Hadron Structure
 David Richards Jefferson Laboratory

StrongNet 2011, Bielefeld

Plan of Lectures

- Lecture 2 - Hadron Structure I
- What are we studying, and how do we encapsulate it?
- Paradigm: electromagnetic form factor of pion
- Nucleon EM form factors
- Polarized and unpolarized structure functions
- Three-dimensional imaging of hadrons: Generalized Parton Distributions
- Lecture 3: Hadron Structure - II
- Recent advances: Transverse-Momentum-Dependent distributions
- Flavor-singlet contributions: role of sea quarks and gluons
- Structure of excited states: radiative transitions between mesons

Hadron Structure

Hadron Structure

How are

- charge and currents
- momentum
- spin and angular momentum
apportioned amongst the quarks and gluons that make up a hadron?

Hadron Structure

How are

- charge and currents
- momentum
- spin and angular momentum
apportioned amongst the quarks and gluons that make up a hadron?

Encapsulated in

- electromagnetic form factors
- unpolarized structure functions and Transverse-momentum-dependent distributions (TMDs)
- polarized structure functions, Generalized Parton Distributions (GPDs), TMDs

Hadron Structure

How are

- charge and currents
- momentum
- spin and angular momentum
apportioned amongst the quarks and gluons that make up a hadron?

Encapsulated in

- electromagnetic form factors
- unpolarized structure functions and Transverse-momentum-dependent distributions (TMDs)
- polarized structure functions, Generalized Parton Distributions (GPDs), TMDs

Lattice QCD can either compute all of these or constrain them!
Technique: calculation of hadronic matrix elements - analogous to WME.

Hadron Structure

How are

- charge and currents
- momentum
- spin and angular momentum
apportioned amongst the quarks and gluons that make up a hadron?

Encapsulated in

- electromagnetic form factors
- unpolarized structure functions and Transverse-momentum-dependent distributions (TMDs)
- polarized structure functions, Generalized Parton Distributions (GPDs), TMDs

Lattice QCD can either compute all of these or constrain them!
Technique: calculation of hadronic matrix elements - analogous to WME.
To paraphrase Nathan Isgur: "Tassos Vladikas wants to eliminate QCD, I want to understand it!"

Paradigm: Pion EM form factor

$$
\left\langle\pi\left(\vec{p}_{f}\right)\right| V_{\mu}(0)\left|\pi\left(\vec{p}_{i}\right)\right\rangle=\left(p_{i}+p_{f}\right)_{\mu} F\left(Q^{2}\right)
$$

where

$$
\begin{aligned}
V_{\mu} & =\frac{2}{3} \bar{u} \gamma_{\mu} u-\frac{1}{3} \bar{d} \gamma_{\mu} d \\
-Q^{2} & =\left[E_{\pi}\left(\vec{p}_{f}\right)-E_{\pi}\left(\vec{p}_{i}\right)\right]^{2}-\left(\vec{p}_{f}-\vec{p}_{i}\right)^{2}
\end{aligned}
$$

Anatomy of a Matrix Element Calculation - I

Pion Interpolating Operator

$$
\left\{\begin{aligned}
\phi(x) & =\bar{d}(x) \gamma_{5} u(x) \\
\phi^{\dagger}(x) & =-\bar{u}(x) \gamma_{5} d(x) \\
V_{\mu}(x) & =e_{u} \bar{u}(x) \gamma_{\mu} u(x)+e_{d} \bar{d}(x) \gamma_{\mu} d(x)
\end{aligned}\right.
$$

$$
\Gamma_{\pi^{+} \mu \pi^{+}}\left(t_{f}, t ; \vec{p}, \vec{q}\right)=\sum_{\vec{x}, \vec{y}}\langle 0| \phi\left(\vec{x}, t_{f}\right) V_{\mu}(\vec{y}, t) \phi^{\dagger}(\overrightarrow{0}, 0)|0\rangle e^{-i \vec{p} \cdot \vec{x}} e^{-i \vec{q} \cdot \vec{y}}
$$

Anatomy of a Matrix Element Calculation - I

Pion Interpolating Operator

$$
\left\{\begin{aligned}
\phi(x) & =\bar{d}(x) \gamma_{5} u(x) \\
\phi^{\dagger}(x) & =-\bar{u}(x) \gamma_{5} d(x) \\
V_{\mu}(x) & =e_{u} \bar{u}(x) \gamma_{\mu} u(x)+e_{d} \bar{d}(x) \gamma_{\mu} d(x)
\end{aligned}\right.
$$

$$
\begin{aligned}
& \Gamma_{\pi^{+} \mu \pi^{+}}\left(t_{f}, t ; \vec{p}, \vec{q}\right)=\sum_{\vec{x}, \vec{y}}\langle 0| \phi\left(\vec{x}, t_{f}\right) V_{\mu}(\vec{y}, t) \phi^{\dagger}(\overrightarrow{0}, 0)|0\rangle e^{-i \vec{p} \cdot \vec{x}} e^{-i \vec{q} \cdot \vec{y}} \\
& V_{\mu}^{\text {cont }}=Z_{V} V_{\mu}^{\text {lattice }} ; Z_{V}=1 \quad \text { for conserved current }
\end{aligned}
$$

Anatomy of a Matrix Element Calculation - II

Construction of three-point function

Introduce quark propagators

$$
\begin{aligned}
U_{\alpha \beta}^{i j}(x, y) & =\left\langle u_{\alpha}^{i}(x) \bar{u}_{\beta}^{j}(y)\right\rangle \\
D_{\alpha \beta}^{i j}(x, y) & =\left\langle d_{\alpha}^{i}(x) \bar{d}_{\beta}^{j}(y)\right\rangle
\end{aligned}
$$

Then U-contribution to three-point function given by

$$
\Gamma_{\pi^{+} \mu \pi^{+}}^{U}=e_{u} \sum_{\vec{x}, \vec{y}} e^{-i \vec{p} \cdot \vec{x}-i \vec{q} \cdot \vec{y}} \operatorname{Tr}\left\{\gamma_{5} U(x, y) \gamma_{\mu} U(y, 0) \gamma_{5} D(0, x)\right\}
$$

Quark propagator: $G_{\alpha \beta}^{i j}(x, y)=\left\langle q_{\alpha}^{i}(x) \bar{q}_{\beta}^{j}(y)\right\rangle$ satisfies

$$
M_{\alpha \gamma}^{i k}(x, z) G_{\gamma \beta}^{k j}(z, y)=\delta_{i j} \delta_{\alpha \beta} \delta_{x y} ; \quad G(y, x)=\gamma_{5} G(x, y)^{\dagger} \gamma_{5}
$$

Introduce Sequential Quark Propagator $H^{u}\left(y, 0 ; t_{f}, \vec{p}\right)=\sum_{\vec{x}} e^{i \vec{p} \cdot \vec{x}} U(y, x) \gamma_{5} D(x, 0) \gamma_{5}$
Satisfies: $M(z, y) H^{u}\left(y, 0 ; t_{f}, \vec{p}\right)=\delta_{t_{z}, t_{f}} e^{i \vec{p} \cdot \vec{z}} \gamma_{5} D(z, 0) \gamma_{5}$
Finally: $\Gamma_{\pi^{+} \mu \pi^{+}}^{U}=e_{u} \sum_{\vec{y}} e^{-i \vec{q} \cdot \vec{y}} \operatorname{Tr}\left\{H^{u}\left(y, 0 ; t_{f}, \vec{p}\right)^{\dagger} \gamma_{5} \gamma_{\mu} U(y, 0) \gamma_{5}\right\}$

Anatomy of a Matrix Element Calculation - II

$$
\Gamma_{\pi^{+} \mu \pi^{+}}\left(t_{f}, t ; \vec{p}, \vec{q}\right)=\sum_{\vec{x}, \vec{y}}\langle 0| \phi\left(\vec{x}, t_{f}\right) V_{\mu}(\vec{y}, t) \phi^{\dagger}(\overrightarrow{0}, 0)|0\rangle e^{-i \vec{p} \cdot \vec{x}} e^{-i \vec{q} \cdot \vec{y}}
$$

Resolution of unity - insert states
$\langle 0| \phi(0)|\pi, \vec{p}+\vec{q}\rangle\langle\pi, \vec{p}+\vec{q}| V_{\mu}(0)|\pi, \vec{p}\rangle\langle\pi, \vec{p}| \phi^{\dagger}|0\rangle e^{-E\left(\vec{p}\left(t-t_{i}\right)\right.} e^{-E(\vec{p}+\vec{q})\left(t_{f}-t\right)}$

$$
\Gamma_{\pi^{+} \pi^{+}}(t, 0 ; \vec{p})=\sum_{\vec{x}}\langle 0| \phi\left(\vec{x}, t_{f}\right) \phi^{\dagger}(0)|0\rangle e^{-i \vec{p} \cdot \vec{x}}
$$

Pion Form Factor

LHPC, Bonnet et al,
Phys.Rev. D72 (2005) 054506

$$
F\left(Q^{2}\right)=\frac{1}{1+Q^{2} / M_{\mathrm{VMD}^{2}}}
$$

Pion Form Factor

Charge radius Nguyen et al, 1102.3652

$$
\left\langle r^{2}\right\rangle=\left.6 \frac{d F\left(q^{2}\right)}{d q^{2}}\right|_{q^{2}=0}
$$

LHPC, Bonnet et al,
Phys.Rev. D72 (2005) 054506

$$
F\left(Q^{2}\right)=\frac{1}{1+Q^{2} / M_{\mathrm{VMD}}{ }^{2}}
$$

Nucleon EM Form Factors

Two form factors

$$
\left\langle p_{f}\right| V_{\mu}\left|p_{i}\right\rangle=\bar{u}\left(p_{f}\right)\left[\begin{array}{cc}
\text { Dirac } & \text { Pauli } \\
\gamma_{\mu} F_{1}\left(q^{2}\right)+i q_{\nu} \frac{\sigma_{\mu \nu}}{2 m_{N}} F_{2}\left(q^{2}\right)
\end{array}\right] u\left(p_{i}\right)
$$

Related to familiar Sach's electromagnetic form factors through

$$
\begin{aligned}
G_{E}\left(Q^{2}\right) & =F_{1}\left(Q^{2}\right)-\frac{Q^{2}}{\left(2 m_{N}\right)^{2}} F_{2}\left(Q^{2}\right) \\
G_{M}\left(Q^{2}\right)= & F_{1}\left(Q^{2}\right)+F_{2}\left(Q^{2}\right) \\
& \mathbf{q} \downarrow
\end{aligned}
$$

Nucleon EM Form Factors

Two form factors

$$
\left\langle p_{f}\right| V_{\mu}\left|p_{i}\right\rangle=\bar{u}\left(p_{f}\right)\left[\begin{array}{cc}
\text { Dirac } & \text { Pauli } \\
\gamma_{\mu} F_{1}\left(q^{2}\right)+i q_{\nu} \frac{\sigma_{\mu \nu}}{2 m_{N}} F_{2}\left(q^{2}\right)
\end{array}\right] u\left(p_{i}\right)
$$

Related to familiar Sach's electromagnetic form factors through

$$
\begin{aligned}
G_{E}\left(Q^{2}\right) & =F_{1}\left(Q^{2}\right)-\frac{Q^{2}}{\left(2 m_{N}\right)^{2}} F_{2}\left(Q^{2}\right) \\
G_{M}\left(Q^{2}\right) & =F_{1}\left(Q^{2}\right)+F_{2}\left(Q^{2}\right) \\
& \mathbf{q}
\end{aligned}
$$

Nucleon EM Form Factors

Two form factors

$$
\left\langle p_{f}\right| V_{\mu}\left|p_{i}\right\rangle=\bar{u}\left(p_{f}\right)\left[\begin{array}{cc}
\text { Dirac } & \text { Pauli } \\
\gamma_{\mu} F_{1}\left(q^{2}\right)+i q_{\nu} \frac{\sigma_{\mu \nu}}{2 m_{N}} F_{2}\left(q^{2}\right)
\end{array} u\left(p_{i}\right)\right.
$$

Related to familiar Sech's electromagnetic form factors through

$$
\begin{aligned}
G_{E}\left(Q^{2}\right) & =F_{1}\left(Q^{2}\right)-\frac{Q^{2}}{\left(2 m_{N}\right)^{2}} F_{2}\left(Q^{2}\right) \\
G_{M}\left(Q^{2}\right) & =F_{1}\left(Q^{2}\right)+F_{2}\left(Q^{2}\right)
\end{aligned}
$$

Nucleon EM Form Factors

Two form factors

$$
\left\langle p_{f}\right| V_{\mu}\left|p_{i}\right\rangle=\bar{u}\left(p_{f}\right)\left[\begin{array}{cc}
\text { Dirac } & \text { Pauli } \\
\gamma_{\mu} F_{1}\left(q^{2}\right)+i q_{\nu} \frac{\sigma_{\mu \nu}}{2 m_{N}} F_{2}\left(q^{2}\right)
\end{array}\right] u\left(p_{i}\right)
$$

Related to familiar Sach's electromagnetic form factors through

$$
\begin{aligned}
G_{E}\left(Q^{2}\right) & =F_{1}\left(Q^{2}\right)-\frac{Q^{2}}{\left(2 m_{N}\right)^{2}} F_{2}\left(Q^{2}\right) \\
G_{M}\left(Q^{2}\right) & =F_{1}\left(Q^{2}\right)+F_{2}\left(Q^{2}\right) \\
& \mathbf{q}
\end{aligned}
$$

Nucleon EM Form Factors

Two form factors

$$
\left\langle p_{f}\right| V_{\mu}\left|p_{i}\right\rangle=\bar{u}\left(p_{f}\right)\left[\begin{array}{cc}
\text { Dirac } & \text { Pauli } \\
\gamma_{\mu} F_{1}\left(q^{2}\right)+i q_{\nu} \frac{\sigma_{\mu \nu}}{2 m_{N}} F_{2}\left(q^{2}\right)
\end{array}\right] u\left(p_{i}\right)
$$

Related to familiar Sach's electromagnetic form factors through

$$
\begin{aligned}
G_{E}\left(Q^{2}\right) & =F_{1}\left(Q^{2}\right)-\frac{Q^{2}}{\left(2 m_{N}\right)^{2}} F_{2}\left(Q^{2}\right) \\
G_{M}\left(Q^{2}\right)= & F_{1}\left(Q^{2}\right)+F_{2}\left(Q^{2}\right) \\
& \mathbf{q} \downarrow
\end{aligned}
$$

Nucleon EM Form Factors

Two form factors

$$
\left\langle p_{f}\right| V_{\mu}\left|p_{i}\right\rangle=\bar{u}\left(p_{f}\right)\left[\begin{array}{cc}
\text { Dirac } & \text { Pauli } \\
\gamma_{\mu} F_{1}\left(q^{2}\right)+i q_{\nu} \frac{\sigma_{\mu \nu}}{2 m_{N}} F_{2}\left(q^{2}\right)
\end{array} u\left(p_{i}\right)\right.
$$

Related to familiar Sach's electromagnetic form factors through

$$
\begin{aligned}
G_{E}\left(Q^{2}\right) & =F_{1}\left(Q^{2}\right)-\frac{Q^{2}}{\left(2 m_{N}\right)^{2}} F_{2}\left(Q^{2}\right) \\
G_{M}\left(Q^{2}\right) & =F_{1}\left(Q^{2}\right)+F_{2}\left(Q^{2}\right)
\end{aligned}
$$ Isovector: difference between p and n or

Isovector Form Factor

DWF valence/Asqtad sea

> J.D.Bratt et al (LHPC), arXiv:0810.1933

Data well described by dipole form - but example of notable finite-volume effect:

Nucleon Form Factors - III

Nucleon Axial-Vector Charge - I

Nucleon's axial-vector charge g_{A} : benchmark of lattice QCD
Precisely measured in
neutron β decay
$\langle N(p, S)| \bar{\psi} \gamma_{\mu} \gamma_{5} \psi|N(p, S)\rangle$

D. Alexandrou, Lattice 2010

Twisted mass QCD: volume corrected

Different actions, volumes

Structure Functions - I

$$
\begin{aligned}
Q^{2} & =-q^{2}=\left(k^{\prime}-k\right)^{2} \\
\nu & =q \cdot P / M \\
x & =\frac{Q^{2}}{2 M \nu}
\end{aligned}
$$

Bjorken limit:
$Q^{2} \longrightarrow \infty, \nu \longrightarrow \infty, x$ fixed

The structure functions are defined in terms of the hadronic tensor:

$$
W_{\mu \nu}=\frac{1}{4 \pi} \int d z e^{i q \cdot z}\langle N(p, S)| J_{\mu}(z) J_{\mu}(0)|N(p, S)\rangle
$$

Yields two unpolarized structure functions $F_{1}\left(x, Q^{2}\right)$ and $F_{2}\left(x, Q^{2}\right)$, and two polarized structure functions $g_{1}\left(x, Q^{2}\right)$ and $g_{2}\left(x, Q^{2}\right)$
Leading twist structure functions: product of currents at light-like $z^{2} \rightarrow 0$
In Euclidean lattice QCD, use OPE to write in terms of local operators whose matrix elements we can compute in Euclidean space

Structure Functions - II

Operators polarized

Capitani, this school

$$
O_{q}^{\left\{\mu_{1} \mu_{2} \ldots \mu_{n}\right\}}=\bar{\psi}_{q} \gamma_{5} \gamma^{\left\{\mu_{1}\right.} i D^{\mu_{2}} \ldots D^{\left.\mu_{n}\right\}} \psi_{q}
$$

Matrix elements related to moments of structure functions Wilson coeffs

Operator renormalization

$$
\left.\int_{0}^{1} d x x^{n-1} F_{2}\left(x, Q^{2}\right)=\sum_{q=u, d} C_{n}\left(\mu^{2} / Q^{2}\right), g(\mu)\right)\left\langle x^{n}\right\rangle(\mu)
$$

where

$$
\langle N(p)| O_{q}^{\mu_{1} \ldots \mu_{n+1}}|N(p)\rangle=\left\langle x^{n}\right\rangle(\mu)\left[p_{\mu_{1}} \ldots p_{\mu_{n+1}}\right]
$$

Structure Functions - II

Operators polarized

Capitani, this school

$$
O_{q}^{\left\{\mu_{1} \mu_{2} \ldots \mu_{n}\right\}}=\bar{\psi}_{q} \gamma_{5} \gamma^{\left\{\mu_{1}\right.} i D^{\mu_{2}} \ldots D^{\left.\mu_{n}\right\}} \psi_{q}
$$

Matrix elements related to moments of structure functions Wilson coeffs

Operator renormalization

$$
\left.\int_{0}^{1} d x x^{n-1} F_{2}\left(x, Q^{2}\right)=\sum_{q=u, d} C_{n}\left(\mu^{2} / Q^{2}\right), g(\mu)\right)\left\langle x^{n}\right\rangle(\mu)
$$

where

$$
\begin{gathered}
\langle N(p)| O_{q}^{\mu_{1} \ldots \mu_{n+1}}|N(p)\rangle=\left\langle x^{n}\right\rangle(\mu)\left[p_{\mu_{1}} \ldots p_{\mu_{n+1}}\right] \\
\mathcal{O}^{\mathrm{cont}}=Z \mathcal{O}^{\text {latt }}
\end{gathered}
$$

Structure Functions - II

Operators polarized

Capitani, this school

$$
O_{q}^{\left\{\mu_{1} \mu_{2} \ldots \mu_{n}\right\}}=\bar{\psi}_{q} \gamma_{5} \gamma^{\left\{\mu_{1}\right.} i D^{\mu_{2}} \ldots D^{\left.\mu_{n}\right\}} \psi_{q}
$$

Matrix elements related to moments of structure functions Wilson coeffs

Operator renormalization

$$
\left.\int_{0}^{1} d x x^{n-1} F_{2}\left(x, Q^{2}\right)=\sum_{q=u, d} C_{n}\left(\mu^{2} / Q^{2}\right), g(\mu)\right)\left\langle x^{n}\right\rangle(\mu)
$$

where

$$
\langle N(p)| O_{q}^{\mu_{1} \ldots \mu_{n+1}}|N(p)\rangle=\left\langle x^{n}\right\rangle(\mu)\left[p_{\mu_{1}} \ldots p_{\mu_{n+1}}\right]
$$

Perturbation theory

$$
\mathcal{O}^{\text {cont }}=Z \mathcal{O}^{\text {latt }}
$$

Structure Functions - II

Operators polarized

Capitani, this school

$$
O_{q}^{\left\{\mu_{1} \mu_{2} \ldots \mu_{n}\right\}}=\bar{\psi}_{q} \gamma_{5} \gamma^{\left\{\mu_{1}\right.} i D^{\mu_{2}} \ldots D^{\left.\mu_{n}\right\}} \psi_{q}
$$

Matrix elements related to moments of structure functions Wilson coeffs

$$
\left.\int_{0}^{1} d x x^{n-1} F_{2}\left(x, Q^{2}\right)=\sum_{q=u, d} C_{n}\left(\mu^{2} / Q^{2}\right), g(\mu)\right)\left\langle x^{n}\right\rangle(\mu)
$$

where

$$
\langle N(p)| O_{q}^{\mu_{1} \ldots \mu_{n+1}}|N(p)\rangle=\left\langle x^{n}\right\rangle(\mu)\left[p_{\mu_{1}} \ldots p_{\mu_{n+1}}\right]
$$

Perturbation theory

$$
\mathcal{O}^{\text {cont }}=Z \mathcal{O}^{\text {latt }} \text { Non-perturbatively }
$$

Quark Momentum Fraction - I

LHPC, 2010: DWF valence, Asqtad sea

Heavy-Baryon Ch PT (HBChPT)
$\langle x\rangle_{u-d}=C\left[1-\frac{3 g_{A}^{2}+1}{\left(4 \pi F_{\pi}\right)^{2}} m_{\pi}^{2} \ln \left(\frac{m_{\pi}^{2}}{\pi^{2}}\right)\right]+e\left(\mu^{2}\right) \frac{m_{\pi}^{2}}{\left(4 \pi F_{\pi}\right)^{2}}$

Quark Momentum Fraction - II

RBC/UKQCD 2010: DWF

- Need to go to approach physical lightquark masses: chiral behavior

Quark Momentum Helicities

LHPC, 2010: DWF valence, Asqtad sea

HBChPT
RBC/UKQCD 2010: DWF

- Need to go to approach physical lightquark masses: chiral behavior

Moments of Parton Distributions

Moments of Parton Distributions

$$
x\left(u_{v}(x)-d_{v}(x)\right)=a x^{b}(1-x)^{c}(1+\varepsilon \sqrt{x}+\gamma x)
$$

We are computing moments

$$
O_{q}^{\left\{\mu_{1} \mu_{2} \ldots \mu_{n}\right\}}=\bar{\psi}_{q} \gamma_{5} \gamma^{\left\{\mu_{1}\right.} i D^{\mu_{2}} \ldots D^{\left.\mu_{n}\right\}_{\psi}} \psi_{q}
$$

Do not have full Lorentz symmetry

Different Regimes in Different Experiments

Form Factors

 transverse quark distribution inCoordinate space

Different Regimes in Different Experiments

Form Factors

 transverse quark distribution in Coordinate space
Structure Functions

longitudinal
quark distribution
in momentum space

Different Regimes in Different Experiments

Form Factors transverse quark distribution in Coordinate space

GPDs
Fully-correlated quark distribution in both coordinate and momentum space

Generalized Parton Distributions (GPDs)

D. Muller et al (1994), X. Ji \& A. Radyushkin (1996)

Generalized Parton Distributions (GPDs)

Generalized Parton Distributions (GPDs)

Generalized Parton Distributions (GPDs)

ξ is skewness

Moments of GPD's

- Matrix elements of light-cone correlation functions

$$
\mathcal{O}(x)=\int \frac{d \lambda}{4 \pi} e^{i \lambda x} \bar{\psi}\left(-\frac{\lambda}{2} n\right) n P e^{-i g \int_{\lambda / 2}^{\lambda / 2} d \alpha n \cdot A(\alpha n)} \psi\left(\frac{\lambda}{2} n\right)
$$

- Expand $O(x)$ around light-cone

$$
O_{q}^{\left\{\mu_{1} \mu_{2} \ldots \mu_{n}\right\}}=\bar{\psi}_{q} \gamma^{\left\{\mu_{1}\right.} i D^{\mu_{2}} \ldots D^{\left.\mu_{n}\right\}} \psi_{q}
$$

- Off-forward matrix element

$$
\begin{aligned}
\left\langle P^{\prime}\right| O_{q}^{\left\{\mu_{1} \ldots \mu_{n}\right\}}|P\rangle & \simeq \int d x x^{n-1}[H(x, \xi, t), E(x, \xi, t)] \\
& \longrightarrow A_{n i}(t), B_{n i}(t), C_{n}(t), \tilde{A}_{n i}(t), \tilde{B}_{n i}(t), \tilde{C}_{n}(t)
\end{aligned}
$$

LHPC, QCDSF, 2003
Co-efficient of ξ^{i}

Friday, June 24, 2011

Origin of Nucleon Spin

$$
\begin{aligned}
J^{q} & =1 / 2\left(A_{20}^{q}(t=0)+B_{20}^{q}(t-0)\right) \\
\Delta \Sigma^{q} / 2 & =\tilde{A}_{10}^{q}(t=0) / 2 \\
\frac{1}{2} & =\frac{1}{2} \Delta \Sigma^{u+d}+L^{u+d}+J^{g}
\end{aligned}
$$

LHPC, Haegler et al., Phys. Rev. D 77, 094502 (2008); arXiv.1001.3620

HERMES, PRD75 (2007)

Friday, June 24, 2011

Origin of Nucleon Spin

$$
\begin{aligned}
J^{q} & =1 / 2\left(A_{20}^{q}(t=0)+B_{20}^{q}(t-0)\right) \\
\Delta \Sigma^{q} / 2 & =\tilde{A}_{10}^{q}(t=0) / 2
\end{aligned}
$$

LHPC, Haegler et al., Phys. Rev. D 77, 094502

$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma^{u+d}+L^{u+d}+J^{g}
$$ (2008); arXiv.1001.3620

Total orbital angular momentum carried by quarks small

HERMES, PRD75 (2007)

Friday, June 24, 2011

Origin of Nucleon Spin

$$
J^{q}=1 / 2\left(A_{20}^{q}(t=0)+B_{20}^{q}(t-0)\right)
$$

$$
\Delta \Sigma^{q} / 2=\tilde{A}_{10}^{q}(t=0) / 2
$$

$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma^{u+d}+L^{u+d}+J^{g}
$$

HERMES, PRD75 (2007)

LHPC, Haegler et al., Phys. Rev. D 77, 094502 (2008); arXiv.1001.3620

Total orbital angular momentum carried by quarks small Orbital angular momentum carried by quark flavors substantial

Friday, June 24, 2011

Origin of Nucleon Spin - II

Transverse Distribution - I

- t-dependence \leftrightarrow impact parameter

$$
A_{n 0}^{q}\left(-\vec{\Delta}_{\perp}^{2}\right)=\int d^{2} b_{\perp} e^{i \vec{\Delta}_{\perp} \cdot \vec{b}_{\perp}} \int_{-1}^{1} d x x^{n-1} q\left(x, \vec{b}_{\perp}\right)
$$

$\underset{\tilde{\sim}, ~}{\operatorname{GPD}}$
H, H, E, E

Compare to phenomenological models

Decrease slope : decreasing transverse size as x!1 Burkardt

Transverse Distribution - II

Lattice results consistent with narrowing of transverse size with increasing x

Flattening of GFFs with increasing n

Summary: Lecture II

- Lattice QCD can describe describe hadron structure in terms in terms of fundamental parton degrees of freedom
- Major effort: approach the physical light-quark masses to gain control over chiral behavior - Extrapolation to Interpolation
- Important role: lattice QCD + expt together determining eg GPDs in a way neither can alone
- Next time
- New developments: TMDs
- Flavor-singlet structure
- Structure of excited states

