Spectroscopy: Glueballs and Exotics

David Richards
 Jefferson Laboratory

StrongNet 2011, Bielefeld

Plan of Lectures

- Lecture 1
- What are they and why are they interesting?
- Experimental searches
- Review: variational method, distillation
- Symmetries on the lattice
- Meson interpolating operators - in the continuum, and on the lattice
- Identifying spins: the isovector meson spectrum
- Can we learn more - a phenomenology from lattice spectroscopy
- But they are unstable! ...Back to Christian Lang
- What about baryons....
- Lecture 2: Hadron Structure - I
- Lecture 3: Hadron Structure - II
- Structure of excited states: radiative transitions between mesons

Low-lying Hadron Spectrum

Durr et al., BMW Collaboration

Science 2008

Control over:

- Quark-mass dependence
- Continuum extrapolation
- finite-volume effects (pions, resonances)

Low-lying Hadron Spectrum

Durr et al., BMW Collaboration

Science 2008

Control over:

- Quark-mass dependence
- Continuum extrapolation
- finite-volume effects (pions, resonances)

Benchmark calculation of QCD - enabling us to do something else!

Goals - I

- Why is it important?
- What are the key degrees of freedom describing the bound states?
- How do they change as we vary the quark mass?
- What is the origin of confinement, describing 99\% of observed matter?
- If QCD is correct and we understand it, expt. data must confront ab initio calculations
- What is the role of the gluon in the spectrum search for exotics?

Goals - II

Simple quark model (for neutral mesons) admits only certain values of $J P C$

$$
\begin{aligned}
P & =(-1)^{l+1} \\
C & =(-1)^{l+s}
\end{aligned}
$$

- Exotic Mesons are those whose values of JPC are in accessible to quark model: $0^{+-}, 1^{-+}, 2^{+-}$
- Multi-quark states:
- Hybrids with excitations of the flux-tube
- Study of hybrids: revealing gluonic degrees of freedom of QCD.
- Glueballs: purely, or predominantly, gluonic states

Goals - II

Simple quark model (for neutral mesons) admits only certain values of $J P C$

$$
\begin{aligned}
P & =(-1)^{l+1} \\
C & =(-1)^{l+s}
\end{aligned}
$$

- Exotic Mesons are those whose values of JPC are in accessible to quark model: $0^{+-}, 1^{-+}, 2^{+-}$
- Multi-quark states:
- Hybrids with excitations of the flux-tube
- Study of hybrids: revealing gluonic degrees of freedom of QCD.
- Glueballs: purely, or predominantly, gluonic states

Lattice QCD: Hybrids and GlueX - I

Variational Method

- Construct matrix of correlators

$$
\begin{aligned}
C_{\alpha \beta}\left(t, t_{0}\right) & =\langle 0| \mathcal{O}_{\alpha}(t) \mathcal{O}_{\beta}^{\dagger}\left(t_{0}\right)|0\rangle \\
& \longrightarrow \sum Z_{\alpha}^{n} Z_{\beta}^{n \dagger} e^{-M_{n}\left(t-t_{0}\right)}
\end{aligned}
$$

where $\left\{\mathcal{O}_{\alpha}\right\}$ are basis of operators of definite symmetry: P, C and J ?
Delineate contributions using variational method: solve

$$
\begin{aligned}
& C(t) u\left(t, t_{0}\right)=\lambda\left(t, t_{0}\right) C\left(t_{0}\right) u\left(t, t_{0}\right) \\
& \lambda_{i}\left(t, t_{0}\right) \rightarrow e^{-E_{i}\left(t-t_{0}\right)}\left(1+O\left(e^{-\Delta E\left(t-t_{0}\right)}\right)\right)
\end{aligned}
$$

Variational Method

- Construct matrix of correlators

$$
\begin{aligned}
C_{\alpha \beta}\left(t, t_{0}\right) & =\langle 0| \mathcal{O}_{\alpha}(t) \mathcal{O}_{\beta}^{\dagger}\left(t_{0}\right)|0\rangle \\
& \longrightarrow \sum Z_{\alpha}^{n} Z_{\beta}^{n \dagger} e^{-M_{n}\left(t-t_{0}\right)}
\end{aligned}
$$

where $\left\{\mathcal{O}_{\alpha}\right\}$ are basis of operators of definite symmetry: P, C and J ?
Delineate contributions using variational method: solve

$$
\begin{aligned}
& C(t) u\left(t, t_{0}\right)=\lambda\left(t, t_{0}\right) C\left(t_{0}\right) u\left(t, t_{0}\right) \\
& \lambda_{i}\left(t, t_{0}\right) \rightarrow e^{-E_{i}\left(t-t_{0}\right)}\left(1+O\left(e^{-\Delta E\left(t-t_{0}\right)}\right)\right)
\end{aligned}
$$

Eigenvectors, with metric $\mathrm{C}\left(\mathrm{t}_{0}\right)$, are orthonormal and project onto the respective states

Challenges

\Rightarrow Resolve energy dependence - anisotropic lattice
\Rightarrow Judicious construction of interpolating operators - cubic symmetry

Anisotropic lattices

To appreciate difficulty of extracting excited states, need to understand signal-to-noise ratio in two-point functions. Consider correlation function:

$$
C(t)=\langle 0| \mathcal{O}(t) \mathcal{O}(0)^{\dagger}|0\rangle \longrightarrow e^{-E t}
$$

Then the fluctuations behave as DeGrand, Hecht, PRD46 (1992)

$$
\sigma^{2}(t) \simeq\left(\langle 0| \mathcal{O}(t)^{2} \mathcal{O}(0)^{2^{\dagger}}|0\rangle-C(t)^{2}\right) \longrightarrow e^{-2 m_{\pi} t}
$$

Signal-to-noise ratio degrades with increasing E - Solution: anisotropic lattice with $a_{t}<a_{s}$

Challenges - II

- States at rest are characterized by their behavior under rotations - SO(3)
Lattice does not possess full symmetry of the continuum allowed energies characterised by cubic symmetry, or the octahedral point group O_{h}
- 24 elements
- 5 conjugacy classes/5 irreducible representations
- $\mathrm{O}_{\mathrm{h}} \times \mathrm{I}_{\mathrm{s}}$: rotations + inversions (parity)

Glueball Spectroscopy - I

Improved anisotropic pure-gauge action Morningstar, Peardon 97,99 $S[U]=\beta \xi\left\{\frac{5}{3 U_{s}^{4}} P_{s s^{\prime}}+\frac{4}{3 \xi^{2} u_{s}^{2} u_{t}^{2}} P_{s t}-\frac{1}{12 u_{s}^{6}} R_{s s^{\prime}}-\frac{1}{12 \xi^{2} u_{s}^{4} u_{t}^{2}} R_{s t}\right\}$

Operators: closed Wilson loops

ξ is bare anisotropy $\mathrm{a}_{\mathrm{s}} / \mathrm{a}_{\mathrm{t}}$
Obtain renormalized anisotropy by comparing different Wilson Loops

$$
\begin{gathered}
W_{x t}\left(I a_{s}, J a_{t}\right) \xrightarrow{J \rightarrow \infty} Z_{x t} e^{-J a_{t} V\left(I a_{s}, 0,0\right)}, \\
W_{x y}\left(I a_{s}, J a_{s}\right) \xrightarrow{J \rightarrow \infty} Z_{x y} e^{-J a_{s}\left[V\left(I a_{s}, 0,0\right)+V_{0}\right]}
\end{gathered}
$$

Ratio at large J gives ξ
Morningstar, 96

Glueball Spectroscopy - II

$$
\beta=2.5: \xi=5
$$

Glueball Spectrum - III

Note that this is the pure Yang-Mills spectrum - not the erroneously named "quenched" glueball spectrum!

UKQCD, C.Richards et al, arXiv:1005.2473

Meson spectroscopy with Quarks

- Anisotropic lattices - to precisely resolve energies
- Variational method - with sufficient operator basis to delineate states
- Many values of lattice spacing - identification of spin.

Anisotropic fermion action Edwards, Joo, Lin, PRD78 (2008)

$$
\begin{aligned}
S_{G}^{\xi}[U]= & \frac{\beta}{N_{c} \gamma_{g}}\left\{\sum_{x, s>s^{\prime}}\left[\frac{5}{3 u_{s}^{4}} \mathcal{P}_{s s^{\prime}}-\frac{1}{12 u_{s}^{6}} \mathcal{R}_{s s^{\prime}}\right]+\sum_{x, s}\left[\frac{4}{3 u_{s}^{2} u_{t}^{2}} \mathcal{P}_{s t}-\frac{1}{12 u_{s}^{4} u_{t}^{2}} \mathcal{R}_{s t}\right]\right\} \\
S_{F}^{\xi}[U, \bar{\psi}, \psi]= & \sum x \bar{\psi}(x) \frac{1}{\tilde{u}_{t}}\left\{\tilde{u}_{t} \hat{k}_{0}+\hat{W}_{t}+\frac{1}{\gamma_{f}} \sum_{s} \hat{W}_{s}-\right. \\
& \left.\frac{1}{2}\left[\frac{1}{2}\left(\frac{\gamma_{g}}{\gamma_{f}}+\frac{1}{\xi}\right) \frac{1}{\tilde{u}_{t} \tilde{u}_{s}^{2}} \sum_{s} \sigma_{t s} \hat{F}_{t s}+\frac{1}{\gamma_{f}} \frac{1}{\tilde{u}_{s}^{3}} \sum_{s<s^{\prime}} \sigma_{s s^{\prime}} \hat{F}_{s s^{\prime}}\right]\right\} \psi(x) .
\end{aligned}
$$

Two anisotropy parameters to tune, in gauge and fermion sectors

$$
\begin{array}{ll}
\xi=3.5 & \gamma_{g}=\xi_{0} \\
& \gamma_{f}=\xi_{0} / \nu
\end{array} \quad \text { Dispersion Relation }
$$

Anisotropic Clover Generation - I

Tuning performed for three-flavor theory

Challenge: setting scale and strange-quark mass

$$
\begin{aligned}
& \text { Lattice coupling fixed } \\
& s_{X}=(9 / 4)\left[2 m_{K}^{2}-m_{\pi}^{2}\right] / m_{X}^{2}
\end{aligned}
$$

Express physics in (dimensionless) (l,s) coordinates

H-W Lin et al (Hadron Spectrum Collaboration), PRD79, 034502 (2009)

Thursday, June 23, 2011

Anisotropic Clover Generation - I

Tuning performed for three-flavor theory

Challenge: setting scale and strange-quark mass
Lattice coupling fixed
Proportional to m_{s} to LO ChPT

$$
s_{X}=(9 / 4)\left[2 m_{K}^{2}-m_{\pi}^{2}\right] / m_{X}^{2}
$$

Express physics in (dimensionless) (l,s) coordinates

H-W Lin et al (Hadron Spectrum Collaboration), PRD79, 034502 (2009)

Anisotropic Clover Generation - I

Tuning performed for three-flavor theory

Challenge: setting scale and strange-quark mass
Lattice coupling fixed
Proportional to m_{s} to LO ChPT

$$
s_{X}=(9 / 4)\left[2 m_{K}^{2}-m_{\pi}^{2}\right] / m_{X}^{2}
$$

Express physics in (dimensionless) (l,s) coordinates

H-W Lin et al (Hadron Spectrum Collaboration), PRD79, 034502 (2009)

Anisotropic Clover - II

Low-lying spectrum: agrees with experiment to 10%
$\mathrm{N}_{\mathrm{f}}=2+1$ Hadron Spectrum: NN Leading Order Extrapolation

Correlation functions: Distillation

- Use the new "distillation" method.
- Observe

$$
L^{(J)} \equiv\left(1-\frac{\kappa}{n} \Delta\right)^{n}=\sum_{i=1} f\left(\lambda_{i}\right) v^{(i)} \otimes v^{*(i)}
$$

Eigenvectors of
\downarrow Laplacian

- Truncate sum at sufficient i to capture relevant physics modes - we use 64: set "weights" f to be unity
- Meson correlation function

$$
C_{M}\left(t, t^{\prime}\right)=\langle 0| \bar{d}\left(t^{\prime}\right) \Gamma^{B}\left(t^{\prime}\right) u\left(t^{\prime}\right) \bar{u}(t) \Gamma^{\mathcal{A}}(t) d(t)|0\rangle
$$

- Decompose using "distillation" operator as
M. Peardon et al., PRD80,054506

$$
C_{M}\left(t, t^{\prime}\right)=\operatorname{Tr}\left\langle\phi^{A}\left(t^{\prime}\right) \tau\left(t^{\prime}, t\right) \Phi^{B}(t) \tau^{\dagger}\left(t^{\prime}, t\right),\right\rangle
$$ (2009)

where

Perambulators

$$
\begin{aligned}
\Phi_{\alpha \beta}^{A, i j} & =v^{*(i)}(t)\left[\Gamma^{A}(t) \gamma_{5}\right]_{\alpha \beta} v^{(j)}\left(t^{\prime}\right) \\
\tau_{\alpha \beta}^{i j}\left(t, t^{\prime}\right) & =v^{*(i)}\left(t^{\prime}\right) M_{\alpha \beta}^{-1}\left(t^{\prime}, t\right) v^{(j)}(t) .
\end{aligned}
$$

Correlation functions: Distillation

- Use the new "distillation" method.
- Observe

$$
L^{(J)} \equiv\left(1-\frac{\kappa}{n} \Delta\right)^{n}=\sum_{i=1} f\left(\lambda_{i}\right) v^{(i)} \otimes v^{*(i)}
$$

Eigenvectors of
\downarrow Laplacian

- Truncate sum at sufficient i to capture relevant physics modes - we use 64: set "weights" f to be unity
- Meson correlation function

$$
C_{M}\left(t, t^{\prime}\right)=\langle 0| \bar{d}\left(t^{\prime}\right) \Gamma_{\uparrow}^{B}\left(t^{\prime}\right) u\left(t^{\prime}\right) \bar{u}(t) \Gamma_{\uparrow}^{\mathcal{A}}(t) d(t)|0\rangle
$$

- Decompose using "distillation" operator as
M. Peardon et al., PRD80,054506

$$
\begin{equation*}
C_{M}\left(t, t^{\prime}\right)=\operatorname{Tr}\left\langle\phi^{A}\left(t^{\prime}\right) \tau\left(t^{\prime}, t\right) \Phi^{B}(t) \tau^{\dagger}\left(t^{\prime}, t\right),\right\rangle \tag{2009}
\end{equation*}
$$

where

Perambulators

$$
\begin{aligned}
\Phi_{\alpha \beta}^{A, i j} & =v^{*(i)}(t)\left[\Gamma^{A}(t) \gamma_{5}\right]_{\alpha \beta} v^{(j)}\left(t^{\prime}\right) \\
\tau_{\alpha \beta}^{i j}\left(t, t^{\prime}\right) & =v^{*(i)}\left(t^{\prime}\right) M_{\alpha \beta}^{-1}\left(t^{\prime}, t\right) v^{(j)}(t) .
\end{aligned}
$$

Identification of Spin - I

Problem:

- YM glueball requires data at several lattice spacings
-density of states in each irrep large.

Solution: exploit known continuum

behavior of overlaps

- Construct interpolating operators of definite (continuum) JM: OJM

Starting point

$$
\langle 0| O^{J M}\left|J^{\prime}, M^{\prime}\right\rangle=Z^{J} \delta_{J, J^{\prime}} \delta_{M, M^{\prime}}
$$

$$
\bar{\psi}(\vec{x}, t) \Gamma D_{i} D_{j} \ldots \psi(\vec{x}, t)
$$

Introduce circular basis:

$$
\begin{aligned}
\overleftrightarrow{D}_{m=-1} & =\frac{i}{\sqrt{2}}\left(\overleftrightarrow{D}_{x}-i \overleftrightarrow{D}_{y}\right) \\
\overleftrightarrow{D}_{m=0} & =i \overleftrightarrow{D}_{z} \\
\overleftrightarrow{D}_{m=+1} & =-\frac{i}{\sqrt{2}}\left(\overleftrightarrow{D}_{x}+i \overleftrightarrow{D}_{y}\right)
\end{aligned}
$$

Identification of Spin - I

Problem:

- YM glueball requires data at several lattice spacings
-density of states in each irrep large.

M_{2}

Solution: exploit known continuum behavior of overlaps
M_{E}
$M_{T_{2}}$
a

- Construct interpolating operators of definite (continuum) JM: OJM

Starting point

$$
\langle 0| O^{J M}\left|J^{\prime}, M^{\prime}\right\rangle=Z^{J} \delta_{J, J^{\prime}} \delta_{M, M^{\prime}}
$$

$$
\bar{\psi}(\vec{x}, t) \Gamma D_{i} D_{j} \ldots \psi(\vec{x}, t)
$$

Introduce circular basis:

$$
\begin{aligned}
\overleftrightarrow{D}_{m=-1} & =\frac{i}{\sqrt{2}}\left(\overleftrightarrow{D}_{x}-i \overleftrightarrow{D}_{y}\right) \\
\overleftrightarrow{D}_{m=0} & =i \overleftrightarrow{D} \\
\overleftrightarrow{D}_{m=+1} & =-\frac{i}{\sqrt{2}}\left(\overleftrightarrow{D}_{x}+i \overleftrightarrow{D}_{y}\right) .
\end{aligned}
$$

Identification of spin

Straighforward to project to definite spin: $J=0,1,2$

$$
\left(\Gamma \times D_{J=1}^{[1]}\right)^{J, M}=\sum_{m_{1}, m_{2}}\left\langle 1, m_{1} ; 1, m_{2} \mid J, M\right\rangle \bar{\psi} \Gamma_{m_{1}} \overleftrightarrow{D}_{m_{2}} \psi
$$

- Use projection formula to find subduction under irrep. of cubic group - operators are closed under rotation!

$$
\begin{aligned}
& O_{\Lambda \lambda}^{[J]}(t, \vec{x})=\frac{d_{\Lambda}}{g_{O_{h}^{D}}} \sum_{R \in O_{h}^{D}} D_{\lambda \lambda}^{(\Lambda) *}(R) U_{R} O^{J, M}(t, \vec{x}) U_{R}^{\dagger} \\
&=\sum_{M} S_{\Lambda, \lambda}^{J, M} O^{J, M} \\
& \mathcal{O}_{\Lambda, \lambda}^{[J]} \equiv\left(\Gamma \times D_{\cdots}^{\left[n_{D}\right]}\right)_{\Lambda, \lambda}^{J}= \\
& \sum_{M} \mathcal{S}_{\Lambda, \lambda}^{J, M}\left(\Gamma \times D_{\cdots}^{\left[n_{D}\right]}\right)^{J, M} \equiv \sum_{M} \mathcal{S}_{\Lambda, \lambda}^{J, M} \mathcal{O}^{J, M}
\end{aligned}
$$

Identification of spin

Straighforward to project to definite spin: $J=0,1,2$

$$
\left(\Gamma \times D_{J=1}^{[1]}\right)^{J, M}=\sum_{m_{1}, m_{2}}\left\langle 1, m_{1} ; 1, m_{2} \mid J, M\right\rangle \bar{\psi} \Gamma_{m_{1}} \overleftrightarrow{D}_{m_{2}} \psi
$$

- Use projection formula to find subduction under irrep. of cubic group - operators are closed under rotation!

$$
\begin{aligned}
& O_{\Lambda \lambda}^{[J]}(t, \vec{x})=\frac{d_{\Lambda}}{g_{O}^{D}} \sum_{R \in O_{h}^{D}} D_{\lambda \lambda}^{(\Lambda) *}(R) U_{R} O^{J, M}(t, \vec{x}) U_{R}^{\dagger} \\
&=\sum_{M} S_{\Lambda, \lambda}^{J, M} O^{J, M} \\
& \mathcal{O}_{\Lambda, \lambda}^{[J]} \equiv\left(\Gamma \times D_{\cdots}^{\left[n_{D}\right]}\right)_{\Lambda, \lambda}^{J}= \\
& \sum_{M} \mathcal{S}_{\Lambda, \lambda}^{J, M}\left(\Gamma \times D_{\cdots}^{\left[n_{D}\right]}\right)^{J, M} \equiv \sum_{M} \mathcal{S}_{\Lambda, \lambda}^{J, M} \mathcal{O}^{J, M}
\end{aligned}
$$

Identification of spin

Straighforward to project to definite spin: $J=0,1,2$

$$
\left(\Gamma \times D_{J=1}^{[1]}\right)^{J, M}=\sum_{m_{1}, m_{2}}\left\langle 1, m_{1} ; 1, m_{2} \mid J, M\right\rangle \bar{\psi} \Gamma_{m_{1}} \overleftrightarrow{D}_{m_{2}} \psi
$$

- Use projection formula to find subduction under irrep. of cubic group - operators are closed under rotation!

$$
\begin{aligned}
& O_{\Lambda \lambda}^{[J]}(t, \vec{x})=\frac{d_{\Lambda}}{g_{O_{h}^{D}}} \sum_{R \in O_{h}^{D}} D_{\lambda \lambda}^{(\Lambda) *}(R) U_{R} O^{J, M}(t, \vec{x}) U_{R}^{\dagger} \\
& \text { Irrep, Row }
\end{aligned}=\sum_{M} S_{\Lambda, \lambda}^{J, M} O^{J, M}, ~ \begin{gathered}
\text { Action } \\
\mathcal{O}_{\Lambda, \lambda}^{[J]} \equiv\left(\Gamma \times D_{\ldots}^{\left[n_{D}\right]}\right)_{\Lambda, \lambda}^{J}= \\
\quad \sum_{M} \mathcal{S}_{\Lambda, \lambda}^{J, M}\left(\Gamma \times D_{\ldots}^{\left[n_{D}\right]}\right)^{J, M} \equiv \sum_{M} \mathcal{S}_{\Lambda, \lambda}^{J, M} \mathcal{O}^{J, M}
\end{gathered}
$$

Identification of spin

Straighforward to project to definite spin: $J=0,1,2$

$$
\left(\Gamma \times D_{J=1}^{[1]}\right)^{J, M}=\sum_{m_{1}, m_{2}}\left\langle 1, m_{1} ; 1, m_{2} \mid J, M\right\rangle \bar{\psi} \Gamma_{m_{1}} \overleftrightarrow{D}_{m_{2}} \psi
$$

- Use projection formula to find subduction under irrep. of cubic group - operators are closed under rotation!

$$
\begin{aligned}
& O_{\Lambda \lambda}^{[J]}(t, \vec{x})=\frac{d_{\Lambda}}{g_{O_{h}^{D}}} \sum_{R \in O_{h}^{D}} D_{\lambda \lambda}^{(\wedge) *}(R) U_{R} O^{J, M}(t, \vec{x}) U_{R}^{\dagger} \\
& { }_{\text {Irrep, Row }}=\sum_{M} S_{\Lambda, \lambda}^{J, M} O^{J, M} \quad \text { Irrep of } \mathbf{R} \text { in } \wedge \quad \text { Action of } \mathbf{R} \\
& \mathcal{O}_{\Lambda, \lambda}^{[J]} \equiv\left(\Gamma \times D_{{ }^{[\ldots}}^{\left[n_{D}\right]}\right)_{\Lambda, \lambda}^{J}= \\
& \sum_{M} \mathcal{S}_{\Lambda, \lambda}^{J, M}\left(\Gamma \times D_{\ldots}^{\left[n_{D}\right]}\right)^{J, M} \equiv \sum_{M} \mathcal{S}_{\Lambda, \lambda}^{J, M} \mathcal{O}^{J, M}
\end{aligned}
$$

Identification of spin

Straighforward to project to definite spin: $J=0,1,2$

$$
\left(\Gamma \times D_{J=1}^{[1]}\right)^{J, M}=\sum_{m_{1}, m_{2}}\left\langle 1, m_{1} ; 1, m_{2} \mid J, M\right\rangle \bar{\psi} \Gamma_{m_{1}} \overleftrightarrow{D}_{m_{2}} \psi
$$

- Use projection formula to find subduction under irrep. of cubic group - operators are closed under rotation!

$$
\begin{aligned}
O_{\Lambda \lambda}^{[J]}(t, \vec{x}) & =\frac{d_{\Lambda}}{g_{O_{h}^{D}}} \sum_{R \in O_{h}^{D}} D_{\lambda \lambda}^{(\wedge) *}(R) U_{R} O^{J, M}(t, \vec{x}) U_{R}^{\dagger} \\
\text { Irrep, Row } & =\sum_{M} S_{\Lambda, \lambda}^{J, M} O^{J, M}
\end{aligned}
$$

Exercise: check LHS transforms irreducibly

$$
\mathcal{O}_{\Lambda, \lambda}^{[J]} \equiv\left(\Gamma \times D_{\ldots}^{\left[n_{D}\right]}\right)_{\Lambda, \lambda}^{J}=
$$

$$
\sum_{M} \mathcal{S}_{\Lambda, \lambda}^{J, M}\left(\Gamma \times D_{\cdots}^{\left[n_{D}\right]}\right)^{J, M} \equiv \sum_{M} \mathcal{S}_{\Lambda, \lambda}^{J, M} \mathcal{O}^{J, M}
$$

Identification of Spin - II

Hadspec collab. (dudek et al), 0909.0200, PRL
Overlap of state onto subduced operators

$$
\langle 0| O^{J, M}\left|J^{\prime}, M^{\prime}\right\rangle=Z_{J} \delta_{J, J^{\prime}} \delta_{M, M^{\prime}} \quad \text { Common across irreps. }
$$

$$
\langle 0| O_{\Lambda, \lambda}^{J}\left|J^{\prime}, M^{\prime}\right\rangle=S_{\Lambda, \lambda}^{J, M^{\prime}} Z_{J} \delta_{J, J^{\prime}}
$$

J	irreps
0	$A_{1}(1)$
1	$T_{1}(3)$
2	$T_{2}(3) \oplus E(2)$
3	$T_{1}(3) \oplus T_{2}(3) \oplus A_{2}(1)$
4	$A_{1}(1) \oplus T_{1}(3) \oplus T_{2}(3) \oplus E(2)$

$$
N_{f}=3
$$

Identification of Spin - II

Hadspec collab. (dudek et al), 0909.0200, PRL
Overlap of state onto subduced operators

$$
\langle 0| O^{J, M}\left|J^{\prime}, M^{\prime}\right\rangle=Z_{J} \delta_{J, J^{\prime}} \delta_{M, M^{\prime}} \quad \text { Common across irreps. }
$$

$$
\langle 0| O_{\Lambda, \lambda}^{J}\left|J^{\prime}, M^{\prime}\right\rangle=S_{\Lambda, \lambda}^{J, M^{\prime}} Z_{J} \delta_{J, J^{\prime}}
$$

Identification of Spin - II

Hadspec collab. (dudek et al), 0909.0200, PRL
Overlap of state onto subduced operators
$\langle 0| O^{J, M}\left|J^{\prime}, M^{\prime}\right\rangle=Z_{J} \delta_{J, J^{\prime}} \delta_{M, M^{\prime}}$
Common across irreps.

$$
\langle 0| O_{\Lambda, \lambda}^{J}\left|J^{\prime}, M^{\prime}\right\rangle=S_{\Lambda, \lambda}^{J, M^{\prime}} Z_{J} \delta_{J, J^{\prime}}
$$

Lattice ops. retain memory of their continuum ancestors

Isovector Meson Spectrum - I

Isovector spectrum with quantum numbers reliably identified

Isovector Meson Spectrum - II

Dudek, Edwards, DGR, Thomas, arXiv:1004.4930

Interpretation of Meson Spectrum

In each Lattice Irrep, state dominated by operators of
 particular J

Anti-commutator of covariant derivative: vanishes for unit gauge!

Isoscalar Meson Spectrum

Isoscalar requires disconnected contributions

Dominated by quark-propagator inversions - ENABLED BY GPU
J. Dudek et al., arXiv:1102.4299

- Spin-identified single-particle spectrum: states of spin as high as four
- Hidden flavor mixing angles extracted except $0^{-+}, 1^{++}$near ideal mixing
- First determination of exotic isoscalar states: comparable in mass to isovector

Where are the multi-hadrons?

Meson spectrum on two volumes: dashed lines denote expected (noninteracting) multi-particle energies.

Allowed two-particle contributions governed by cubic symmetry of volume

Calculation is incomplete.

Multi-hadron Operators

Usual methods give "point-to-all"

Strong Decays

- In QCD, even ρ is unstable under strong interactions resonance in $\pi-\pi$ scattering (quenched QCD not a theory - won't discuss).
- Spectral function continuous; finite volume yields discrete set of energy eigenvalues

Momenta quantised: known set of free-energy eigenvalues

$$
E_{n}=2 \sqrt{m_{\pi}^{2}+\left(\frac{2 n \pi}{L}\right)^{2}}
$$

Strong Decays - II

- For interacting particles, energies are shifted from their freeparticle values, by an amount that depends on the energy.
- Luscher: relates shift in the free-particle energy levels to the phase shift at the corresponding E.

$$
\delta E(L) \leftrightarrow \delta(E)
$$

$$
\begin{aligned}
\tan \delta_{1} & =\frac{g_{\rho \pi \pi^{2}}}{6 \pi} \frac{p^{3}}{E_{\mathrm{CM}}\left(m_{\rho}^{2}-E_{\mathrm{CM}}^{2}\right)} \\
p & =\sqrt{E_{\mathrm{CM}}^{2} / 4-m_{\pi}^{2}}
\end{aligned}
$$

Feng, Jansen, Renner, 2010
Lang, these lectures

Momentum-dependent I = $2 \pi \pi$ Phase Shift

Dudek et al., Phys Rev D83, 071504 (2011)
Luescher: energy levels at finite volume \leftrightarrow phase shift at corresponding k

$$
\quad \operatorname{det}\left[e^{2 i \boldsymbol{\delta}(k)}-\mathbf{U}_{\Gamma}\left(k \frac{L}{2 \pi}\right)\right]=0
$$

Operator basis $\quad \mathcal{O}_{\pi}^{\Gamma, \gamma}(|\vec{p}|)=\sum_{m} \mathcal{S}_{\Gamma, \gamma}^{\ell, m} \sum_{\hat{p}} Y_{\ell}^{m}(\hat{p}) \mathcal{O}_{\pi}(\vec{p}) \mathcal{O}_{\pi}(-\vec{p})$
Total momentum zero - pion momentum $\pm p$

Excited Baryon Spectrum

- No baryon "exotics", ie quantum numbers not accessible with simple quark model; but may be hybrids!
- Nucleon Spectroscopy: Quark model masses and amplitudes states classified by isospin, parity and spin.

Capstick and Roberts, PRD58 (1998) 074011

- Missing, because our pictures do not capture correct degrees of freedom?
- Do they just not couple to probes?

CLAS at JLab

Excited Baryon Spectrum - I

- Construct basis of 3-quark interpolating operators in the continuum:

$$
\left(N_{\mathrm{M}} \otimes\left(\frac{3}{2}^{-}\right)_{\mathrm{M}}^{1} \otimes D_{L=2, \mathrm{~S}}^{[2]}\right)^{J=\frac{7}{2}}
$$

- Subduce to lattice irreps:

Excited Baryon Spectrum - I

- Construct basis of 3-quark interpolating operators in the continuum:

$$
\left(N_{\mathrm{M}} \otimes\left(\frac{3}{2}^{-}\right)_{\mathrm{M}}^{1} \otimes D_{L=2, \mathrm{~S}}^{[2]}\right)^{J=\frac{7}{2}} \quad \text { "Flavor" } \mathbf{x} \text { Spin } \times \text { Orbital }
$$

- Subduce to lattice irreps:

Excited Baryon Spectrum - II

Summary

- Spectroscopy of excited states affords an excellent theatre in which to study QCD in low-energy regime.
- Major progress at reliable determinations of the single-particle spectrum, with quantum numbers identified
- Lattice calculations used to construct new "phenomenology" of QCD
- Next step for lattice QCD:
- Complete the calculation: where are the multi-hadrons?
- Determine the phase shifts - model dependent extraction of resonance parameters
- Final Lecture: Structure and Electromagnetic Properties of excited states

