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Non-perturbative definition of QCD (1)

To define QCD as a QFT it is not enough to write down its classical
Lagrangian:

LQCD(x) =
1

2g2
tr {Fµν(x)Fµν(x)}+

Nf∑
i=1

ψi (x) (D/+ mi )ψi (x)

One needs to define the functional integral:

Introduce a Euclidean space-time lattice and discretise the continuum
action such that the doubling problem is solved

Consider a finite space-time volume ⇒ the functional integral
becomes a finite dimensional ordinary or Grassmann integral, i.e.
mathematically well defined!

Take the infinite volume limit L→∞
Take the continuum limit a→ 0
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Non-perturbative definition of QCD (2)

In massive theories the infinite volume limit is reached with
exponential corrections ⇒ not a major problem in practice.

Continuum limit: existence only established order by order in
perturbation theory & only for selected lattice regularisations:

lattice QCD with Wilson quarks [Reisz ’89 ]
lattice QCD with overlap/Neuberger quarks [Reisz, Rothe ’99 ]
not (yet ?) for lattice QCD with staggered quarks [cf. Giedt ’06 ]

From asymptotic freedom expect

g2
0 = g2

0 (a)
a→0∼ −1

2b0 ln a
, b0 = 11N

3 −
2
3Nf
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Non-perturbative definition of QCD (3)

Working hypothesis: the perturbative picture is essentially correct:

The continuum limit of lattice QCD exists and is obtained by taking
g0 → 0

Hence, QCD is asymptotically free, naive dimensional analysis applies:
non-perturbative renormalisation of QCD is based on the very same
counterterm structure as in perturbation theory!

Absence of analytical methods: try to take the continuum limit
numerically, i.e. by numerical simulations of lattice QCD at
decreasing values of g0.

Typical current ranges for a:

a = 0.04− 0.1 fm

i.e. at most a variation by a factor 2-3!
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Renormalisation of QCD

The basic parameters of QCD are g0 and mi , i = u, d , s, c , b, t.

To renormalise QCD one must impose a corresponding number of
renormalisation conditions

We only consider gauge invariant observables ⇒ no need to consider
field renormalisations for quark, gluon or ghost fields or the
renormalisation of the gauge parameter.

All physical information (particle masses and energies, particle
interactions) is contained in the (Euclidean) correlation functions of
gauge invariant composite, local fields φi (x)

〈φ1(x1) · · ·φn(xn)〉

a priori each field φi requires renormalisation, and thus further
renormalisation conditions.
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Counterterm structure in lattice QCD with Wilson quarks

The action S = Sf + Sg is given by

Sf = a4
∑
x

ψ(x) (DW + m0)ψ(x), Sg = 1
g2

0

∑
µ,ν

tr {1− Pµν(x)}

DW = 1
2

{(
∇µ +∇∗µ

)
γµ − a∇∗µ∇µ

}
Symmetries: U(Nf)V (mass degenerate quarks), P,C ,T and O(4,ZZ)

⇒ Renormalized parameters:

g2
R = Zgg2

0 , mR = Zm (m0 −mcr) , amcr = amcr(g0).

In general: Z = Z (g0, aµ, am0);

Quark mass independent renormalisation schemes: Z = Z (g0, aµ)

Simple non-singlet composite fields, e.g. Pa = ψγ5
1
2τ

aψ renormalise
multiplicatively, Pa

R = ZP(g0, aµ, am0)Pa
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Symanzik’s effective continuum theory (1) [Symanzik ’79 ]

goal: render the a-dependence of lattice correlation functions explicit.
⇒ structural insight into the nature of cutoff effects

at scales far below the cutoff a−1, the lattice theory is effectively
continuum-like and can be represented by an effective continuum
theory, with action

Seff = S0 + aS1 + a2S2 + . . . , S0 = Scont
QCD

Sk =

∫
d4x Lk(x)

Lk(x): linear combination of fields

with canonical dimension 4 + k
which share all the symmetries with the lattice action
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Symanzik’s effective continuum theory (2)

The first term L1 can be parametrized by:

L1 = c
(1)
1 ψσµνFµνψ+c

(2)
1 ψD2ψ+c

(3)
1 mψD/ψ+c

(4)
1 m2ψψ+c

(5)
1 m tr {FµνFµν}

The same procedure applies to composite fields:

φeff(x) = φ0 + aφ1 + a2φ2 . . .

for instance: φ(x) = Pa(x):

Pa
eff = ψγ5

1
2τ

aψ + c
(1)
P mψγ5

1
2τ

aψ + c
(2)
P

(
ψD/
←
γ5

1
2τ

aψ − ψγ5
1
2τ

aD/ψ
)

Consider renormalised, connected lattice n-point functions of a
multiplicatively renormalisable field φ

Gn(x1, . . . , xn) = Zn
φ 〈φ(x1) · · ·φ(xn)〉latcon
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Symanzik’s effective continuum theory (3)

Effective field theory description:

Gn(x1, . . . , xn) = 〈φ0(x1) . . . φ0(xn)〉con

+ a

∫
d4y 〈φ0(x1) . . . φ0(xn)L1(y)〉con

+ a
n∑

k=1

〈φ0(x1) . . . φ1(xk) . . . φ0(xn)〉con + O(a2)

〈· · · 〉 is defined w.r.t. continuum theory with S0

the a-dependence is now explicit, up to logarithms, which are hidden
in the coefficients c1,i and
In perturbation theory one expects to l-loop order the asymptotic
expansion:

P(a) ∼ P(0) +
∞∑

n=1

l∑
k=0

g2k
0 pnkan(ln a)k

where e.g. P(a) = Gn at fixed arguments.
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Symanzik’s effective continuum theory (4)

Conclusions from Symanzik’s analysis:

Asymptotically, cutoff effects are powers in a, modified by logarithms;

In contrast to Wilson quarks, only even powers of a are expected for

4-dim. bosonic theories (pure gauge theories, scalar field theories)
4-dim. fermionic theories which retain a remnant axial symmetry
(overlap, Domain Wall Quarks, staggered quarks, Wilson quarks with a
twisted mass term,...)

In QCD simulations a is typically varied by a factor 2

⇒ logarithms vary too slowly to be resolved; linear or quadratic fits (in a
resp. a2) are used in practice.

Stefan Sint An introduction to Symanzik’s O(a) improvement programme 11 / 27



Symanzik improvement (1)

Improved action and fields:

Idea: introduce lattice representatives of the operators in Lk and φk

and include them in the lattice action and fields.

⇒ if coefficients are chosen appropriately the O(a effects can be made to
vanish, the lattice action and fields are O(a) improved (c1i = 0 in
effective action),
Main problem: how to choose the improvement coefficients?

compute the coefficients in lattice perturbation theory; always possible
(if tedious), but improvement is not complete.
try to determine the coefficients non-perturbatively (s. below)

Simplification by restriction to on-shell quantities:
spectral quantities (particle masses, energies)
correlation functions Gn(x1, x2, . . . , xn), with xi 6= xj .

⇒ use equations of motion to reduce the number of O(a) counterterms.
Wilson quarks to O(a); eliminate 2 counterterms, stay with

ψσµνFµνψ, m2ψψ, m tr {FµνFµν}.
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Symanzik improvement (2)

1 On-shell O(a) improved lattice QCD action
The last two terms are equivalent to a rescaling of the bare mass and
coupling (mq = m0 −mcr):

g̃2
0 = g2

0 (1 + bg (g0)amq), m̃q = mq(1 + bm(g0)amq)

The only new structure is the Sheikholeslami-Wohlert or clover term

SWilson → SWilson + i
4acsw(g2

0 )a4
∑

x

ψ(x)σµν F̂µν(x)ψ(x)

2 On-shell O(a) improved axial current and density:

(AR)a
µ = ZA(g̃0

2)(1 + bA(g0)amq)
{

Aa
µ + cA(g0)∂̃µP

a
}

(PR)a = ZP(g̃0
2, aµ)(1 + bP(g0)amq)Pa
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Determination of improvement coefficients

In principle determine O(a) improvement coefficients non-perturbatively as
functions of g2

0 by imposing (i = 1, 2, . . .)

Pi (a; csw, cA, . . .) = Pi (0), ⇒ csw(g2
0 ), cA(g2

0 ) . . .

problem: requires knowledge of the very continuum results Pi (0)
which O(a) improvement should help to obtain!

can be done in perturbation theory

Observation: O(a) counterterms with Wilson fermions arise due to
explicit breaking of chiral symmetry!

⇒ can be determined by imposing chiral symmetry relations at finite
lattice spacing (i.e. fixed g0).
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Improvement conditions from chiral symmetry

In QFT symmetries are expressed by Ward identities

introduce axial field variations:

δaA(θ)ψ(x) = iγ5
1
2τ

aθ(x)ψ(x), δaA(θ)ψ(x) = ψ(x)iγ5
1
2τ

aθ(x)

with θ(x) = 1 if x ∈ R and = 0 otherwise (R = space-time region)

Derive continuum Ward identities by assuming that the functional
integral can be treated like an ordinary integral:

〈δaA(θ)O〉 = 〈OδaA(θ)S〉,

δaA(θ)S = −i

∫
d4xθ(x)

(
∂µA

a
µ(x)− 2mPa(x)

)
Aa
µ(x) = ψ(x)γµγ5

1
2τ

aψ(x), Pa(x) = ψ(x)γ5
1
2τ

aψ(x)
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Simplest chiral Ward identity: the PCAC relation

Choose fields O = Oext located outside region R, then shrink R to a
point x :

0 = 〈Oextδ
a
A(θ)S〉 = −i

〈
Oext

(
∂µA

a
µ(x)− 2mPa(x)

)〉
,

Rewritten in terms of the PCAC mass:

m =
〈Oext∂µA

a
µ(x)〉

2〈OextPa(x)〉

NOTE: chiral symmetry implies that the PCAC mass must be
independent of

the choice of Oext,
the point x or
any other parameters such as the space-time volume or shape!
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Non-perturbative determination of csw

There are 2 improvement coefficients in the massless theory (csw, cA),
the remaining ones (bg , bm, bA, bP) come with amq.

All counterterms are absent in chirally symmetric regularisations
⇒ turn this around: impose chiral symmetry to determine csw, cA

non-perturbatively:
define bare PCAC quark masses from SF correlation functions
(i.e. choice of Oext etc.):

mR =
ZA(1 + bAamq)

ZP(1 + bPamq)
m, m =

∂̃0fA(x0) + cAa∂∗0∂0fP(x0)

fP(x0)

At fixed g0 and amq ≈ 0 define 3 bare PCAC masses m1,2,3 (e.g. by
varying the gauge boundary conditions) and impose

m1(csw, cA) = m2(csw, cA), m1(csw, cA) = m3(csw, cA)⇒ csw, cA

SF b.c.’s ⇒ high sensitivity to csw & simulations near chiral limit
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Results for csw(g 2
0 )

Numerical results in QCD have been obtained for Nf = 0, 2, 3, 4 & various
gauge actions.
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[ALPHA, coll., Sommer, Tekin, Wolff ’09 ]
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Effect of on-shell O(a) improvement

Before and after O(a) improvement (PCAC masses from SF correlation
functions, 83 × 16 lattice)
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Quenched result for the charm quark mass [ALPHA ’02 ]

The RGI charm quark mass can be defined in various ways
starting from the subtracted bare quark mass mq,c = m0,c −mcr

starting from the average strange-charm PCAC mass msc

starting from the PCAC mass mcc for a hypothetical mass degenerate
doublet of quarks.

Tune the bare charm quark masses to match the Ds meson mass

Obtain the corresponding O(a) improved RGI masses:

r0Mc |msc = ZM

{
2r0msc

[
1 + (bA − bP)1

2(amq,c + amq,s)
]

− r0ms [1 + (bA − bP)amq,s)]
}
,

r0Mc |mc = ZM r0mc [1 + (bA − bP)amq,c] ,

r0Mc |mq,c = ZMZr0mq,c [1 + bmamq,c] .

N.B.: all O(a) counterterms are known non-perturbatively in the
quenched case!
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Continuum extrapolation of the quenched RGI charm
quark mass

Continuum extrapolation:

r0Mc = A + B(a2/r2
0 )

r0 = 0.5 fm

Mc = 1.654(45) GeV

mMS
c (mc) = 1.301(34) GeV
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Continuum extrapolation of FDs
in quenched QCD

[Heitger, Jüttner ’08 ]
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Warning: if a is not small enough the continuum extrapolations can be
misguided!
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The 2d O(N) sigma model: a test laboratory for QCD?

S =
1

g2
0

∑
x ,µ

(∂µS)2, S = (S1, . . . ,SN) S2 = 1

like QCD the model has a mass gap and is asymptotically free

many analytical tools: large N expansion, Bethe ansatz, form factor
bootstrap;

some exact results available in continuum limit!

efficient numerical simulations due to cluster algorithms.

⇒ very precise data over a wide range of lattice spacing (a can be varied
by 1-2 orders of magnitude).

Symanzik: expect O(a2) effects, up to logarithms!
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A sobering result:

Numerical study of renormalised finite volume coupling to high precision
(N = 3) [Hasenfratz, Niedermayer ’00, Hasenbusch et al. ’01, Balog,
Niedermayer, Weisz ’09 ]
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a/L
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δΣ
(2

,u
0,a

/L
)
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O(3), D(1/3)
O(3), D(-1/4)

Cutoff effects seem to be almost linear in a!
Is this just an unfortunate case?
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A closer look:

[Balog, Niedermayer, Weisz ’09 ] cutoff effects ×L2/a2:

1.8 1.9 2 2.1
β

eff
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(L
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)2
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(L
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Cuprit: terms like a2 ln3(a2) conspire to fake a linear behaviour in a over
wide range! However, can be understood within Symanzik’s effective
theory!
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O(a2) effects in lattice QCD

L2 contains a host of dimension 6 operators (4-quark operators!)
[Sheikholeslami-Wohlert ’86 ]

⇒ complete elimination of O(a2) effects in lattice QCD à la Symanzik is
unpractical!

Pure gauge theories: O(a2) terms can be eliminated by adding more
extended Wilson loops to the Wilson plaquette action [Lüscher, Weisz
’84 ]; in QCD this is sometimes done for other reasons than O(a2)
improvement.

O(a) improvement for Wilson quarks gets complicated

if quarks are not mass-degenerate
for 4-quark operators due to proliferation of O(a) counterterms.

⇒ introduce “twisted mass terms” [Frezzotti, Grassi, S. Weisz, ’01 ] and
rely on “automatic O(a) improvement” [Frezzotti, Rossi ’03 ].
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Conclusions

Symanzik’s analysis seems applicable beyond perturbation theory;
cutoff effects are organized powers of a up to (slowly varying)
logarithms

In lattice QCD numerical results seem to confirm expectations;

However, large powers of logarithms are a possibility (cf. O(3) model)
and could be problematic!

While Symanzik’s effective theory allows to unveal this behaviour, the
calculations are tedious! [Balog, Niedermayer, Weisz ’09 ]

Improvement coefficients are difficult determine non-perturbatively,
except where continuum symmetries are broken (e.g chiral symmetry
with Wilson quarks)

Perturbative determinations: automated perturbative methods or
stochastic perturbation theory might enable two-loop results which
may be sufficient in many cases.
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