHQET induces
power divergences [ Maiani, Martinelli & Sachrajda, 1992 ]

→ Lstat : linearly divergent additive mass renormalization δm originates
from mixing of ψhD0ψh with ψhψh ⇒ EQCD

h,h̄
= Estat

h,h̄

∣∣
δm=0

+mbare

mbare = δm+m , δm =
c(g0)

a
∼ e 1/(2b0g

2
0) ×

{
c1g

2
0 + c2g

4
0 + . . .

}

→ PT: uncertainty = truncation error ∼ e 1/(2b0g
2
0) cn+1 g

2n+2
0

g0→0−→ ∞ !
⇒ Non-perturbative c(g0) needed, i.e., NP renormalization of HQET

(resp. fixing of its parameters) required for the continuum limit to exist

Power-law divergences even worse at the level of 1/m – corrections:
a−1 → a−2 ( e.g., δm picks up a contribution a−2ωkin )

Matching

The finite parts of renormalization constants must be fixed s.th. the
effective theory describes the underlying theory, QCD

Proper conditions for these must be imposed from QCD with finite mb



Mass dependence at leading order in 1/m
The r ôle of perturbative anomalous dimensions

Consider matrix elements of composite fields involving b-quarks as, e.g.,
obtained from a QCD correlation function of the heavy-light axial current

CQCD
AA (x0) = Z2

Aa
3
∑

x

〈
A0(x)(A0)

†(0)
〉
QCD[

ΦQCD
]2 ≡ F2BmB =

∣∣ 〈B |ZAA0 | 0 〉
∣∣2

= lim
x0→∞

[
2 exp

{
x0m

eff
B (x0)

}
CQCD
AA (x0)

]

◮ B-meson state dominates spectral representation of CQCD
AA at large x0

◮ ZA(g0) fixed by chiral Ward identities, renormalization scale independent

In the static approximation this translates into

[
Φ(µ)

]2
=

∣∣ 〈B |Zstat
A Astat

0 | 0 〉
∣∣2 = lim

x0→∞

[
2 exp

{
x0 E

eff
stat(x0)

}
Cstat
AA (x0)

]

◮ Absence of chiral symmetry in HQET implies a scale dependence
→ µ – dependence in Zstat

A (g0,aµ) = 1+ g20 [B0 − γ0 ln(aµ) ] + O(g40)

◮ Better alternative: work with the RGI opertator (Astat
RGI)0



How does one get from ΦRGI = Z
stat
A,RGI〈B |Astat

0 | 0 〉 to FB ?

QCD LO HQET

ZA〈B |A0(0) | 0 〉QCD CPS(Mb/Λ)Z
stat
A,RGI 〈B |Astat

0 (0) | 0 〉stat
FB
√
mB FB

√
mB + O(1/mb)

◮ Renormalization problem solved non-perturbatively (via interm. SF scheme)
⇒ Zstat

A,RGI : NP’ly known (to ≈ 1% accuracy)
[Nf = 0 : H., Kurth & Sommer, 2003;Nf = 2 : Della Morte, Fritzsch & H., 2007 ]

◮ 〈B(s) |A
stat
0 | 0 〉 : known for Nf = 0 and in progress for Nf = 2

[ LPHAA
Collaboration , Blossier et al., arXiv:1006.5816 ]

⇒ 〈B(s) |A
stat
0 | 0 〉RGI −→ FB, FBs

by multiplying with CPS



How does one get from ΦRGI = Z
stat
A,RGI〈B |Astat

0 | 0 〉 to FB ?

QCD LO HQET

ZA〈B |A0(0) | 0 〉QCD CPS(Mb/Λ)Z
stat
A,RGI 〈B |Astat

0 (0) | 0 〉stat
FB
√
mB FB

√
mB + O(1/mb)

◮ Renormalization problem solved non-perturbatively (via interm. SF scheme)
⇒ Zstat

A,RGI : NP’ly known (to ≈ 1% accuracy)
[Nf = 0 : H., Kurth & Sommer, 2003;Nf = 2 : Della Morte, Fritzsch & H., 2007 ]

◮ 〈B(s) |A
stat
0 | 0 〉 : known for Nf = 0 and in progress for Nf = 2

[ LPHAA
Collaboration , Blossier et al., arXiv:1006.5816 ]

⇒ 〈B(s) |A
stat
0 | 0 〉RGI −→ FB, FBs

by multiplying with CPS

A closer look at the ”conversion function” CPS and γmatch :

Matching ⇔ ΦQCD(m) = C̃match(m,µ)×Φ(µ) + O(1/m)

C̃match(m,µ) = 1 + c1(m/µ) ḡ
2(µ) + . . .

◮ m ↔ heavy (b) quark mass dependence on the QCD side

◮ µ ↔ (arbitrary) renormalization scale dependence in the effective theory

◮ this fixes the (finite) renormalization C̃match ←→ ”matching scheme”



QCD observables FB, FBs
: independent of renormalization scheme & scale

⇒ the µ – dependence is artificial, only the mass dependence is for real
⇒ choose a convenient and common scale:

µ = m⋆ = m(m⋆) g⋆ = ḡ(m⋆)

C̃match(m⋆,m⋆) = Cmatch(g⋆) = 1 + c1(1)g
2
⋆
+ . . .

Eliminate the scheme dependence by passing to the RGI matrix element:

ΦRGI = exp

{

−

∫ ḡ(µ)
dx
γ(x)

β(x)

}

Φ(µ)

⇒ ΦQCD = Cmatch(g⋆)Φ(µ) = Cmatch(g⋆) exp

{∫g⋆
dx
γ(x)

β(x)

}

ΦRGI

≡ exp

{∫g⋆
dx
γmatch(x)

β(x)

}

ΦRGI defines γmatch

◮ γmatch(g⋆) =
m⋆

ΦQCD
∂ΦQCD

∂m⋆

describes the full physical mass dependence . . .

◮ . . . but there is still a scheme dependence through the choice of m, ḡ



Remove this renormalization scheme dependence by reparametrization in
terms of renormalization group invariants Λ ,M (= RGI heavy quark mass) :

ΦQCD = CPS (M/Λ)×ΦRGI , CPS (M/Λ) = exp

{∫g⋆(MΛ )

dx
γmatch(x)

β(x)

}

To evaluate CPS , insert γmatch(g⋆)
g⋆→0
∼ − γ0g

2
⋆
− γmatch

1 g4
⋆
− γmatch

2 g6
⋆
+ . . .

⇒ leading large-mass behaviour via M
Φ
∂Φ
∂M

∣∣
Λ

= M
CPS

∂CPS

∂M

∣∣∣
Λ

=
γmatch(g⋆)
1−τ(g⋆)

:

CPS
M→∞
∼

(
2b0g

2
⋆

)−γ0/(2b0)
∼ [ log(M/Λ) ]γ0/(2b0)

CPS perturbatively under control ? [ 3-loop AD by Chetyrkin & Grozin, 2003 ]

Nf = 0, 2

RGI-ratio M/Λ : can be fixed in numerical
simulations without perturbative errors

Full (logarithmic) mass dependence ∈ CPS

Fig. seems to indicate that the remaining
O
(
ḡ6(mb)

)
errors are relatively small

→ however: a premature conclusion . . .

For B-Physics: ΛMS/Mb ≈ 0.04



An application ( Nf = 0)
Interpolation between the static limit and the charm region

Della Morte, Dürr, Guazzini, H., Jüttner & Sommer, JHEP0802(2008)078

Looks good: under a reasonable smoothness assumption, interpolate the
mass dependence (linearly) in the inverse PS mass to the physical point

FPS follows the heavy quark scaling law, no 1/(r0mPS)
2 – effects are visible

→ 1/m – expansion appears to work very well even for charm quarks
← surprising; needs further confirmation, as the perturbative CPS is used

Question: What is the accuracy of perturbation theory involved in this ?



Accuracy of perturbation theory in the matching
Bekavac, Grozin, Marquard, Piclum, Seidel & Steinhauser, NPB833(2010)46

Cmatch(g⋆) now known to N3LO for various bilinears OΓ = ψl(x) Γ ψh(x)

→ γmatch
Γ : 3-loop, γmatch

Γ − γmatch
Γ ′ : 4-loop (unknown 4-lp AD in HQET cancels)

⇒ Ratios of conversion functions reflect perturbative 4-loop precision:

CΓ/Γ ′ = CΓmatch(m,µ)
/
CΓ

′
match(m,µ)

Example

CPS/V = CPS/CV

x-axis ∝ g2
⋆
(M/Λ)

For B-physics:

ΛMS/Mb ≈ 0.04

1/ ln(ΛMS/Mb) ≈ 0.3

PT is badly behaved

for beauty and even

worse for charm



”We find that the perturbative series for fB∗/fB and fTB∗/fB∗ converge very
slowly at best.” [ quote from Bekavac at al., 2010 ]

Freedom to ”optimize” the scale [ R. Sommer, private communication ]

µ = s−1m⋆ = m(m⋆) , ĝ = ḡ
(
s−1m⋆

)
CΓ (M/Λ) = exp

{∫ ĝ
dx
γ̂match
Γ (x)

β(x)

}

Matching below m⋆,

expect s > 1 is better

Decrease of terms in

perturbative series

improved, once s & 4

However:

α(mb/4) is not small,

series unreliable again



”We find that the perturbative series for fB∗/fB and fTB∗/fB∗ converge very
slowly at best.” [ quote from Bekavac at al., 2010 ]

Freedom to ”optimize” the scale [ R. Sommer, private communication ]

µ = s−1m⋆ = m(m⋆) , ĝ = ḡ
(
s−1m⋆

)
CΓ (M/Λ) = exp

{∫ ĝ
dx
γ̂match
Γ (x)

β(x)

}

Matching below m⋆,

expect s > 1 is better

Decrease of terms in

perturbative series

improved, once s & 4

However:

α(mb/4) is not small,

series unreliable again

→ Effective scale is well below µ = mb; asymptotic convergence of PT only
improved far beyond mb, where it is of limited use for us

⇒ Accuracy of perturbative matching is hard to assess for b- and c-physics



”We find that the perturbative series for fB∗/fB and fTB∗/fB∗ converge very
slowly at best.” [ quote from Bekavac at al., 2010 ]

Freedom to ”optimize” the scale [ R. Sommer, private communication ]

µ = s−1m⋆ = m(m⋆) , ĝ = ḡ
(
s−1m⋆

)
CΓ (M/Λ) = exp

{∫ ĝ
dx
γ̂match
Γ (x)

β(x)

}

Matching below m⋆,

expect s > 1 is better

Decrease of terms in

perturbative series

improved, once s & 4

However:

α(mb/4) is not small,

series unreliable again

→ Effective scale is well below µ = mb; asymptotic convergence of PT only
improved far beyond mb, where it is of limited use for us

⇒ Error estimates in the literature seem much too optimistic . . .



”We find that the perturbative series for fB∗/fB and fTB∗/fB∗ converge very
slowly at best.” [ quote from Bekavac at al., 2010 ]

Freedom to ”optimize” the scale [ R. Sommer, private communication ]

µ = s−1m⋆ = m(m⋆) , ĝ = ḡ
(
s−1m⋆

)
CΓ (M/Λ) = exp

{∫ ĝ
dx
γ̂match
Γ (x)

β(x)

}

Matching below m⋆,

expect s > 1 is better

Decrease of terms in

perturbative series

improved, once s & 4

However:

α(mb/4) is not small,

series unreliable again

⇒ ḡ2l(mb) ∝
[
2b0 ln

(
mb/ΛQCD

)]−l mb→∞
≫ ΛQCD/mb: Pert. matching theor.

consistent only at LO in 1/mb, a few–% error budget requires NP matching



Mass dependence in finite-volume QCD ( Nf = 2)
Della Morte, Fritzsch, H. & Sommer, PoS LATTICE2008(2008)226

Fritzsch & H., in progress

Non-perturbative computation of the heavy quark mass dependence of
heavy-light meson observables in the continuum limit of finite-volume QCD
→ Explicit pure theory tests that HQET is an effective theory of QCD
→ Constraining the large-mass behaviour of QCD by the static limit

QCD with Schrödinger Functional
boundary conditions (T , L, θ): fA = fstatA =

0

LxLxL

x

x0

0

= T

= 0

LxLxL

x

x0

0

= T

=

Renormalization [ LPHAA
Collaboration , 2005-2008 ]

◮ Fix ḡ2(L1) = 4.484 s.th. L1 ≈ 0.5 fm, L1/a = 20, 24, 32, 40 , L2 = 2L1

◮ Fix RGI (heavy) quark masses via its NP relation to bare parameters:

z ≡ L1M = Zm

M

m(µ0)
(1+ bmamq)× L1mq Zm =

Z(g0)ZA(g0)

ZP(g0,aµ0)

[ Fritzsch, H. & Tantalo, arXiv:1004.3978 ]



Mass dependence in finite-volume QCD ( Nf = 2)

The B-system in finite-volume QCD (L = L1)

◮ L1 = 0.5 fm, z – values covering the b-quark down to the charm quark region

◮ Removal of all O
(
(a
L
)n

)
effects at tree-level: O → Oimpr (a/L) =

O(a/L)

1+δ(a/L)

◮ Examples of continuum extrapolations ( B-meson mass & decay constant ) :



Mass dependence in finite-volume QCD ( Nf = 2)

The B-system in finite-volume QCD (L = L1)

◮ Tests of HQET: validating and demonstrating the applicability of HQET

◮ Verification of the approach to the spin-symmetric limit:
( B-meson mass & ratio of PS to V decay constants )

⇒ Large-mass asymptotics ( 1/z→ 0 ) confirms HQET predictions



Mass dependence in finite-volume QCD ( Nf = 2)

The B-system in finite-volume QCD (L = L1)

◮ But: some numerical evidence for the previous doubts in the reliability of PT
in the b-quark region is found with YPS, YV and its effective theory predictions

YPS(L, z)/CPS(M/Λ) = XRGI(L) + O(1/z)

YPS(L, z; θ) ∝ ZA

fA(L/2, θ)√
f1(θ)

XRGI(L; θ) ∝ Zstat
A,RGI

fstatA (L/2, θ)√
fstat1 (θ)

︸ ︷︷ ︸
=Xstat(θ)
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Mass dependence in finite-volume QCD ( Nf = 2)

The B-system in finite-volume QCD (L = L1)

◮ But: some numerical evidence for the previous doubts in the reliability of PT
in the b-quark region is found with YPS, YV and its effective theory predictions

YPS(L, z)/CPS(M/Λ) = XRGI(L) + O(1/z)

YPS(L, z; θ) ∝ ZA

fA(L/2, θ)√
f1(θ)

XRGI(L; θ) ∝ Zstat
A,RGI

fstatA (L/2, θ)√
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Mass dependence in finite-volume QCD ( Nf = 2)

The B-system in finite-volume QCD (L = L1)

◮ Consider ratios instead, where CPS cancels completely:

YPS(z; θ1)

YPS(z; θ2)
=

Xstat(θ1)

Xstat(θ2)
+ O(1/z)

⇒ These turn smoothly & unconstrained into effective theory predictions



Determination of HQET parameters at O(1/m)
Blossier, Della Morte, Garron & Sommer, arXiv:1001.4783

Vector of the NHQET = 5 parameters in SHQET,A
HQET
0 up to O(1/mb) :

ω =

(
ωstat

ω(1/m)

)

ωstat =
(
mbare , ln(Z

HQET
A )

)t

ω(1/m) =
(
cHQET
A , ωkin , ωspin

)t

ωi classical static

value value

mbare mb mstat
bare

ln(ZHQET
A ) 0 ln(Zstat

A,RGICPS)

cHQET
A −1/(2mb) acstatA

ωkin 1/(2mb) 0

ωspin 1/(2mb) 0

⇒ Trick: non-perturbative matching of HQET to QCD in a finite volume
[ H. & Sommer, JHEP0402(2004)022 ]

QCD 1/mb ≫ a

Matching conditions

ΦQCD
i = ΦHQET

i

for observables Φi
(renormal. quantities,
computable for a→0)

HQET1/mb ≪ L



NP matching in L = L1

Suitable observables in the Schrödinger functional, L = T = L1 ≈ 0.5 fm

Φi(L1,M,a) i = 1, . . . ,NHQET

Matching conditions for i = 1, . . . ,NHQET (note: a↔ g0)

lim
a→0

ΦQCD
i (L1,M,a) = ΦQCD

i (L1,M, 0) = ΦHQET
i (L1,M,a)

Conveniently, one chooses observables linear in ωi, e.g.

Φ(L,M,a) = η(L,a) + φ(L,a)ω(M,a)

Φ1 = L 〈B(L) |H |B(L) 〉 L→∞
∼ LmB

Φ2 = ln
(
L3/2 〈Ω(L) |A0 |B(L) 〉

)
L→∞
∼ ln

(
L3/2 FB

√
mB/2

)

· · ·

η =




Γ stat = 〈B(L) |H |B(L) 〉stat
ζA = ln

(
L3/2 〈Ω(L) |A0 |B(L) 〉stat

)

· · ·


 φ =



L 0 · · ·
0 1 · · ·
· · ·






Step scaling to L = L2

Matching volume L1 ≈ 0.5 fm has very small a, but larger a are needed
⇒ Gap to large volume & practicable lattice spacings, where physical

quantities (mB, FB) are extracted, bridged by finite-size scaling steps

Fully NP, CL can be taken everywhere, L→ 2L via Step Scaling Functions
ΦHQET
i (2L) = σi

({
ΦHQET
j (L), j = 1, . . . ,NHQET

})
2L = 2L1 ≈ 1.0 fm



Step scaling to L = L2

Finite-size scaling to L2 = 2L1 :

Amounts to solve a matrix equation to obtain the HQET parameters at
larger lattice spacings . . .
. . . corresponding to β–values for simulations in large volume, ”L∞”,
where a B-meson in HQET fits comfortably



1.) Continuum limit a = 0.025 fm, . . . , 0.012 fm

Φi(L1,M, 0) = lim
a/L1→0

ΦQCD
i (L1,M,a)

2.) HQET parameters for a = 0.05 fm, . . . , 0.025 fm

ω(M,a) ≡ φ−1(L1,a) [Φ(L1,M, 0) − η(L1,a) ]

=



L−1
1 Φ1(L1,M, 0) − Γ stat(L1,a)

Φ2(L1,M, 0) − ζA(L1,a)

· · ·




3.) Insert into Φ(L2,M,a)

Φ(L2,M, 0) = lim
a/L2→0

[η(L2,a) + φ(L2,a)ω(M,a) ]

= lim
a/L2→0



L2 [ Γ

stat(L2,a) − Γ
stat(L1,a) ]

ζA(L2,a) − ζA(L1,a)

· · ·




︸ ︷︷ ︸
finite SSFs

+



L2
L1
Φ1(L1,M, 0)

Φ2(L1,M, 0)

· · ·




︸ ︷︷ ︸
QCD mass dependence

4.) Repeat 2.) for L1 → L2 to obtain ω(M,a) for a = 0.1 fm, . . . , 0.05 fm

ω(M,a) ≡ φ−1(L2,a) [Φ(L2,M, 0) − η(L2,a) ]



Use of the HQET parameters

These HQET parameters can finally be exploited for phenomenological
applications in the B(s)– meson system, e.g. to

calculate the b-quark mass and the B(s)– meson decay constant:

mB = mbare + Estat +ωkinEkin +ωspinEspin

Φ√
2
≡ FB

√
mB/2 = ZHQET

A

(
1+ bstatA amq

)
pstat

×
(
1+ cHQET

A pδA +ωkinpkin +ωspinpspin

)

Mass splittings, such as (radial) excitation energies of B(s)– states
and the B(s) − B∗

(s)
mass difference to O(1/mb):

∆EHQET
n,1 =

(
Enstat − E

1
stat

)
+ωkin

(
Enkin − E

1
kin

)
+ωspin

(
Enspin − E

1
spin

)

∆EP−V = 4
3
ωspinE

1
spin

Eiy , py : plateau averages of (bare) effective HQET energies

and matrix elements in large volume

Note: The power-divergent δm drops out in energy differences



Some examples of Nf = 0 results
Blossier, Della Morte, Garron, von Hippel, Mendes, Simma & Sommer, arXiv:1004.2661

Excited state energy levels, a ≈ (0.1, 0.08, 0.05) fm, L ≈ 1.5 fm, T = 2L

◮ CF matrices Cstat
ij (t) =

∑
x,y

〈
Oi(x0 + t, y)O

∗
j (x)

〉
stat

& Ospin/kin insertions

◮ GEVP: all-to-all propagators, t– dilution, Gaussian smeared variational basis



Some examples of Nf = 0 results

Excited state energy levels, a ≈ (0.1, 0.08, 0.05) fm, L ≈ 1.5 fm, T = 2L

◮ CF matrices Cstat
ij (t) =

∑
x,y

〈
Oi(x0 + t, y)O

∗
j (x)

〉
stat

& Ospin/kin insertions

◮ GEVP: all-to-all propagators, t– dilution, Gaussian smeared variational basis

◮ Linear a–term suppressed by 1/mb, physical O(1/mb) corrections are small

◮ Divergences cancel after proper NP renormalization
⇒ Strong numerical evidence for the renormalizability of HQET



Some examples of Nf = 0 results
Blossier, Della Morte, Garron, von Hippel, Mendes, Simma & Sommer, arXiv:1006.5816

Matrix elements in the B-meson system via applying the same techniques

Important remark:
Here, the full factor Zstat

A = Zstat
A,RGICPS(Mb/Λ) is implicitly evaluated

non-perturbatively, i.e., CPS irrelevant in the context of NP matching !
HYP & GEVP lead to (2 – 3)% precision for FBs

in the continuum limit

r0 = 0.5 fm: FstatBs
= 229(3)MeV , Fstat+1/m

Bs
= 212(5)MeV

( using r0 = 0.45 fm leads to ≃ 15% increase, but O(1/m2
b) corrections are small )



Some examples of Nf = 0 results

Computation of FBs
in HQET matches at mBs

with a straight interpolation
between the QCD charm sector (around FDs

) and FstatBs

◮ In this comparison, CPS just enters to compensate for the logarithmic scaling
of Φ with mb, i.e., CPS = perturbative ”relic” in interpolation strategies

◮ Given the unclear precision of PT, interpolation methods to be taken with
care, as the inherent perturbative [αs(mb)]

3– errors are difficult to estimate

◮ Anyway, data points beyond charm computationally challenging for Nf > 0



First physical results in two-flavour QCD

Which ingredients are needed ?
Recall the strategy . . .



First physical results in two-flavour QCD

Which ingredients are needed ?

S1 NP matching of HQET to QCD in finite volume with a relativistic b,
to perform the power-divergent subtractions
◮ Crucial element of this step:

Calculation of the heavy quark mass dependence of heavy-light
meson observables in the continuum limit of finite-volume QCD (L1)

◮ . . . already discussed above

S2,3,4 HQET computations in small & intermediate volumes
◮ Evaluation of the HQET step scaling functions to connect the small

matching (L1 ≈ 0.5 fm) to the intermediate volume (L2 = 2L1 ≈ 1 fm)
◮ Interpolation of the resulting HQET parameters to the large-volume

”L∞” lattice spacings (β = 5.2, 5.3, 5.5)

S5 HQET computations in large volume
◮ Extract HQET energies & matrix elements, using Nf = 2 dynamical

configurations in large volume (”L∞”, periodic b.c.’s) produced by CLS
◮ Action: NP’ly O(a) improved Nf = 2 Wilson ; algorithm: DD-HMC
◮ Problem of slowed sampling of topological modes with decreasing a

less relevant, because HQET can afford to work with coarser lattices



HQET energies & matrix elements (preliminary)
LPHAA

Collaboration , in progressPreliminary Nf = 2 HQET results in large volume
◮ Gauge configuration ensembles with Nf = 2 NP’ly O(a) improved

Wilson fermions generated within Coordinated Lattice Simulations
(= community European team effort, employing Lüscher’s DD-HMC)

β a [ fm ] L3 × T mπ [MeV ] # traj. sep.

5.2 0.08 323 × 64 700 110 16

323 × 64 370 160 16

5.3 0.07 323 × 64 550 152 32

323 × 64 400 600 32

483 × 96 300 192 16

483 × 96 250 350 16

5.5 0.05 323 × 64 430 250 20

483 × 96 430 30 16

◮ High numerical accuracy of lattice HQET thanks to technical advances:
[ Hasenfratz & Knechtli, 2001; Lüscher & Wolff, 1990; Foley et al., 2005; LPHAA

Collaboration 2004-2009 ]

⋄ HYP-smeared static actions, giving improved statistical precision

⋄ solve the Generalized EigenValue Problem for a correlator matrix to
cleanly quantify systematic errors from excited state contaminations

⋄ Variant of the stochastic all-to-all propagator method for light quarks



HQET energies & matrix elements (preliminary)

Static energies (β = 5.3,a ≈ 0.07 fm) & extrapolation to the chiral limit,
where the uncertainty due to r0/a is still large [ Scale setting preliminary ]



HQET energies & matrix elements (preliminary)

B-meson decay constant (FB): renormalized (not O(a) improved) matrix
element of Astat

0 , data well described by HMχPT



HQET energies & matrix elements (preliminary)

Spin-splitting: situation for O(1/m) terms of energies is encouraging



HQET parameters (preliminary)
LPHAA

Collaboration , in progressAfter evolution to L2 where 5.3 . β . 5.8

Φ1 = L 〈B(L) |H |B(L) 〉 Φ2 = ln
(
L3/2 〈Ω(L) |A0 |B(L) 〉

)

O(m) O(1)

O(1/m) O(1/m)

(a finer lattice resolution is still running)



b-quark mass interpolation (preliminary)
LPHAA

Collaboration , in progressNow insert ω1 ∈ ω(M,a) for Nf = 2:
mB = ω1 + Estat = mbare + Estat = ω1 + Estat

= lim
a→0

[
Estat − Γ

stat(L2,a)
]

a = (0.1− 0.05) fm

+ lim
a→0

[
Γ stat(L2,a) − Γ

stat(L1,a)
]

a = (0.05− 0.025) fm

+
1

L1
lim
a→0

Φ1(L1,Mb,a) a = (0.025− 0.012) fm

Analysis with r0m
(exp)

B , r0 = (0.475± 0.025) fm [ Scale setting preliminary ]

◮ mMS
b (mb)

stat =

4.255(25)r0(50)stat+renorm(?)a GeV

◮ NP renormalization; no CL yet in the
large volume part (only β = 5.3)

◮ Error dominated by ≈ 1% on ZM in
L1M = ZM Z (1+ bmamq)× L1mq

◮ Dependence on the matching
kinematics is very small



b-quark mass interpolation (preliminary)
LPHAA

Collaboration , in progressNow insert ω1 ∈ ω(M,a) for Nf = 2:
mB = ω1 + Estat = mbare + Estat = ω1 + Estat

= lim
a→0

[
Estat − Γ

stat(L2,a)
]

a = (0.1− 0.05) fm

+ lim
a→0

[
Γ stat(L2,a) − Γ

stat(L1,a)
]

a = (0.05− 0.025) fm

+
1

L1
lim
a→0

Φ1(L1,Mb,a) a = (0.025− 0.012) fm

Analysis with r0m
(exp)

B , r0 = (0.475± 0.025) fm [ Scale setting preliminary ]

◮ mMS
b (mb)

stat+1/m =

4.276(25)r0(50)stat+renorm(?)a GeV

◮ NP renormalization; no CL yet in the
large volume part (only β = 5.3)

◮ Error dominated by ≈ 1% on ZM in
L1M = ZM Z (1+ bmamq)× L1mq

◮ Dependence on the matching
kinematics is very small



b-quark mass interpolation (preliminary)
LPHAA

Collaboration , in progressNow insert ω1 ∈ ω(M,a) for Nf = 2:
mB = ω1 + Estat = mbare + Estat = ω1 + Estat

= lim
a→0

[
Estat − Γ

stat(L2,a)
]

a = (0.1− 0.05) fm

+ lim
a→0

[
Γ stat(L2,a) − Γ

stat(L1,a)
]

a = (0.05− 0.025) fm

+
1

L1
lim
a→0

Φ1(L1,Mb,a) a = (0.025− 0.012) fm

Analysis with r0m
(exp)

B , r0 = (0.475± 0.025) fm [ Scale setting preliminary ]

◮ mMS
b (mb)

stat+1/m =

4.347(40)r0(48)GeV (Nf = 0 ! )

◮ NP renormalization; no CL yet in the
large volume part (only β = 5.3)

◮ Error dominated by ≈ 1% on ZM in
L1M = ZM Z (1+ bmamq)× L1mq

◮ Dependence on the matching
kinematics is very small

Unquenching effect is presently not significant



b-quark mass interpolation (preliminary)
LPHAA

Collaboration , in progressNow insert ω1 ∈ ω(M,a) for Nf = 2:
mB = ω1 + Estat = mbare + Estat = ω1 + Estat

= lim
a→0

[
Estat − Γ

stat(L2,a)
]

a = (0.1− 0.05) fm

+ lim
a→0

[
Γ stat(L2,a) − Γ

stat(L1,a)
]

a = (0.05− 0.025) fm

+
1

L1
lim
a→0

Φ1(L1,Mb,a) a = (0.025− 0.012) fm

Analysis with r0m
(exp)

B , r0 = (0.475± 0.025) fm [ Scale setting preliminary ]

◮ mMS
b (mb)

stat+1/m =

4.276(25)r0(50)stat+renorm(?)a GeV

◮ NP renormalization; no CL yet in the
large volume part (only β = 5.3)

◮ Error dominated by ≈ 1% on ZM in
L1M = ZM Z (1+ bmamq)× L1mq

◮ Dependence on the matching
kinematics is very small

Unquenching effect is presently not significant



Conclusions & Outlook

Lattice heavy flavour physics is becoming a precision field

Lattice QCD inputs have to be pushed to few-% level (incl. a reliable
assessment of all systematics), to contribute to uncovering signals for
BSM physics in CKM analyses and resolve / support current tensions

Dynamical quark simulations (Nf = 2, 2+ 1, 2+ 1+ 1) are routine:
mπ ∼ 500MeV (2001) → mπ . 250MeV (2010), but the behaviour
of algorithms at small lattices spacings needs to be understood



Conclusions & Outlook

Lattice heavy flavour physics is becoming a precision field

Lattice QCD inputs have to be pushed to few-% level (incl. a reliable
assessment of all systematics), to contribute to uncovering signals for
BSM physics in CKM analyses and resolve / support current tensions

Dynamical quark simulations (Nf = 2, 2+ 1, 2+ 1+ 1) are routine:
mπ ∼ 500MeV (2001) → mπ . 250MeV (2010), but the behaviour
of algorithms at small lattices spacings needs to be understood

An entirely non-perturbative renormalization & matching in HQET is
doable with considerable accuracy

◮ Pert. functions CX not needed altogether within our NP HQET strategy

◮ Physics goals of lattice HQET with 1/m– corrections:
b-quark mass, decay constants FB(s)

(1st O(1/m) computation ever !),
mass splittings, semi-leptonic form factors

[ LPHAA
Collaboration , in progress; tree-level matching: Della Morte, Dooling, H. ]

◮ Continuum limit of the large volume part for Nf = 2 finished soon

◮ Nf = 4 in the longer run: add also strange & charm sea quark flavours


	Lecture 1: Introduction to heavy quarks on the lattice
	Lattice QCD: Basics & Challenges
	Effective theories for heavy quarks
	Overview of lattice heavy quark formalisms

	Lecture 2: Non-perturbative Heavy Quark Effective Theory
	Introduction to HQET
	Non-perturbative formulation of HQET
	Mass dependence at leading order in 1/m
	Strategy to determine HQET parameters at O(1/m)
	First physical results in two-flavour QCD

	Conclusions & Outlook

