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Plan of Lectures
• Lecture 2 - Hadron Structure I

– What are we studying, and how do we encapsulate it?
– Paradigm: electromagnetic form factor of pion
– Nucleon EM form factors
– Polarized and unpolarized structure functions
– Three-dimensional imaging of hadrons: Generalized Parton 

Distributions
• Lecture 3: Hadron Structure - II

– Recent advances: Transverse-Momentum-Dependent distributions
– Flavor-singlet contributions: role of sea quarks and gluons
– Structure of excited states: radiative transitions between mesons
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Generalized Parton Distributions (GPDs)

D. Muller et al (1994), X. Ji & A. 
Radyushkin (1996)

• Matrix elements of  light-cone correlation functions

• Expand O(x) around light-cone

• Off-forward matrix element

LHPC, QCDSF, 2003

Co-efficient of ξi
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GPDs and Orbital Angular Momentum
• Form factors of energy momentum tensor - quark and gluon 

angular momentum
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“q̄γµDνq”

X.D. Ji, PRL 78, 610 (1997)
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∆Σq + Lq
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Decomposition
• Gauge-invariant
• Renormalization-scale dependent
• Handle on Quark orbital angular momentum

Mathur et al., Phys.Rev. D62 (2000) 114504

gluon operators - see later
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Origin of Nucleon Spin

HERMES, PRD75 (2007)

• Total orbital angular momentum 
carried by quarks small
• Orbital angular momentum carried 
by individual quark flavours 
substantial. LHPC, Haegler et al., 

Phys. Rev. D 77, 094502 
(2008); arXiv.1001.3620
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Disconnected contributions neglected.
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Origin of Nucleon Spin - II

Ph. Hägler, MENU 2010, W&M 19

!"#$!% &'()*+&'$,-."/'

LHPC +/0-12344356784 (this work)

LHPC PRD `08 0705.4295

QCDSF (Ohtani et al.) 0710.1534

Goloskokov&Kroll EPJC`09 0809.4126

Wakamatsu 0908.0972

DiFeJaKr EPJC `05 hep-ph/0408173

(Myhrer&)Thomas PRL`08 0803.2775

9!:+;$<+**$=$>?:@4AB$<C?DCE$!<C>@4FG
Ph. Hagler, Menu 2010

p-DVCS (HERMES)

n-DVCS (Hall A)
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1

2
= JQ + JG

1

2
=

1

2
∆Σ+∆G+ L

Lg = JG −∆G

Can we separate gluon orbital + spin?

• Can we go further?

7

JI’s sum rule

We also have: Jaffe, Manohar, NPB337, 509

Cannot further decompose

Light-cone 
decomposition

Jaffe, hep-ph/0008038
Burkardt, Miller, Nowak, arXiv:
0812.2208

7Saturday, June 25, 2011



Parametrizations of GPDs

Comparison with Diehl et al, 
hep-ph/0408173

Provide phenomenological guidance for 
GPD’s
–  CTEQ, Nucleon Form Factors, 

Regge 

Important Role for LQCD

Ratio of form factors agrees 
with phenomenological model - 
without fits
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O
µν
T = q̄σµνγ5q

Transverse Spin in Nucleon
Measuring generalized form factors corresponding to tensor 
current gives provides information on transverse spin of nucleon 

2

FIG. 1: Results for the generalized form factors BT (n=1,2)0(t).
The corresponding p-pole parametrizations are shown by the
shaded error bands.

bj
⊥

εjisi
⊥

and bj
⊥

εjiSi
⊥

. The fourth line in Eq.(1) corre-
sponds to a quadrupole term. The (derivatives of the)
three GFFs Bn0(b⊥), BTn0(b⊥) and ÃTn0(b⊥) thus de-
termine how strongly the orbital symmetry in the trans-
verse plane is distorted by the dipole and the quadrupole
terms.

The GFFs An0(t), ATn0(t), . . . parametrize off-forward
nucleon matrix elements of certain local quark operators.
For the lowest moment n = 1 one finds A10(t) = F1(t),
B10(t) = F2(t) and AT10(t) = gT (t) where F1, F2 and
gT are the Dirac, Pauli and tensor nucleon form factors,
respectively. A concrete example of the corresponding
parametrization for n = 1 is given by [10, 11]

〈P ′Λ′|Oµν
T |PΛ〉 = u(P ′, Λ′)

{
σµνγ5

(
AT10(t)

−
t

2m2
ÃT10(t)

)
+

εµναβ∆αγβ

2m
BT10(t)

−
∆[µσν]αγ5∆α

2m2
ÃT10(t)

}
u(P, Λ) , (3)

where Oµν
T = q̄σµνγ5q is the lowest element of the tower

of local leading twist tensor (quark helicity flip) oper-
ators. Parametrizations for higher moments n ≥ 1 in
terms of tensor GFFs and their relation to GPDs are
given in [11]. As it is very challenging to access tensor
GPDs in experiment [12], input from lattice QCD calcu-
lations is crucial in this case.

Simulation results.—Our lattice calculations are based
on configurations generated with nf = 2 dynamical non-

FIG. 2: Study of discretization errors of the tensor charge
AT10(t=0) = gT (t=0) for up- and down-quarks at a pion mass
of mπ ≈ 600 MeV.

perturbatively O(a) improved Wilson fermions and Wil-
son gluons. Simulations have been performed at four
different couplings β = 5.20, 5.25, 5.29, 5.40 with up
to five different κ = κsea values per β, on lattices of
V × T = 163 × 32 and 243 × 48. The lattice spacings
are below 0.1 fm, the range of pion masses extends down
to 400 MeV and the spatial volumes are as large as
(2.1 fm)3. The lattice scale a in physical units has been
set using a Sommer scale of r0 = 0.467 fm [13, 14]. The
computationally demanding disconnected contributions
are not included. We expect, however, that they are
small for the tensor GFFs [15]. We use non-perturbative
renormalization [16] to transform the lattice results to
the MS scheme at a scale of 4 GeV2. The calculation
of GFFs in lattice QCD follows standard methods (see,
e.g., [17–19]).

In Fig. 1, we show as an example results for the GFFs

B
u,d
T (n=1,2)0(t), corresponding to the lowest two moments

n = 1, 2 of the GPD E
u,d
T (x, ξ, t) [20], as a function of

the momentum transfer squared t, for a pion mass of
mπ ≈ 600 MeV, a lattice spacing of a ≈ 0.08 fm and
a volume of V ≈ (2 fm)3. For the extrapolation to the
forward limit (t = 0) and in order to get a functional
parametrization of the lattice results, we fit all GFFs us-
ing a p-pole ansatz F (t) = F0/(1 − (t/(p m2

p))
p with the

three parameters F0 = F (t=0), mp and p for each GFF.
We consider this ansatz [21] to be more physical than
previous ones as the rms-radius 〈r2〉1/2 ∝ m−1

p is inde-
pendent of p. It turns out that in most cases the statistics
is not sufficient to determine all three parameters from
a single fit to the lattice data. For a given generalized
form factor, we therefore fix the power p first, guided by
fits to selected datasets, and subsequently determine the
forward value F0 and the p-pole mass mp by a full fit to
the lattice data. Some GFFs show a quark flavor depen-
dence of the value of p, which has already been observed
in [22] for the Dirac form factor. For the examples in
Fig. 1, we find for u-quarks B

u
T10(t=0) = 3.34(8) with

mp = 0.907(75) GeV, B
u
T20(t=0) = 0.750(32) with mp =

1.261(40) GeV and for d-quarks B
d
T10(t=0) = 2.06(6)

with mp = 0.889(48) GeV, B
d
T20(t=0) = 0.473(22) with

QCDSF, PRL, 0612021

3

FIG. 3: Pion mass dependence of the generalized form factors
BT (n=1,2)0(t=0) for up-quarks. The shaded error bands show
extrapolations to the physical pion mass based on an ansatz
linear in m2

π. The symbols are as in Fig. 2.

mp = 1.233(27) GeV (all for p = 2.5). We have checked
that the final p-pole parametrizations only show a mild
dependence on the value of p chosen prior to the fit. In
order to see to what extent our calculation is affected
by discretization errors, we plot as an example in Fig. 2
the tensor charge AT10(t=0) = gT (t=0) versus the lat-
tice spacing squared, for a fixed mπ ≈ 600 MeV. The
discretization errors seem to be smaller than the statis-
tical errors, and we will neglect any dependence of the
GFFs on a in the following. Taking our investigations of
the volume dependence of the nucleon mass and the axial
vector form factor gA [13, 23] as a guide, we estimate that
the finite volume effects for the lattices and observables
studied in this work are small and may be neglected.

As an example of the pion mass dependence of our
results, we show in Fig. 3 the GFFs B

u
T (n=1,2)0(t=0) ver-

sus m2
π. Unfortunately we cannot expect chiral pertur-

bation theory predictions [24] to be applicable to most
of our lattice data points, for which the pion mass is
still rather large. To get an estimate of the GFFs
at the physical point, we extrapolate the forward mo-
ments and the p-pole masses using an ansatz linear in
m2

π. The results of the corresponding fits are shown as
shaded error bands in Fig. 3. At mphys

π = 140 MeV,

we find B
u
T10(t=0) = 2.93(13), B

d
T10(t=0) = 1.90(9) and

B
u
T20(t=0) = 0.420(31), B

d
T20(t=0) = 0.260(23). These

comparatively large values already indicate a significant
impact of this tensor GFF on the transverse spin struc-
ture of the nucleon, as will be discussed below. Since the
(tensor) GPD ET can be seen as the analogue of the (vec-
tor) GPD E, we may define an anomalous tensor mag-
netic moment [7], κT ≡

∫
dxET (x, ξ, t=0) = BT10(t=0),

similar to the standard anomalous magnetic moment
κ =

∫
dxE(x, ξ, t=0) = B10(t=0) = F2(t=0). While the

u- and d-quark contributions to the anomalous magnetic
moment are both large and of opposite sign, κup

exp ≈ 1.67
and κdown

exp ≈ −2.03, we find large positive values for
the anomalous tensor magnetic moment for both flavors,

FIG. 4: Lowest moment (n = 1) of the densities of un-
polarized quarks in a transversely polarized nucleon (left)
and transversely polarized quarks in an unpolarized nucleon
(right) for up (upper plots) and down (lower plots) quarks.
The quark spins (inner arrows) and nucleon spins (outer ar-
rows) are oriented in the transverse plane as indicated.

κup
T,latt ≈ 3.0 and κdown

T,latt ≈ 1.9. Similarly large positive
values have been obtained in a recent model calculation
[25]. Large Nc considerations predict κup

T ≈ κdown
T [26].

Let us now discuss our results for ρn(b⊥, s⊥, S⊥) in
Eq. (1). For the numerical evaluation we Fourier trans-
form the p-pole parametrization to impact parameter
(b⊥) space. The parametrizations of the impact param-
eter dependent GFFs then depend only on the p-pole
masses mp and the forward values F0. Before showing
our final results, we would like to note that the mo-
ments of the transverse spin density can be written as
sum/difference of the corresponding moments for quarks
and antiquarks, ρn = ρn

q + (−1)nρn
q , because vector and

tensor operators transform identically under charge con-
jugation. Although we expect contributions from anti-
quarks to be small in general, only the n-even moments
must be strictly positive. In Fig. 4, we show the lowest
moment n = 1 of spin densities for up and down quarks
in the nucleon. Due to the large anomalous magnetic
moments κu,d, we find strong distortions for unpolarized
quarks in transversely polarized nucleons (left part of the
figure). This has already been discussed in [6], and can
serve as a dynamical explanation of the experimentally
observed Sivers-effect. Remarkably, we find even stronger
distortions for transversely polarized quarks s⊥ = (sx, 0)
in an unpolarized nucleon, as can be seen on the right
hand side of Fig. 4. The densities for up and for down
quarks in this case are both deformed in positive by direc-
tion due to the large positive values for the tensor GFFs

B
u
T10(t=0) and B

d
T10(t=0), in strong contrast to the dis-

tortions one finds for unpolarized quarks in a transversely

Lowest moment BT10(t)
Impact parameter bT ↔ Fourier transform of t
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ΦΓ =

�
d(n · k)

�
d4l

2(2π)4
e−ik·lΦ̃Γ(l;P, S)

=

�
d(n · k)

�
d4l

2(2π)4
e−ik·l�P, S | q̄(l)ΓUq(0) | P, S�

Transverse-Momentum Distributions

TUM/T39-09-08, MIT-CTP 4056

Intrinsic quark transverse momentum in the nucleon from lattice QCD

Ph. Hägler,1 B.U. Musch,1 J.W. Negele,2 and A. Schäfer3
1Institut für Theoretische Physik T39, Physik-Department der TU München, 85747 Garching, Germany∗

2Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
3Institut für Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany

(Dated: December 22, 2009)

A better understanding of transverse momentum (k⊥-) dependent quark distributions in a hadron
is needed to interpret several experimentally observed large angular asymmetries and to clarify the
fundamental role of gauge links in non-abelian gauge theories. Based on manifestly non-local gauge
invariant quark operators we introduce process-independent k⊥-distributions and study their prop-
erties in lattice QCD. We find that the longitudinal and transverse momentum dependence approx-
imately factorizes, in contrast to the behavior of generalized parton distributions. The resulting
quark k⊥-probability densities for the nucleon show characteristic dipole deformations due to cor-
relations between intrinsic k⊥ and the quark or nucleon spin. Our lattice calculations are based on
Nf=2+1 mixed action propagators of the LHP collaboration.

Introduction.— Already 30 years ago, it has been
noted that intrinsic transverse momentum, k⊥, of par-
tons gives rise to azimuthal asymmetries in unpolarized
semi-inclusive deep inelastic scattering (SIDIS), for ex-
ample e−+p→e−+π+X, nowadays known as the Cahn
effect [1]. Since then, significant progress has been made
in understanding intrinsic k⊥ effects and their relation
to the eikonal phases that quark fields acquire in hadron
scattering processes due to initial and final state inter-
actions [2]. The eikonal phases, given by gauge links
(Wilson lines), turn out to be process-dependent and lead
to, e.g., the Sivers and Collins asymmetries [3, 4] in po-
larized SIDIS, which have attracted a lot of attention
and were already observed in experiments at HERMES,
COMPASS and Jefferson Lab [5]. Theoretically, these

!k

u

d

zP

z

zxP

u

yk

xk

FIG. 1: Illustration
of the transverse mo-
mentum distribution of
quarks in the proton.

can be described in the
framework of QCD factoriza-
tion using transverse momen-
tum dependent parton distri-
bution functions (tmdPDFs)
[4, 6], an approach that goes
beyond the usual collinear
approximation and operator
product expansion involving
(moments of) PDFs. In addi-
tion to their phenomenolog-
ical importance, tmdPDFs
provide essential information
about the internal structure
of hadrons in the form of
probability densities in the transverse momentum plane,
ρ(x,k⊥), as illustrated in Fig. 1 [7], where x is the lon-
gitudinal momentum fraction carried by the quark.

In this work, we introduce process-independent k⊥-
distributions and calculate these in lattice QCD. We il-
lustrate our results by presenting k⊥-densities of quarks
in the nucleon, with a focus on possible correlations be-
tween k⊥ and the transverse quark and nucleon spins,
resulting in deformations from a spherically symmetric

distribution. It is interesting to compare this approach
with generalized parton distributions (GPDs) in impact
parameter (b⊥-) space [8], which allows one to study the
spatial distribution of partons in hadrons in form of prob-
ability densities ρ(x, b⊥) [9]. Lattice QCD studies of the
latter revealed characteristic non-spherical shapes of the
pion and the nucleon in the case of transversely polar-
ized quarks [10, 11]. We stress, however, that tmdPDFs
and GPDs provide fundamentally different and comple-
mentary insight into hadron structure, since they are not
related by Fourier transformation and k⊥ and b⊥ are not
conjugate variables.

To introduce the different tmdPDFs, we first define the
momentum-space correlators ΦΓ=ΦΓ(x,k⊥;P, S),

ΦΓ =
�

d(n̄·k)
�

d4l

2(2π)4
e−ik·l�ΦΓ(l;P, S)

=
�

d(n̄·k)
�

d4l

2(2π)4
e−ik·l�P, S|q̄(l)ΓUq(0)|P, S� .(1)

with nucleon states |P, S� depending on momentum and
spin, and where the Wilson line U=UC(l,0), defined by a
path ordered exponential, ensures gauge invariance of the
non-local quark operator q̄(l) . . . q(0). For the vector (un-
polarized), Γµ

V =γµ, axial-vector (polarized), Γµ
A=γµγ5,

and tensor (quark helicity flip), Γµν
T =iσµνγ5, cases, the

correlators in Eq. 1 can be parametrized by the twist-2
tmdPDFs [12]:

nµΦµ
V = f1 + Si�⊥ijkj

1
mN

f⊥1T

nµΦµ
A = Λg1 +

k⊥ · S⊥
mN

g1T

nµΦµj
T = −Sjh1 −

�⊥jiki

mN
h⊥1

− Λkj

mN
h⊥1L −

(2kjki − k2
⊥δji)Si

2m2
N

h⊥1T , (2)

where the distributions f, g, h depend on x and k⊥ and
Λ is the nucleon helicity. The light-cone vectors n and
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B. Musch, PhD Thesis; Haegler, 
Musch, Negele, Schafer arXiv:

0908.1283

Introduce Momentum-space correlators

Choice of path - retain gauge invariance

gauge link operator U

�P | q(�) ΓU q(0) |P � is gauge invariant.

continuum

U ≡ P exp

�
−ig

� �

0
dξµAµ(ξ)

�

along path from 0 to �

lattice

product of link variables

factorization in SIDIS :
path runs to infinity and back

here (up to now):
straight path

gauge link operator U

�P | q(�) ΓU q(0) |P � is gauge invariant.

continuum

U ≡ P exp

�
−ig

� �

0
dξµAµ(ξ)

�

along path from 0 to �

lattice

product of link variables

factorization in SIDIS :
path runs to infinity and back

here (up to now):
straight path

Real world!: path runs to infinity Lattice: equal time slice

gauge link operator U

�P | q(�) ΓU q(0) |P � is gauge invariant.

continuum

U ≡ P exp

�
−ig

� �

0
dξµAµ(ξ)

�

along path from 0 to �

lattice

product of link variables

factorization in SIDIS :
path runs to infinity and back

here (up to now):
straight path 10Saturday, June 25, 2011
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   Transverse momentum distributions (TMDs) 

final state interactions!
explain large asymmetries otherwise forbidden!

signature of QCD!

from experiment, e.g., SIDIS (semi-inclusive deep inelastic scattering)

HERMES,  COMPASS,  JLab 6 GeV,  JLab 12 GeV ,  ...  ,  EIC

Cf: measured in 
Drell-Yan, eg at 
RHIC-spin

11
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Worm gears on the lattice
Slide: A. Bacchetta
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Flavor-Singlet Hadron Structure
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�pf | Vµ | pi� = ū(pf )

�
γµF1(q

2) + iqν
σµν

2mN
F2(q

2)

�
u(pi)

GE(Q
2) = F1(Q

2)− Q2

(2mN )2
F2(Q

2)

GM (Q2) = F1(Q
2) + F2(Q

2)

Flavor-singlet Quantities

N N1

γ
pipf

q
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�pf | Vµ | pi� = ū(pf )

�
γµF1(q

2) + iqν
σµν

2mN
F2(q

2)

�
u(pi)

GE(Q
2) = F1(Q

2)− Q2

(2mN )2
F2(Q

2)

GM (Q2) = F1(Q
2) + F2(Q

2)

Flavor-singlet Quantities

N N1

γ
pipf

q

Isoscalar: p and n 
separately, or u and d 
separated contribution.
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�pf | Vµ | pi� = ū(pf )

�
γµF1(q

2) + iqν
σµν

2mN
F2(q

2)

�
u(pi)

GE(Q
2) = F1(Q

2)− Q2

(2mN )2
F2(Q

2)

GM (Q2) = F1(Q
2) + F2(Q

2)

Flavor-singlet Quantities

N N1

γ
pipf

q

Isoscalar: p and n 
separately, or u and d 
separated contribution.

Vµ =
2

3
ūγµu− 1

3
d̄γµd−

1

3
s̄γµs

Strange-quark contribution 
to hadron structure
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Gγ,p
E/M =

2

3
Gu

E,M − 1

3
Gd

E,M−1

3
Gs

E,M

GZ,p
E/M = (1− 8

3
sin2 θW )Gu

E,M − (1− 4

3
sin2 θW )Gd

E,M−(1− 4

3
sin2 θW )Gs

E,M

Flavor-singlet: Disconnected Contributions
Parity-violating electron scattering

Expected to be small
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Gγ,p
E/M =

2

3
Gu

E,M − 1

3
Gd

E,M−1

3
Gs

E,M

GZ,p
E/M = (1− 8

3
sin2 θW )Gu

E,M − (1− 4

3
sin2 θW )Gd

E,M−(1− 4

3
sin2 θW )Gs

E,M

Flavor-singlet: Disconnected Contributions
Parity-violating electron scattering

Expected to be small

∆s = −0.085(13)(8)(9)

HERMES: dominated by 
small x

Spin carried by s-quark
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Γdisc
NµN (tf , t, 0; �p, �q) =

�

�x,�y

�0 | N(�x, tf )s̄(�y, t)Γs(�y, t)N̄(�0, 0) | 0�e−i�p·�xe−i�q·�y

=
�

�x

�0 | N(�x, tf )




�

�y

s̄(�y, t)Γs(�y, t)e−i�q·�y



 N̄(�0, 0) | 0�e−i�p·�x

�

�y

Tr[M−1(�y, t; �y, t)Γ]

Solve MX = η: then < M−1
ij >=< ηjXi >

Disconnected contributions
Three-point correlator looks like  

Need efficient means of evaluating 

Straightforward way: introduce noise vectors such 
that < ηi >= 0; < ηiηj >= δij

Error both from Gauge Noise and from Stochastic noise
Noise-reduction methods
- Partitioning (“dilution”) - sources have support on, say, 8 timeslices 
- Hopping parameter expansion
- Different stochastic sources
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Gs
M (0) = −0.017(25)(07)

s-quark contn. to EM Form Factor
The calculation of nucleon strangeness form factors from Nf = 2+1 clover fermion lattice QCD T. Doi
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Figure 2: The chiral extrapolated results for Gs
M(Q2) (left) and Gs

E(Q2) (right) plotted with solid lines.
Shaded regions represent the error-band with statistical and systematic error added in quadrature. Shown
together are the lattice data (and Q2-extrapolated Gs

M(0)) for !ud = 0.13760 (circles), 0.13800 (triangles),
0.13825 (squares) with offset for visibility.

weak quark mass dependence. In either of alternative analyses, we find that the results are consis-
tent with previous ones. While a further clarification with physically light quark mass simulation
and a check on convergence of HB"PT [21] is desirable, we use the dependence of results on differ-
ent extrapolations as systematic uncertainties. Third, we examine the contamination from excited
states. Because our spectroscopy study indicates that the mass of Roper resonance is massive com-
pared to the S11 state on the current lattice [22], the dominant contaminations are (transition) form
factors associated with S11. On this point, we find that such contaminations can be eliminated the-
oretically, making the appropriate substitutions for #±e in Eq. (2.2) and {#±e , #±k } in Eq. (2.3) [11].
It is found that the results from this formulation are basically the same as before, so we conclude
that the contamination regarding the S11 state is negligible.

As remaining sources of systematic error, one might worry that the finite volume artifact could
be substantial considering that the spacial size of the lattice is about (2fm)3. However, we recall
that Sachs radii are found to be quite small, |〈r2s 〉E,M| # 0.1fm2, which indicates a small finite
volume artifact. For the discretization error, we conclude that finite (qa) discretization error is
negligible, since the lattice nucleon energy is found to be consistent with the dispersion relation.
As another discretization error, we note that mN (mK) is found to have 6 (8) % error for the current
configurations [14, 23]. Considering the dependence of Gs

E,M on these masses, we estimate that the
discretization errors amount to <∼ 10%, and are much smaller than the statistical errors. Of course,
more quantitative investigations are desirable, and such work is in progress.

To summarize the results of form factors, we obtain Gs
M(0) = −0.017(25)(07), where the

first error is statistical and the second is systematic from uncertainties of the Q2 extrapolation and
chiral extrapolation. We also obtain $a = 0.58(16)(19) for dipole mass or $̃a = 0.34(17)(11)
for monopole mass, and gsE = 0.027(16)(08). These lead to Gs

M(Q2) = −0.015(23), Gs
E(Q2) =

0.0022(19) at Q2 = 0.1GeV2, where error is obtained by quadrature from statistical and systematic
errors. We also obtained, e.g., Gs

M(Q2) = −0.014(21), Gs
E(Q2) = 0.0041(38) at Q2 = 0.22GeV2.

Note that these are consistent with the world averaged data at Q2 = 0.1GeV2 [1, 2, 3] and the
recent measurement at Mainz [24], Gs

M(Q2) = −0.14(11)(11), Gs
E(Q2) = 0.050(38)(19) at Q2 =

0.22GeV2, with an order of magnitude smaller error. In Fig. 2, we plot our results for Gs
M(Q2),

Gs
E(Q2), where the shaded regions correspond to the square-summed error.

5

Doi et al. (ChQCD Collaboration), 
arXiv:0910.2687, PRD79:094502,2009

Uncertainties: statistical, Q2 dependence, chiral extrapolation

2+1 Clover, pion mass > 600 MeV
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Tr(M−1Γ) = 2κTr[(1− κD)−1Γ] = Tr[(2κ+ 2κ2D + κ2D2M−1)Γ]

Δs and Sigma Correlator
S. Collins et al, 2010 (StrongNET)Two-flavor NP clover; mπ = 270 MeV
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2π
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�

qS

g

�

Δs and Sigma Correlator

Quark and gluons mix under renormalization

The local operators mix as follows:
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20

Gluon Momentum Fraction in Pion

H. Meyer, J. Negele, PRD (2008) 

Momentum sum rule:

Quenched Wilson, mπ = 600 - 1100 MeV 

Use improved operator: E2 – B2: 40x increase in signal
HYP smeared, so loss of locality

What about the proton?
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G
M

1

Q2 2

mπ = 297

mπ = 353
mπ = 330

Structure and EM Transitions to excited states

Form factors of excited states, and transition form factors to excited states, provide 
additional insight into nature of QCD.  Precise electro-production data

Program of computations looking at Δ form factor, and Nγ → Δ transition form factors
N.B.   Δ → Nπ is p-wave decay, suppressed at zero momentum.
Admits three multipoles: magnetic dipole, electric quadrupole and Coulomb 
quadrupole: GM1, GE2, GC2

Alexandrou et al, DWF + DWF valence/Asqtad sea

Free of disconnected contributions

N

γ

Δ
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REM = −GE2(Q2)

GM1(Q2)
RSM = − | �q |

2m∆

GC2(Q2)

GM1(Q2)

R
E

M
(%

)

Q2 2

mπ = 353
mπ = 297

R
S
M

(%
)

Q2 2

mπ = 353
mπ = 297

N-Δ Transition Form Factor

Non-zero values: sphericity in either N or Δ - zero 
quadrupole moment for spin-1/2 system
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Radiative Transitions in Mesons
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Radiative Transitions in Mesons
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Radiative Transitions in Mesons

M
R

N

π
π
π
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atmq < O(1)

Radiative Transitions in Mesons - II 
Look at radiative decays in charmonium - wealth of 
experimental data.  Lots of transitions below threshold!

Quenched, anisotropic Wilson-fermion 
action

Lattice spacing from static quark potential

Dudek, Edwards, DGR - 2006
Chen et al (TMQCD), 2011
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Radiative Transitions in Mesons - III 

Experimental analysis by CLEO-
c driven by lattice calculations
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ψ̄(�0, ti)Γψ(�0, ti)

Ωn
j CΓµj(�pi, �pf ; ti, t, tf ) =�

0
���
�

�z

e−i�pf ·�zΩn
j Oj(�z, tf ) ·

�

�y

ei�q·�yjµ(�y, t) · ψ̄(�0, ti)Γψ(�0, ti)
���0
�

Γ(A → Bγ) =
1

2JA + 1
α
16

9

|�q|
m2

A
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k

���F̂k(0)
���
2

Transitions to excited states?

Back to the first lecture: can we apply the variational method?

Dudek, Edwards, Thomas - 2009
Chen et al (TMQCD), 2011

�

�z

e−i�pf ·�zOj(�z, tf )

Project onto optimal operator at sink

Compute radiative width - or infer photocoupling from expt.
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Many of these radiative widths have been 
measured...
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Many of these radiative widths have been 
measured...
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Many of these radiative widths have been 
measured...

Γ(ηc1 → J/ψγ) = 115(16) keV

Large for M1 transition - large production of 
exotics at JLab if true in light-quark sector
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Summary + Outlook
• Lattice QCD can describe describe both the spectrum 

of hadrons, but also their internal structure
• Spectroscopy: resonances unstable under the strong 

interactions - compute momentum-dependent phase 
shifts

• Precision hadron structure?
– lighter quark masses, requiring large statistics
– Control over systematic uncertainties: excited-state 

contributions, volume, renormalization
– New ideas!  Higher moments of PDFs.  TMD’s

• Lattice + expt. more powerful than either alone
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Signal

Noise
=

�J(t)J(0)�
1√
N

�
�|J(t)J(0)|2� − (�J(t)J(0)�)2

∼ Ae−MN t

1√
N

√
Be−3mπt − Ce−2MN t

∼
√
NDe−(MN− 3

2mπ)t

Statistics for Hadron Structure

DWF data satisfies this expectation

LHPC, 2008
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Noise
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∼ Ae−MN t

1√
N

√
Be−3mπt − Ce−2MN t

∼
√
NDe−(MN− 3

2mπ)t

Statistics for Hadron Structure

DWF data satisfies this expectation 10s of thousands configs at mπ = 140 MeV

Baryon structure much more demanding that mesons!

LHPC, 2008
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Lattice QCD Roadmap
Workshop on Extreme Computing, Jan. 2009
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