
1 Solution to Exercise 5

We use the shorthand notations

Γλ = sin kλ, (1.1)

W = 2
∑

λ

sin2 kλ

2
, (1.2)

Nρ = sin
kρ

2
, (1.3)

Mρ = cos
kρ

2
. (1.4)

We also put

6 s =
∑

λ

γλ sin kλ, (1.5)

and of course we also have

Γ2 =
∑

λ

sin2 kλ. (1.6)

It should be noted that Γ and N are odd in k, while M and W are even.

The zero-momentum part for the sunset diagram of the quark self-energy is:

J =
∫ π

a

−

π
a

ddk

(2π)d

∑

ρ

Gρρ(p − k) ·
[

Vρ(k, p) · S(k) · Vρ(p, k)
]

∣

∣

∣

∣

∣

ap=0

=
g2
0

a
CF

∫ π

−π

ddk

(2π)d

∑

ρ

(

1

2W
+

2a
∑

λ pλΓλ

(2W )2

)(

Nρ + iγρMρ +
apρ

2
(Mρ − iγρNρ)

)

×
−i6 s + W

Γ2 + W 2

(

Nρ + iγρMρ +
apρ

2
(Mρ − iγρNρ)

)

, (1.7)

where we have rescaled the integration variable. After combining the various factors a coming

from the propagator and the vertices, as well as from the rescaling of k, we are left with an

overall factor 1/a. Then we extract the contribution to the critical mass, i.e., the 1/a part:

J =
g2
0

a
CF

∫ π

−π

ddk

(2π)d

∑

ρ

1

2W
(Nρ + iγρMρ)

−i6 s + W

Γ2 + W 2
(Nρ + iγρMρ), (1.8)

which gives

J =
g2
0

a
CF

∫ π

−π

ddk

(2π)d

∑

ρ

1

2W (Γ2 + W 2)

(

N2
ρ W − γ2

ρM
2
ρ W + (γρ6 s + 6 sγρ)NρMρ

)

, (1.9)

where we have dropped terms in the numerator which are odd in k (because the denominator

is even in k).

After these manipulations, no Dirac matrices are left in the contribution to mc. The corre-

sponding integral is not divergent and is given by

m(a)
c = g2

0CF

∫ π

−π

ddk

(2π)d

∑

ρ

1

2W (Γ2 + W 2)

(

(N2
ρ − M2

ρ )W + Γ2
ρ

)

(1.10)

= g2
0CF

∫ π

−π

ddk

(2π)d

{

∑

ρ cos kρ

2
(

∑

λ sin2 kλ +
(

2
∑

λ sin2 kλ

2

)2)2

1



+

∑

ρ sin2 kρ

4
(

∑

λ sin2 kλ

2

)(

∑

λ sin2 kλ +
(

2
∑

λ sin2 kλ

2

)2)2

}

= −
g2
0

16π2
CF · 2.502511.

This is the contribution to the critical mass coming from the sunset diagram of the self-energy.

Solution to the advanced problem:

We start again from the expansion in (1.7). Since there is an overall factor 1/a in front of

the whole expression, in order to compute the contribution of order zero in a we have to keep

all terms of order ap in the Taylor expansions of propagator and vertices. Then, multiplying

everything together, we have

J = g2
0CF

∫ π

−π

ddk

(2π)d

∑

ρ

{

2
∑

λ pλΓλ

(2W )2
(Nρ + iγρMρ)

−i6 s + W

Γ2 + W 2
(Nρ + iγρMρ)

+
1

2W

pρ

2

[

(Mρ − iγρNρ)
−i6 s + W

Γ2 + W 2
(Nρ + iγρMρ)

+(Nρ + iγρMρ)
−i6 s + W

Γ2 + W 2
(Mρ − iγρNρ)

]}

.

We now do the multiplications, and in the numerator we drop all terms which are odd in k.

This gives

J = g2
0CF

∫ π

−π

ddk

(2π)d

∑

ρ

{

2
∑

λ pλΓλ

(2W )2(Γ2 + W 2)

(

− i6 sN2
ρ + iγρ6 sγρM

2
ρ + 2iγρNρMρW

)

+
1

2W (Γ2 + W 2)

pρ

2

(

2iγρ(M
2
ρ − N2

ρ )W − 2i6 sNρMρ − 2iγρ6 sγρNρMρ

)}

. (1.11)

At this point we can do the Dirac algebra, and so we arrive at an expression which contains

only one Dirac matrix in each monomial:

J = g2
0CF

∫ π

−π

ddk

(2π)d

∑

ρ

{

2
∑

λ pλΓλ

(2W )2(Γ2 + W 2)

(

− i6 s(N2
ρ + M2

ρ ) + 2iγρΓρM
2
ρ + iγρΓρW

)

+
1

2W (Γ2 + W 2)
pρ

(

iγρ(M
2
ρ − N2

ρ )W − iγρΓ
2
ρ

)}

(1.12)

= g2
0CF

∫ π

−π

ddk

(2π)d

{

i6p

(2W )2(Γ2 + W 2)

(

− 2Γ2
ν

∑

ρ

(N2
ρ + M2

ρ ) + 4
∑

ρ

Γ2
ρM

2
ρ + 2Γ2

νW

)

+
i6p

2W (Γ2 + W 2)

(

(M2
ν − N2

ν )W − Γ2
ν

)}

. (1.13)

In the last passage we have used the substitution

∑

λ

γλpλ

∫

fλ(k) = 6p
∫

fµ(k), (1.14)

since this kind of integrals does not depend on the direction, with the understanding that the

index µ is then fixed and must not appear again in the rest of the monomial. This reconstructs

2



the factor i6p, and so we finally obtain the result for the i6p contribution:

J = g2
0CF i6p

∫ π

−π

ddk

(2π)d

{

cos kν

2
(

∑

λ sin2 kλ +
(

2
∑

λ sin2 kλ

2

)2)2

+
−4 sin2 kν + 2

∑

ρ sin2 kρ cos2 kρ

2

8
(

∑

λ sin2 kλ

2

)2(
∑

λ sin2 kλ +
(

2
∑

λ sin2 kλ

2

)2)2

}

. (1.15)

This integral is logarithmically divergent, and will need to be treated in some way.
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