
1 Solution to Exercise 3

The vertex, when inserted in the tadpole diagram, depends only on the external momentum

p1 = p2 = p.

Since the gluon is emitted and reabsorbed at the same vertex, there is a Kronecker δ-symbol

in color space induced from the gluon propagator, and the color factor becomes
∑

a{T
a, T a}bb =

2
∑

a(T
a)2

bb = 2(N2

c − 1)/(2Nc) = 2CF , the quadratic Casimir invariant of SU(Nc).

The calculation goes as follows:
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At this point one has to rescale the integration variable:

k → k′ = ak.

This means
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Note that the domain of integration after the rescaling becomes independent of a.

Then, taking also the limit of small ap:
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Note that we have used the fact that lima→0

∑

ρ cos apρ = 4. The quantity Z0 is an often

recurring lattice integral:
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= Z0 = 0.15493339.

The first term of the result contributes to the wave-function renormalization. The last

term diverges like 1/a, and therefore contributes to the shift of the mass under renormalization

(critical mass), due to the breaking of chiral symmetry for Wilson fermions (indeed, it is pro-

portional to r, and thus vanishes for naive fermions). The tadpole actually gives the dominant

contribution to the critical mass:
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indeed the total 1-loop critical mass for Wilson fermions, after adding the standard sunset

diagram, is
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2 Solution to Exercise 4

It is convenient to use the shorthand notations1

cλ = cos kλ

sλ = sin kλ

6 s =
∑
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γλ sin kλ

s2 =
∑

λ

sin2 kλ.

Then:
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1In (e) we keep the Kronecker δ-symbols, as well as factors like γ2

ρ
, to show that they are important if further

terms are present.
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