1 Solution to Exercise 5

We use the shorthand notations

$$
\begin{align*}
\Gamma_{\lambda} & =\sin k_{\lambda} \tag{1.1}\\
W & =2 \sum_{\lambda} \sin ^{2} \frac{k_{\lambda}}{2} \tag{1.2}\\
N_{\rho} & =\sin \frac{k_{\rho}}{2} \tag{1.3}\\
M_{\rho} & =\cos \frac{k_{\rho}}{2} \tag{1.4}
\end{align*}
$$

We also put

$$
\begin{equation*}
\nless=\sum_{\lambda} \gamma_{\lambda} \sin k_{\lambda}, \tag{1.5}
\end{equation*}
$$

and of course we also have

$$
\begin{equation*}
\Gamma^{2}=\sum_{\lambda} \sin ^{2} k_{\lambda} . \tag{1.6}
\end{equation*}
$$

It should be noted that Γ and N are odd in k, while M and W are even.
The zero-momentum part for the sunset diagram of the quark self-energy is:

$$
\begin{align*}
J= & \left.\int_{-\frac{\pi}{a}}^{\frac{\pi}{a}} \frac{d^{d} k}{(2 \pi)^{d}} \sum_{\rho} G_{\rho \rho}(p-k) \cdot\left[V_{\rho}(k, p) \cdot S(k) \cdot V_{\rho}(p, k)\right]\right|_{a p=0} \\
= & \frac{g_{0}^{2}}{a} C_{F} \int_{-\pi}^{\pi} \frac{d^{d} k}{(2 \pi)^{d}} \sum_{\rho}\left(\frac{1}{2 W}+\frac{2 a \sum_{\lambda} p_{\lambda} \Gamma_{\lambda}}{(2 W)^{2}}\right)\left(N_{\rho}+\mathrm{i} \gamma_{\rho} M_{\rho}+\frac{a p_{\rho}}{2}\left(M_{\rho}-\mathrm{i} \gamma_{\rho} N_{\rho}\right)\right) \\
& \times \frac{-\mathrm{i} \not \phi+W}{\Gamma^{2}+W^{2}}\left(N_{\rho}+\mathrm{i} \gamma_{\rho} M_{\rho}+\frac{a p_{\rho}}{2}\left(M_{\rho}-\mathrm{i} \gamma_{\rho} N_{\rho}\right)\right), \tag{1.7}
\end{align*}
$$

where we have rescaled the integration variable. After combining the various factors a coming from the propagator and the vertices, as well as from the rescaling of k, we are left with an overall factor $1 / a$. Then we extract the contribution to the critical mass, i.e., the $1 / a$ part:

$$
\begin{equation*}
J=\frac{g_{0}^{2}}{a} C_{F} \int_{-\pi}^{\pi} \frac{d^{d} k}{(2 \pi)^{d}} \sum_{\rho} \frac{1}{2 W}\left(N_{\rho}+\mathrm{i} \gamma_{\rho} M_{\rho}\right) \frac{-\mathrm{i} \not \phi+W}{\Gamma^{2}+W^{2}}\left(N_{\rho}+\mathrm{i} \gamma_{\rho} M_{\rho}\right) \tag{1.8}
\end{equation*}
$$

which gives

$$
\begin{equation*}
J=\frac{g_{0}^{2}}{a} C_{F} \int_{-\pi}^{\pi} \frac{d^{d} k}{(2 \pi)^{d}} \sum_{\rho} \frac{1}{2 W\left(\Gamma^{2}+W^{2}\right)}\left(N_{\rho}^{2} W-\gamma_{\rho}^{2} M_{\rho}^{2} W+\left(\gamma_{\rho} \nless+\phi \gamma_{\rho}\right) N_{\rho} M_{\rho}\right) \tag{1.9}
\end{equation*}
$$

where we have dropped terms in the numerator which are odd in k (because the denominator is even in k).

After these manipulations, no Dirac matrices are left in the contribution to m_{c}. The corresponding integral is not divergent and is given by

$$
\begin{align*}
m_{c}^{(a)} & =g_{0}^{2} C_{F} \int_{-\pi}^{\pi} \frac{d^{d} k}{(2 \pi)^{d}} \sum_{\rho} \frac{1}{2 W\left(\Gamma^{2}+W^{2}\right)}\left(\left(N_{\rho}^{2}-M_{\rho}^{2}\right) W+\Gamma_{\rho}^{2}\right) \tag{1.10}\\
& =g_{0}^{2} C_{F} \int_{-\pi}^{\pi} \frac{d^{d} k}{(2 \pi)^{d}}\left\{\frac{\sum_{\rho} \cos k_{\rho}}{2\left(\sum_{\lambda} \sin ^{2} k_{\lambda}+\left(2 \sum_{\lambda} \sin ^{2} \frac{k_{\lambda}}{2}\right)^{2}\right)^{2}}\right.
\end{align*}
$$

$$
\begin{gathered}
\left.+\frac{\sum_{\rho} \sin ^{2} k_{\rho}}{4\left(\sum_{\lambda} \sin ^{2} \frac{k_{\lambda}}{2}\right)\left(\sum_{\lambda} \sin ^{2} k_{\lambda}+\left(2 \sum_{\lambda} \sin ^{2} \frac{k_{\lambda}}{2}\right)^{2}\right)^{2}}\right\} \\
=-\frac{g_{0}^{2}}{16 \pi^{2}} C_{F} \cdot 2.502511 .
\end{gathered}
$$

This is the contribution to the critical mass coming from the sunset diagram of the self-energy.

Solution to the advanced problem:

We start again from the expansion in (1.7). Since there is an overall factor $1 / a$ in front of the whole expression, in order to compute the contribution of order zero in a we have to keep all terms of order $a p$ in the Taylor expansions of propagator and vertices. Then, multiplying everything together, we have

$$
\begin{aligned}
J= & g_{0}^{2} C_{F} \int_{-\pi}^{\pi} \frac{d^{d} k}{(2 \pi)^{d}} \sum_{\rho}\left\{\frac{2 \sum_{\lambda} p_{\lambda} \Gamma_{\lambda}}{(2 W)^{2}}\left(N_{\rho}+\mathrm{i} \gamma_{\rho} M_{\rho}\right) \frac{-\mathrm{i} \not \phi+W}{\Gamma^{2}+W^{2}}\left(N_{\rho}+\mathrm{i} \gamma_{\rho} M_{\rho}\right)\right. \\
& +\frac{1}{2 W} \frac{p_{\rho}}{2}\left[\left(M_{\rho}-\mathrm{i} \gamma_{\rho} N_{\rho}\right) \frac{-\mathrm{i} \not \phi+W}{\Gamma^{2}+W^{2}}\left(N_{\rho}+\mathrm{i} \gamma_{\rho} M_{\rho}\right)\right. \\
& \left.\left.+\left(N_{\rho}+\mathrm{i} \gamma_{\rho} M_{\rho}\right) \frac{-\mathrm{i} \phi+W}{\Gamma^{2}+W^{2}}\left(M_{\rho}-\mathrm{i} \gamma_{\rho} N_{\rho}\right)\right]\right\} .
\end{aligned}
$$

We now do the multiplications, and in the numerator we drop all terms which are odd in k. This gives

$$
\begin{align*}
J= & g_{0}^{2} C_{F} \int_{-\pi}^{\pi} \frac{d^{d} k}{(2 \pi)^{d}} \sum_{\rho}\left\{\frac{2 \sum_{\lambda} p_{\lambda} \Gamma_{\lambda}}{(2 W)^{2}\left(\Gamma^{2}+W^{2}\right)}\left(-\mathrm{i} \not \phi N_{\rho}^{2}+\mathrm{i} \gamma_{\rho} \not \phi \gamma_{\rho} M_{\rho}^{2}+2 \mathrm{i} \gamma_{\rho} N_{\rho} M_{\rho} W\right)\right. \\
& \left.+\frac{1}{2 W\left(\Gamma^{2}+W^{2}\right)} \frac{p_{\rho}}{2}\left(2 \mathrm{i} \gamma_{\rho}\left(M_{\rho}^{2}-N_{\rho}^{2}\right) W-2 \mathrm{i} \not \phi N_{\rho} M_{\rho}-2 \mathrm{i} \gamma_{\rho} \not \phi \gamma_{\rho} N_{\rho} M_{\rho}\right)\right\} . \tag{1.11}
\end{align*}
$$

At this point we can do the Dirac algebra, and so we arrive at an expression which contains only one Dirac matrix in each monomial:

$$
\begin{align*}
J= & g_{0}^{2} C_{F} \int_{-\pi}^{\pi} \frac{d^{d} k}{(2 \pi)^{d}} \sum_{\rho}\left\{\frac{2 \sum_{\lambda} p_{\lambda} \Gamma_{\lambda}}{(2 W)^{2}\left(\Gamma^{2}+W^{2}\right)}\left(-\mathrm{i} \not \phi\left(N_{\rho}^{2}+M_{\rho}^{2}\right)+2 \mathrm{i} \gamma_{\rho} \Gamma_{\rho} M_{\rho}^{2}+\mathrm{i} \gamma_{\rho} \Gamma_{\rho} W\right)\right. \\
& \left.+\frac{1}{2 W\left(\Gamma^{2}+W^{2}\right)} p_{\rho}\left(\mathrm{i} \gamma_{\rho}\left(M_{\rho}^{2}-N_{\rho}^{2}\right) W-\mathrm{i} \gamma_{\rho} \Gamma_{\rho}^{2}\right)\right\} \tag{1.12}\\
= & g_{0}^{2} C_{F} \int_{-\pi}^{\pi} \frac{d^{d} k}{(2 \pi)^{d}}\left\{\frac{\mathrm{i} \not p}{(2 W)^{2}\left(\Gamma^{2}+W^{2}\right)}\left(-2 \Gamma_{\nu}^{2} \sum_{\rho}\left(N_{\rho}^{2}+M_{\rho}^{2}\right)+4 \sum_{\rho} \Gamma_{\rho}^{2} M_{\rho}^{2}+2 \Gamma_{\nu}^{2} W\right)\right. \\
& \left.+\frac{\mathrm{i} \not p}{2 W\left(\Gamma^{2}+W^{2}\right)}\left(\left(M_{\nu}^{2}-N_{\nu}^{2}\right) W-\Gamma_{\nu}^{2}\right)\right\} . \tag{1.13}
\end{align*}
$$

In the last passage we have used the substitution

$$
\begin{equation*}
\sum_{\lambda} \gamma_{\lambda} p_{\lambda} \int f_{\lambda}(k)=\not p \int f_{\mu}(k), \tag{1.14}
\end{equation*}
$$

since this kind of integrals does not depend on the direction, with the understanding that the index μ is then fixed and must not appear again in the rest of the monomial. This reconstructs
the factor ipb, and so we finally obtain the result for the ipp contribution:

$$
\begin{align*}
J= & g_{0}^{2} C_{F} \mathrm{i} \not p \int_{-\pi}^{\pi} \frac{d^{d} k}{(2 \pi)^{d}}\left\{\frac{\cos k_{\nu}}{2\left(\sum_{\lambda} \sin ^{2} k_{\lambda}+\left(2 \sum_{\lambda} \sin ^{2} \frac{k_{\lambda}}{2}\right)^{2}\right)^{2}}\right. \\
& \left.+\frac{-4 \sin ^{2} k_{\nu}+2 \sum_{\rho} \sin ^{2} k_{\rho} \cos ^{2} \frac{k_{\rho}}{2}}{8\left(\sum_{\lambda} \sin ^{2} \frac{k_{\lambda}}{2}\right)^{2}\left(\sum_{\lambda} \sin ^{2} k_{\lambda}+\left(2 \sum_{\lambda} \sin ^{2} \frac{k_{\lambda}}{2}\right)^{2}\right)^{2}}\right\} . \tag{1.15}
\end{align*}
$$

This integral is logarithmically divergent, and will need to be treated in some way.

