1 Solution to Exercise 5

We use the shorthand notations

F)\ = SiIl]{Z)\, (11)
W = 2> sin®*—= (1.2)
)
N, = sin%, (1.3)
kp
M, = cos - (1.4)
We also put
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and of course we also have

= sin®ky. (1.6)
A

It should be noted that I' and N are odd in k, while M and W are even.
The zero-momentum part for the sunset diagram of the quark self-energy is:
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where we have rescaled the integration variable. After combining the various factors a coming
from the propagator and the vertices, as well as from the rescaling of k, we are left with an
overall factor 1/a. Then we extract the contribution to the critical mass, i.e., the 1/a part:
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where we have dropped terms in the numerator which are odd in k& (because the denominator
is even in k).

After these manipulations, no Dirac matrices are left in the contribution to m,.. The corre-
sponding integral is not divergent and is given by
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This is the contribution to the critical mass coming from the sunset diagram of the self-energy.

Solution to the advanced problem:

We start again from the expansion in (1.7). Since there is an overall factor 1/a in front of
the whole expression, in order to compute the contribution of order zero in a we have to keep
all terms of order ap in the Taylor expansions of propagator and vertices. Then, multiplying
everything together, we have
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We now do the multiplications, and in the numerator we drop all terms which are odd in k.
This gives
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At this point we can do the Dirac algebra, and so we arrive at an expression which contains
only one Dirac matrix in each monomial:
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In the last passage we have used the substitution
S a5k =¥ [ £k, (1.14)
A

since this kind of integrals does not depend on the direction, with the understanding that the
index p is then fixed and must not appear again in the rest of the monomial. This reconstructs



the factor iy, and so we finally obtain the result for the iy contribution:
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This integral is logarithmically divergent, and will need to be treated in some way.



