David Richards Jefferson Laboratory

StrongNet 2011, Bielefeld

Friday, June 24, 2011

Thomas Jefferson National Accelerator Facility

Plan of Lectures

- Lecture 2 Hadron Structure I
 - What are we studying, and how do we encapsulate it?
 - Paradigm: electromagnetic form factor of pion
 - Nucleon EM form factors
 - Polarized and unpolarized structure functions
 - Three-dimensional imaging of hadrons: Generalized Parton Distributions
- Lecture 3: Hadron Structure II
 - Recent advances: Transverse-Momentum-Dependent distributions
 - Flavor-singlet contributions: role of sea quarks and gluons
 - Structure of excited states: radiative transitions between mesons

Friday, June 24, 2011

Thomas Jefferson National Accelerator Facility

How are

- charge and currents
- momentum
- spin and angular momentum

apportioned amongst the quarks and gluons that make up a hadron?

How are

- charge and currents
- momentum
- spin and angular momentum

apportioned amongst the quarks and gluons that make up a hadron?

Encapsulated in

- electromagnetic form factors
- unpolarized structure functions and Transverse-momentum-dependent distributions (TMDs)
- polarized structure functions, Generalized Parton Distributions (GPDs), TMDs

How are

- charge and currents
- momentum
- spin and angular momentum

apportioned amongst the quarks and gluons that make up a hadron?

Encapsulated in

- electromagnetic form factors
- unpolarized structure functions and Transverse-momentum-dependent distributions (TMDs)
- polarized structure functions, Generalized Parton Distributions (GPDs), TMDs

Lattice QCD can either compute all of these or constrain them!

Technique: calculation of hadronic matrix elements - analogous to WME.

How are

- charge and currents
- momentum
- spin and angular momentum

apportioned amongst the quarks and gluons that make up a hadron?

Encapsulated in

- electromagnetic form factors
- unpolarized structure functions and Transverse-momentum-dependent distributions (TMDs)
- polarized structure functions, Generalized Parton Distributions (GPDs), TMDs

Lattice QCD can either compute all of these or constrain them!

Technique: calculation of hadronic matrix elements - analogous to WME.

To paraphrase Nathan Isgur: "Tassos Vladikas wants to eliminate QCD, I want to understand it!"

Paradigm: Pion EM form factor

$$-Q^2 = [E_{\pi}(\vec{p}_f) - E_{\pi}(\vec{p}_i)]^2 - (\vec{p}_f - \vec{p}_i)^2$$

Anatomy of a Matrix Element Calculation - I

Pion Interpolating Operator

$$\begin{aligned}
\phi(x) &= \bar{d}(x)\gamma_5 u(x) \\
\phi^{\dagger}(x) &= -\bar{u}(x)\gamma_5 d(x) \\
V_{\mu}(x) &= e_u \bar{u}(x)\gamma_{\mu} u(x) + e_d \bar{d}(x)\gamma_{\mu} d(x).
\end{aligned}$$

$$\Gamma_{\pi^+\mu\pi^+}(t_f,t;\vec{p},\vec{q}) = \sum_{\vec{x},\vec{y}} \langle 0|\phi(\vec{x},t_f)V_\mu(\vec{y},t)\phi^\dagger(\vec{0},0)|0\rangle e^{-i\vec{p}\cdot\vec{x}}e^{-i\vec{q}\cdot\vec{y}},$$

Thomas Jefferson National Accelerator Facility

Anatomy of a Matrix Element Calculation - I

Pion Interpolating Operator

$$\begin{aligned}
\phi(x) &= \bar{d}(x)\gamma_5 u(x) \\
\phi^{\dagger}(x) &= -\bar{u}(x)\gamma_5 d(x) \\
V_{\mu}(x) &= e_u \bar{u}(x)\gamma_{\mu} u(x) + e_d \bar{d}(x)\gamma_{\mu} d(x).
\end{aligned}$$

$$\Gamma_{\pi^{+}\mu\pi^{+}}(t_{f},t;\vec{p},\vec{q}) = \sum_{\vec{x},\vec{y}} \langle 0|\phi(\vec{x},t_{f})V_{\mu}(\vec{y},t)\phi^{\dagger}(\vec{0},0)|0\rangle e^{-i\vec{p}\cdot\vec{x}}e^{-i\vec{q}\cdot\vec{y}},$$

 $V_{\mu}^{\text{cont}} = Z_V V_{\mu}^{\text{lattice}}; Z_V = 1$ for conserved current

Jefferson Lab

Thomas Jefferson National Accelerator Facility

Anatomy of a Matrix Element Calculation - II

Construction of three-point function

Introduce quark propagators

$$U^{ij}_{\alpha\beta}(x,y) = \langle u^i_{\alpha}(x)\bar{u}^j_{\beta}(y)\rangle$$
$$D^{ij}_{\alpha\beta}(x,y) = \langle d^i_{\alpha}(x)\bar{d}^j_{\beta}(y)\rangle,$$

Then U-contribution to three-point function given by

 $\Gamma^{U}_{\pi^{+}\mu\pi^{+}} = e_{u} \sum_{\vec{x},\vec{y}} e^{-i\vec{p}\cdot\vec{x}-i\vec{q}\cdot\vec{y}} \text{Tr} \left\{ \gamma_{5}U(x,y)\gamma_{\mu}U(y,0)\gamma_{5}D(0,x) \right\}$ Quark propagator: $G^{ij}_{\alpha\beta}(x,y) = \langle q^{i}_{\alpha}(x)\bar{q}^{j}_{\beta}(y) \rangle$ satisfies

$$M_{\alpha\gamma}^{ik}(x,z)G_{\gamma\beta}^{kj}(z,y) = \delta_{ij}\delta_{\alpha\beta}\delta_{xy}; \quad G(y,x) = \gamma_5 G(x,y)^{\dagger}\gamma_5$$

Introduce Sequential Quark Propagator $H^{u}(y,0;t_{f},\vec{p}) = \sum_{\vec{x}} e^{i\vec{p}\cdot\vec{x}}U(y,x)\gamma_{5}D(x,0)\gamma_{5}$ Satisfies: $M(z,y)H^{u}(y,0;t_{f},\vec{p}) = \delta_{t_{z},t_{f}}e^{i\vec{p}\cdot\vec{z}}\gamma_{5}D(z,0)\gamma_{5}$ Finally: $\Gamma^{U}_{\pi^{+}u\pi^{+}} = e_{u}\sum_{\vec{y}}e^{-i\vec{q}\cdot\vec{y}}\operatorname{Tr}\left\{H^{u}(y,0;t_{f},\vec{p})^{\dagger}\gamma_{5}\gamma_{\mu}U(y,0)\gamma_{5}\right\}$

Anatomy of a Matrix Element Calculation - II

$$\Gamma_{\pi^+\mu\pi^+}(t_f,t;\vec{p},\vec{q}) = \sum_{\vec{x},\vec{y}} \langle 0|\phi(\vec{x},t_f)V_{\mu}(\vec{y},t)\phi^{\dagger}(\vec{0},0)|0\rangle e^{-i\vec{p}\cdot\vec{x}}e^{-i\vec{q}\cdot\vec{y}},$$

Resolution of unity – insert states

 $\langle 0 \mid \phi(0) \mid \pi, \vec{p} + \vec{q} \rangle \langle \pi, \vec{p} + \vec{q} \mid V_{\mu}(0) \mid \pi, \vec{p} \rangle \langle \pi, \vec{p} \mid \phi^{\dagger} \mid 0 \rangle e^{-E(\vec{p}(t-t_i)} e^{-E(\vec{p}+\vec{q})(t_f-t)})$

Thomas Jefferson National Accelerator Facility

Pion Form Factor

LHPC, Bonnet et al, Phys.Rev. D72 (2005) 054506

 $F(Q^2) = \frac{1}{1 + Q^2 / M_{\rm VMD}^2}$

Thomas Jefferson National Accelerator Facility

Pion Form Factor

Charge radius Nguyen et al, 1102.3652

$$\langle r^2 \rangle = 6 \left. \frac{dF(q^2)}{dq^2} \right|_{q^2 = 0}$$

LHPC, Bonnet et al, Phys.Rev. D72 (2005) 054506

Thomas Jefferson National Accelerator Facility

Two form factors

$$\langle p_f \mid V_\mu \mid p_i \rangle = \bar{u}(p_f) \left[\gamma_\mu F_1(q^2) + iq_\nu \frac{\sigma_{\mu\nu}}{2m_N} F_2(q^2) \right] u(p_i)$$

Related to familiar Sach's electromagnetic form factors through

Two form factors

$$\langle p_f \mid V_\mu \mid p_i \rangle = \bar{u}(p_f) \left[\gamma_\mu F_1(q^2) + iq_\nu \frac{\sigma_{\mu\nu}}{2m_N} F_2(q^2) \right] u(p_i)$$

Related to familiar Sach's electromagnetic form factors through

Two form factors

$$\langle p_f \mid V_\mu \mid p_i \rangle = \bar{u}(p_f) \left[\gamma_\mu F_1(q^2) + iq_\nu \frac{\sigma_{\mu\nu}}{2m_N} F_2(q^2) \right] u(p_i)$$

Related to familiar Sach's electromagnetic form factors through

Two form factors

$$\langle p_f \mid V_\mu \mid p_i \rangle = \bar{u}(p_f) \left[\gamma_\mu F_1(q^2) + iq_\nu \frac{\sigma_{\mu\nu}}{2m_N} F_2(q^2) \right] u(p_i)$$

Related to familiar Sach's electromagnetic form factors through

Two form factors

$$\langle p_f \mid V_\mu \mid p_i \rangle = \bar{u}(p_f) \left[\gamma_\mu F_1(q^2) + iq_\nu \frac{\sigma_{\mu\nu}}{2m_N} F_2(q^2) \right] u(p_i)$$

Related to familiar Sach's electromagnetic form factors through

Two form factors

$$\langle p_f \mid V_\mu \mid p_i \rangle = \bar{u}(p_f) \left[\gamma_\mu F_1(q^2) + iq_\nu \frac{\sigma_{\mu\nu}}{2m_N} F_2(q^2) \right] u(p_i)$$

Related to familiar Sach's electromagnetic form factors through

Thomas Jefferson National Accelerator Facility

Nucleon Form Factors - III

Thomas Jefferson National Accelerator Facility

Nucleon Axial-Vector Charge - I

Nucleon's axial-vector charge g_A*: benchmark of lattice* QCD

Precisely measured in neutron β decay

 $\langle N(p,S) \mid \bar{\psi}\gamma_{\mu}\gamma_{5}\psi \mid N(p,S) \rangle$

D. Alexandrou, Lattice 2010

Different actions, volumes

Bjorken limit: $Q^2 \longrightarrow \infty, \nu \longrightarrow \infty, x$ fixed

The structure functions are defined in terms of the hadronic tensor:

$$W_{\mu\nu} = \frac{1}{4\pi} \int dz e^{iq \cdot z} \langle N(p,S) \mid J_{\mu}(z) J_{\mu}(0) \mid N(p,S) \rangle$$

Yields two unpolarized structure functions $F_1(x,Q^2)$ and $F_2(x,Q^2)$, and two polarized structure functions $g_1(x,Q^2)$ and $g_2(x,Q^2)$

Leading twist structure functions: product of currents at light-like $z^2 \rightarrow 0$

In Euclidean lattice QCD, use OPE to write in terms of local operators whose matrix elements we can compute in Euclidean space

Quark Momentum Fraction - I

LHPC, 2010: DWF valence, Asqtad sea

Quark Momentum Fraction - II

RBC/UKQCD 2010: DWF

• Need to go to approach physical lightquark masses: chiral behavior

Quark Momentum Helicities

LHPC, 2010: DWF valence, Asqtad sea

Thomas Jefferson National Accelerator Facility

We are computing moments

 $O_q^{\{\mu_1\mu_2...\mu_n\}} = \bar{\psi}_q \gamma_5 \gamma^{\{\mu_1} i D^{\mu_2} \dots D^{\mu_n\}} \psi_q$

We are computing moments

$$O_q^{\{\mu_1\mu_2...\mu_n\}} = \bar{\psi}_q \gamma_5 \gamma^{\{\mu_1} i D^{\mu_2} \dots D^{\mu_n\}} \psi_q$$

Do not have full Lorentz symmetry

We are computing moments

 $O_q^{\{\mu_1\mu_2...\mu_n\}} = \bar{\psi}_q \gamma_5 \gamma^{\{\mu_1} i D^{\mu_2} \dots D^{\mu_n\}} \psi_q$

Do not have full Lorentz symmetry

n >= 5: operator mixing

Thomas Jefferson National Accelerator Facility

Different Regimes in Different Experiments

Form Factors transverse quark distribution in Coordinate space

Thomas Jefferson National Accelerator Facility

Different Regimes in Different Experiments

Form Factors transverse quark distribution in Coordinate space

Structure Functions longitudinal quark distribution in momentum space

Jefferson Lab

Thomas Jefferson National Accelerator Facility

Different Regimes in Different Experiments

Form Factors transverse quark distribution in Coordinate space

Structure Functions longitudinal quark distribution in momentum space

GPDs

Fully-correlated quark distribution in both coordinate and momentum space

ξ is *skewness*

Moments of GPD's

• Matrix elements of light-cone correlation functions

$$\mathcal{O}(x) = \int \frac{d\lambda}{4\pi} e^{i\lambda x} \bar{\psi}\left(-\frac{\lambda}{2}n\right) n P e^{-ig \int_{\lambda/2}^{\lambda/2} d\alpha \, n \cdot A(\alpha n)} \psi\left(\frac{\lambda}{2}n\right)$$

- Expand *O(x)* around light-cone $O_q^{\{\mu_1\mu_2...\mu_n\}} = \bar{\psi}_q \gamma^{\{\mu_1} i D^{\mu_2} \dots D^{\mu_n\}} \psi_q$
- Off-forward matrix element

$$\langle P'|O_q^{\{\mu_1\dots\mu_n\}}|P\rangle \simeq \int dx \, x^{n-1}[H(x,\xi,t), E(x,\xi,t)]$$

 $\longrightarrow A_{ni}(t), B_{ni}(t), C_n(t), \tilde{A}_{ni}(t), \tilde{B}_{ni}(t), \tilde{C}_n(t)$
 LHPC, QCDSF, 2003
 Co-efficient of ξ^i

Origin of Nucleon Spin

LHPC, Haegler et al., Phys. Rev. D 77, 094502 (2008); arXiv.1001.3620

Thomas Jefferson National Accelerator Facility

Origin of Nucleon Spin

Thomas Jefferson National Accelerator Facility

Origin of Nucleon Spin

Thomas Jefferson National Accelerator Facility

Origin of Nucleon Spin - II

Jefferson Lab

Thomas Jefferson National Accelerator Facility

Transverse Distribution - I

Thomas Jefferson National Accelerator Facility

Transverse Distribution - II

Lattice results consistent with narrowing of transverse size with increasing x

LHPC, Haegler et al., Phys. Rev. D 77, 094502 (2008)

Flattening of GFFs with increasing n

Thomas Jefferson National Accelerator Facility

Summary: Lecture II

- Lattice QCD can describe describe hadron structure in terms in terms of fundamental parton degrees of freedom
- Major effort: approach the physical light-quark masses to gain control over chiral behavior - Extrapolation to Interpolation
- Important role: lattice QCD + expt together determining eg GPDs in a way neither can alone
- Next time
 - New developments: TMDs
 - Flavor-singlet structure
 - Structure of excited states

