Technicolor theories off and on the lattice

Kari Rummukainen

University of Helsinki and Helsinki Institute of Physics

Bielefeld, 20-21.6.2011

Contents:

- Need for beyond the Standard Model physics
- Why technicolor?
- Simulating technicolor-like theories on the lattice

Standard Model

The contents of the Standard Model:

- fermions: quarks, leptons
- gauge bosons: gluon (strong), W[±], Z (weak), photon (EM)
- Higgs

Higgs is special:

- it is the linchpin of the standard model: provides the mechanism for the electroweak symmetry breaking
- it has not been seen
- it is a scalar
- ⇒ theoretical problems at very high scales: hierarchy problem, vacuum stability, unitarity bound ...

Higgs field \mapsto EW symmetry breaking

Higgs field

$$\Phi = \left(\begin{array}{c} \phi_1\\ \phi_2 \end{array}\right), \quad \phi_i \in C$$

transforms under weak SU(2)

• Higgs potential leads to spontaneous symmetry breaking:

$$V(\Phi) = V_0 - \mu^2 |\Phi|^2 + \lambda |\Phi|^4$$

Higgs field \mapsto EW symmetry breaking

• Conventionally choose (unitary gauge choice).

$$\Phi
ightarrow \left(egin{array}{c} 0 \ v \end{array}
ight), \quad v \geq 0$$

Minimum at $v \approx 246 \text{GeV}$

- Note: Higgs mass parameter μ^2 the only dimensionful parameter in the SM (at the classical level)
- The Goldstone bosons associated with the spontaneous symmetry breaking are "eaten" by the gauge bosons, which acquire a mass:

$$|D_{\mu}\Phi|^{2} = |(\partial_{\mu} - igA_{\mu}^{a}T^{a})\Phi|^{2} \sim \frac{g^{2}v^{2}}{4}(A_{\mu}^{a})^{2} \Rightarrow M_{W} \approx \frac{gv}{2}$$

Higgs also gives masses to quarks and leptons (neutrinos?) through Yukawa couplings: if ψ_L = (u, d)^T_L, then

$$h_d \bar{\psi}_L \Phi d_R + h.c. \sim h_d v \bar{d} d \Rightarrow M_d \approx h_d v$$

Problems with the Higgs

• The fermion and gauge sector of the Standard Model is consistent without any fine-tuning up to GUT ($\sim 10^{15}$ GeV) or Planck scale.

- Not so for the Higgs!
 - Naturalness problem (fine-tuning): why EW-scale is so much smaller than GUT (or Planck) scale?
 - Vacuum stability
 - Triviality bound
 - Flavour problem: huge range of fermion masses \rightarrow Yukawa couplings.
- These problems arise only when the Standard Model is pushed to work substantially above the EW scale

Naturalness problem:

Loop corrections to Higgs 2-pt. function diverge as Λ², where Λ is the cutoff scale:

- This divergence can be cancelled by counterterm, or tuning the bare m^2 so that the divergence vanishes.
- If now $\Lambda \sim M_{\rm Planck} \sim 10^{19} \, {\rm GeV}$, the bare mass² needs to be fine-tuned to relative accuracy of $(M_{\rm EW}/M_{\rm Planck})^2 \approx 10^{-34}$ (up to $M_{\rm GUT}$, accuracy is $\sim 10^{-24}$)
- In other words, if EW theory is valid up to scale Λ, the "natural" value for the Higgs mass is Λ.
- Generic feature of scalar field theories

- The problems with the Standard Model are due to the scalar Higgs
- Most beyond-the-standard model theories aim to ameliorate these; e.g.
 - Supersymmetry: pair scalars with fermions so that loops cancel. No large radiative corrections, no fine tuning.
 - Large extra dimensions: cutoff near the EW scale
 - Technicolor: get rid of the scalars altogether, only fermions and gauge fields.
 - Many others
- In technicolor, Higgs is a composite, bound two fermion "meson" state, and Higgs condensate = fermion chiral condensate.

EW symmetry breaking in QCD

- The quark condensate in QCD breaks weak SU(2) gauge symmetry, even without Higgs!
- Left-handed quarks transform as weak SU(2) doublets:

 $\begin{pmatrix} u_L \\ d_L \end{pmatrix}$, whereas u_R , d_R are SU(2) singlets.

- Now e.g. chiral condensate $\langle \bar{d}_L d_R + h.c. \rangle$ breaks weak SU(2) like the Higgs field $\Phi \propto (0, v)^T$.
- Goldstone bosons: π -mesons. If the weak SU(2) were not already broken by Higgs, π -mesons in QCD would become longitudinal W, Z polarization states!
- The amount of symmetry breaking by QCD is small and usually neglected:

$$M_W = gF_\pi/2 \sim 30 \ MeV$$

where $F_{\pi} \approx 93 \, {\rm MeV}$ is the pion decay constant, which characterises the magnitude of the chiral condensate.

• Technicolor: copy the idea to the Weak scale (100 GeV).

Original technicolor (TC)

[Weinberg, Farhi, Susskind]

- SU(N) gauge field $+ n_f$ massless fermions, *techniquarks Q*
- Techniquarks have both technicolor and EW charge (exactly like quarks in the SM)
- ullet Chiral symmetry breaking in technicolor \longrightarrow Electroweak symmetry breaking
- Scale: $M_{\rm TC} \sim F_{\pi}^{\rm TC} \sim \Lambda_{\rm EW} \sim 246 {\rm GeV}$
- This gives $M_W = g F_\pi^{
 m TC}/2 pprox 80 {
 m GeV}$
- After chiral symmetry breaking:
 - \Rightarrow scalar $\bar{Q}Q$ -meson \leftrightarrow Higgs
 - $\Rightarrow \ \mathsf{pseudoscalars} \leftrightarrow \mathsf{W},\mathsf{Z} \ \mathsf{-longitudinal} \ \mathsf{modes}$
 - \Rightarrow exotic technihadrons (observable!)
- Describes well the *W*, *Z*+Higgs sector (depending on the model, may have too many Goldstone bosons)
- Elegant, "proven" mechanism in the Standard Model
- Does not explain fermion masses (Yukawa). For that, we need additional structure → Extended technicolor

K. Rummukainen (Helsinki)

Technicolor

Extended technicolor (ETC)

- In addition to the "pure" technicolor, introduce a new higher-energy interaction which couples to Standard Model fermions q (quarks, leptons) and techniquarks (Q): extended technicolor (ETC)
- The most common option is massive gauge boson, with mass $M_{\rm ETC} > M_{\rm TC}$:

 $[{\sf Eichten,Lane,Holdom,Appelquist,Sannino,Luty} \dots]$

 $\bullet\,$ At energies smaller than ${\it M}_{\rm ETC}$ this gives effective 4-fermion couplings, e.g.

 $g_{\rm ETC}^2 \bar{Q} Q \bar{q} q$

q,Q

 $M_{\rm ETC}^2$ When techniquarks form a condensate, this becomes a fermion mass term with

$$m_q = rac{g_{
m ETC}^2}{M_{
m ETC}^2} \langle \bar{Q} Q \rangle_{
m ETC}$$

• Here $\langle \bar{Q}Q \rangle_{\rm ETC}$ means the techniquark condensate evaluated at the ETC scale.

Extended technicolor (ETC)

Other types of 4-fermi terms:

۲

٢

This is a non-Standard Model quark-quark coupling, giving rise to extra flavour changing neutral currents (FCNC's). Experimental constraints ($K_L K_S$ mass difference) yield a lower bound on the

ETC scale of $M_{\rm ETC} \gtrsim 10^3 M_{\rm TC}$

$$rac{1}{M_{
m ETC}^2}ar{Q}Qar{Q}Q$$

gives explicit χ SB in the techniquark sector.

 $\langle \bar{Q}Q \rangle_{\rm ETC}$: condensate evaluated at the ETC scale $\langle \bar{Q}Q \rangle_{\rm TC}$: condensate at TC (EW) scale

Extended technicolor

Constraints:

- I) FCNC's: $M_{
 m ETC} \gtrsim 1000 10000 \times M_{
 m TC} (M_{
 m TC} \approx \Lambda_{EW})$
- II) For EWSB we must have $\langle \bar{Q}Q \rangle_{
 m TC} \propto M_{
 m TC}^3 pprox M_{
 m EW}^3$
- III) On the other hand, $\langle \bar{Q} Q
 angle_{
 m ETC} \propto m_q M_{
 m ETC}^2$ (top quark!)
 - Thus, $\langle \bar{Q} Q \rangle_{
 m ETC} pprox m_q rac{M_{
 m ETC}^2}{M_{
 m TC}^3} \langle \bar{Q} Q \rangle_{
 m TC}$
 - Using RG evolution

$$\langle \bar{Q}Q \rangle_{
m ETC} = \langle \bar{Q}Q \rangle_{
m TC} \exp\left[\int_{M_{
m TC}}^{M_{
m ETC}} \frac{\gamma(g^2)}{\mu} d\mu\right]$$

where $\gamma(g^2)$ is the mass anomalous dimension.

- In weakly coupled theory $\gamma \propto g^2$ is small, and $\langle \bar{Q} Q \rangle$ is \sim constant.
- In QCD-like theory g^2 is large only in a narrow energy range
- Thus, it is not possible to satisfy the constraints I), II), II) in a QCD-like theory.

Walking coupling

• On the other hand, if the coupling is approximately constant, $g^2 \approx g_*^2$, over the range from TC to ETC, then we can solve

$$\langle \bar{Q} Q \rangle_{\rm ETC} \approx \left(\frac{M_{\rm ETC}}{\Lambda_{\rm TC}} \right)^{\gamma(g^2_*)} \langle \bar{Q} Q \rangle_{\rm TC}$$

(condensate enhancement)

• Inserting II) and III) we obtain the requirement

 $\gamma(g_*^2) \approx 2$

- This limit can be relaxed somewhat in a more detailed computation.
- A coupling which approximately stops its evolution for some interval in energy is called a walking coupling.

Walking coupling and IR fixed point

• In a walking theory the β -function

$$\beta = \mu \frac{dg}{d\mu}$$

reaches almost zero near g_*^2 . (The shape is scheme-dependent, however.)

- If the β-function hits zero there is an infrared (IR) fixed point, where the system becomes *conformal* (scale invariant).
- At the conformal point the system cannot have any mass scales. All correlation functions are powerlike.

Perturbative β -function

2-loop universal β -function for SU(N_c) gauge theory with N_f fermions:

$$\beta(g) = -\mu \frac{dg}{d\mu} = -\beta_0 \frac{g^3}{16\pi^2} - \beta_1 \frac{g^5}{(16\pi^2)^2}$$

where the coefficients are

$$\beta_0 = \frac{11}{3}C_r - \frac{4}{3}T_rN_f, \qquad \beta_1 = \frac{34}{3}C_r^2 - \frac{20}{3}C_rT_rN_f - 4C_rT_rN_f$$

When N_f is varied, generically 3 different behaviours seen:

- confinement and χSB at small N_f
- IR fixed point (conformal window) at medium N_f [Banks,Zaks]
- Asymptotic freedom lost at large N_f

Conformal window in SU(N) gauge

- Upper edge of band: asymptotic freedom lost
- Lower edge of band: ladder approximation
- Walking can be found near the lower edge of the conformal window: large coupling, non-perturbative lattice simulations needed!
- In higher reps it is easier to satisfy EW constraints [Sannino, Tuominen, Dietrich]
 lot of recent activity!

K. Rummukainen (Helsinki)

Existence of the IRFP essentially non-perturbative

Example: Perturbative β -function of SU(2) gauge with $N_f = 6$ fundamental rep fermions

[4-loop MS: Ritbergen, Vermaseren, Larin]

Results from lattice: existence of IRFP inconclusive, maybe at $g_*^2/4\pi \sim 1.2$ ($g^2 \sim 15$) [Karavirta et al, to be published]

VERSITY OF HELSINKI

Appearance of the IRFP

[4-loop MS: Ritbergen, Vermaseren, Larin]

What do we want?

Take SU(N) gauge theory with N_f fermions in some representation.

- Measure $\beta(g^2)$ -function
- Measure $\gamma(g^2)$
- Classify QCD-like / walking / conformal
- We want to find a theory which
 - is walking or
 - is just within conformal window (easy to deform into walking)
 - \blacktriangleright has large anomalous exponent γ near FP
 - Compatible with EW precision measurements (S,T,U -parameters) → small N_f preferred!
- Favourite candidates: SU(2) or SU(3) gauge theory with $N_f = 2$ adjoint or 2-index symmetric representation fermions. [Sannino,Tuominen,Dietrich]
- "Hadron" spectrum, chiral symmetry breaking pattern

Models studied on the lattice

• $SU(3) + N_f = 8-16$ fundamental rep:

- $N_f = 8: \chi SB$ [Appelquist et al; Deuzeman et al; Fodor et al; Jin et al]
- $N_f = 9: \chi SB$ [Fodor et al]
- N_f = 10: unclear [Yamada et al]
- $N_f = 12$: conflicting results [Hasenfratz; Fodor et al; Appelquist et al; Deuzeman et al]
- ▶ N_f = 16: conformal [Damgaard et al; Heller; Hasenfratz; Fodor et al]
- SU(2) + fundamental rep fermions:
 - $N_f = 2$: χSB [many]
 - $N_f = 4$: χSB [Karavirta et al (to be published)]
 - $N_f = 6$: unclear [Del Debbio et al, Karavirta et al (to be published)]
 - N_f = 8: conformal [Iwasaki et al]
 - ▶ N_f = 10: conformal [Karavirta et al (to be published)]
- SU(2) + N_f = 2 adjoint rep: (Minimal walking technicolor) conformal [Catterall et al; Bursa et al; Hietanen et al; De Grand et al]
- $SU(3) + N_f = 2$ 2-index symmetric rep: unclear [de Grand et al; Sinclair and Kogut; Fodor et al]

RG flow in the conformal case

- Only m_Q is relevant at the IRFP.
- Scaling near IRFP: masses of physical particles $M \propto (m_Q)^{1/(1+\gamma)}$

RG flow on the lattice

- Irrelevant operators (cutooff effects) die out as a/L, $(a/L)^2 \dots (L$: IR scale)
- Evolution of g^2 along the physical axis very slow
- \Rightarrow irrelevant operators can (and do!) mask the physical evolution
- Need either:
 - Very large lattices (large L/a) impractical
 - Very high quality lattice action small cutoff effects

RG flow on the lattice

- Near the IRFP, the continuum limit cannot be taken at weak bare coupling:
- Even when the lattice spacing a
 ightarrow a/100, the bare coupling barely decreases
- Present experience: we really need highly improved lattice actions which work at strong coupling
 - Non-perturbative (thin-link) clover not sufficient?
 - nHYP smeared clover
 - perfect gauge? perfect fermions?
 - do staggered quarks work?

Case study: Minimal walking technicolor

Case study: Minimal walking technicolor (MWTC)

- SU(2) with $N_f = 2$ adjoint representation techniquarks
- Study on the lattice using (unimproved) Wilson fermions [Catterall, Sannino; Del Debbio, Patella, Pica; Hietanen et al, Bursa et al]
- What is studied?
 - Measure the evolution of the coupling directly using the Schrödinger functional method
 - ▶ Particle spectrum: do we observe chiral symmetry breaking (QCD) or do all modes become massless as $m_q \rightarrow 0$ (no χ SB, possibly conformal)
 - Mass anomalous exponent γ (from spectrum or directly using SF methods)
 - Improvement of the lattice action

Minimal technicolor

• Perturbative β -function compared with fundamental rep: very slow evolution!

Lattice model:

- SU(2) gauge action in fundamental rep.
- massless fermions in adjoint rep.

$$\mathcal{L}=rac{1}{4}F_{\mu
u}F_{\mu
u}+ar{\psi}i\gamma_{\mu}D_{\mu}\psi$$

- On the lattice:
 - gauge fields U in the fundamental rep.
 - For the fermion action, these transformed into adjoint rep

$$V^{ab} = 2 \operatorname{Tr}[U^{\dagger} \lambda^{a} U \lambda^{b}]$$

a, *b* = 1, 2, 3.

- We use standard Wilson action (these results); now non-perturbatively O(a) improved Wilson-clover action (future results)
- For comparison, we also do analysis with $N_f = 2$ fundamental quarks

Evolution of the coupling

Schrödinger functional: Generate a *background* chromoelectric field using non-trivial fixed boundary conditions, parametrised by a twist angle η At the classical level, we have

$$\frac{dS_{\rm class.}}{d\eta} = \frac{A}{g^2}$$

where $A(\eta)$ is a known constant. At the quantum level, we define the coupling through

$$\frac{1}{g^2} = \frac{1}{A} \frac{dS}{d\eta}$$

 $= \quad \mathsf{const.} \times \langle \mathsf{(boundary plaq.)} \rangle$

- Evaluates g^2 directly at scale $\mu = 1/L$, the lattice size
- Can use $m_Q = 0$
- Has been used very succesfully in QCD by the Alpha collaboration

Evolution of the coupling: QCD-like

Test with $N_f = 2$ fundamental representation, QCD-like test case:

- L/a grows, k ~ a/L decreases, g²(L) increases: asymptotic freedom, OK!
- Large $\beta_L \rightarrow$ small lattice spacing \rightarrow small volume
- Continuous line: coupling evaluated from the 2-loop β -function (integration constant fixed to measurement at L/a = 16)
- Not a continuum limit, but shows consistency

Evolution of the coupling: QCD-like

Test with $N_f = 2$ fundamental representation, QCD-like test case:

- L/a grows, k ~ a/L decreases, g²(L) increases: asymptotic freedom, OK!
- Large $\beta_L \rightarrow$ small lattice spacing \rightarrow small volume
- Continuous line: coupling evaluated from the 2-loop β -function (integration constant fixed to measurement at L/a = 16)
- Not a continuum limit, but shows consistency

Evolution of the coupling: MWTC

In adjoint representation:

- At small g²(L): increases with L (asymptotic freedom)
- At large g²(L): decreases as L increases
 ⇒ β-function positive here!
- Large cutoff effects at small L/a

 discard
- As $L/a \to \infty$, apparently $g^2(L) \to g_*^2 \approx 2...3$. \Rightarrow conformal behaviour!?
- Continuous line: coupling evaluated with fitted β-function ansatz (to be described)

β -function

Assuming that the lattice effects on the large-volume data are small, we can describe the features of the β -function by fitting an ansatz:

$$\beta = -L\frac{dg}{dL} = -b_1g^3 - b_2g^5 - b_3g^\delta$$

Here b_1 , b_2 are perturbative constants and b_3 and δ are fit parameters. (Parametrising the location of the fixed point and the slope of the β -function there).

The ansatz is fitted to the data at L/a = 12, 16, 20:

β -function

Fit result:

$$\beta = -L\frac{dg}{dL} = -b_1g^3 - b_2g^5 - b_3g^\delta$$

FP is at substantially smaller coupling than indicated by 2-loop P.T.

Recent results w. nHYP-improved fermions indicate IRFP at $g^2 \sim 3 - -5$. [De Grand et al.] In MS-schema, β -function is known to 4-loop order: [Ritbergen, Vermaseren, Larin] Not directly comparable to lattice (beyond 2 loops), because of different schema! But quantifies perturbative uncertainty.

Particle spectrum:

- If QCD-like χ SB: as $m_Q a \rightarrow 0$,
 - $m_\pi \propto m_Q^{1/2}$
 - other states have finite mass.
- If IR fixed conformal point: when $m_Q a \rightarrow 0$, all states become massless with the same exponent.
- If walking behaviour: at high energy \sim conformal, at small χSB .

Minimal walking technicolor

O(a) improvement

O(a) improvement of the action

- Wilson fermions have large O(a) cutoff-effects. These are cancelled by adding a irrelevant "clover term" with a fine-tuned coefficient c_{SW} .
- In the Schrödinger functional scheme also boundary term improvement must be computed

Boundary terms

- $\bullet\,$ The clover coefficient $c_{\rm SW}$ is determined non-perturbatively
- The boundary coefficients c_t , \tilde{c}_t perturbatively
- c_s , \tilde{c}_s are not needed

We obtain

[Karavirta et al, for fundamental rep Lüscher, Weisz]

 $ilde{c}_t = 1 - 0.0135(1) imes C_R g_0^2 + O(g_0^4)$

Write $c_t = 1 + g_0^2(c_t^{(1,0)} + N_F * c_t^{(1,1)}) + O(g_0^4)$

N _c	rep.	$c_t^{(1,0)}$	$c_t^{(1,1)}$
2	2	-0.0543(5)	0.0192(2)
2	3	-0.0543(5)	0.075(1)
3	3	-0.08900(5)	0.0192(4)
3	8	-0.08900(5)	0.113(1)
3	6	-0.08900(5)	0.0946(9)
4	4		0.0192(5)

These are in agreement with $c_t^{(1,1)} = 0.019141 \times (2T_R)$

[Sint et al, Karavirta

Boundary conditions for the clover coefficient

• Matche $c_{\rm SW}$ using Schrödinger functional method to generate a background chromoelectric field and "optimizing" the fermion mass defined through axial Ward identity:

$$M(x_0) = \frac{1}{2} \frac{\frac{1}{2}(\partial_0^* + \partial_0) f_A(x_0) + c_A a \partial_0^* \partial_0 f_P(x_0)}{f_P(x_0)}$$

• However: the standard diagonal ("Abelian") boundary matrices are not quite sufficient for higher reps:

$$U = \begin{pmatrix} e^{i\theta} & 0\\ 0 & e^{-i\theta} \end{pmatrix} \Rightarrow V^{ab} = 2\operatorname{Tr}[U^{\dagger}\lambda^{a}U\lambda^{b}] \Rightarrow V = \begin{pmatrix} \cdot & \cdot & 0\\ \cdot & \cdot & 0\\ 0 & 0 & 1 \end{pmatrix}$$

- For adjoint fermion, there is a color component which does not see the background field: problem at long distances
- We maximise the asymmetry between the boundaries using the following "non-Abelian" boundary conditions:

$$U_i(t=0)=1, \quad U_i(t=T)=\exp[i\theta\sigma_i]$$

Boundary conditions: demonstrate at the classical level

 $8^3 \times 16$ lattice, $m_0 a = 0.01$: Axial Ward identity against a classical background in SU(2) fundamental and adjoint rep:

With "Abelian" boundary conditions, no lever-arm to determine the value of $c_{\rm SW}.$