# Topology and the QCD vacuum

M. Müller-Preussker

Humboldt-University Berlin, Institute of Physics



## STRONGnet Summer School 2011, ZiF Bielefeld, June 2011

# **Outline:**

- 1. Topological effect in quantum mechanics
- 2. Topology: non-linear O(3)  $\sigma$ -model in 2D
- 3. Topology and instantons in 4D Yang-Mills theory
- 4. Topology of gauge fields and fermions
- 5. Abelian monopoles and center vortices
- 6. Instantons at T > 0: calorons
- 7. Summary

## 1. Topological effect in quantum mechanics

Assume:

- Infinitely long electric coil in z-direction with radius  $R \to 0$ .
- Constant magnetic flux  $\Phi$  inside the coil.
- Particle to move around the coil along circle in x y-plane.

Action:  $S_0 = \int_0^T dt \left(\frac{\dot{\varphi}^2}{2}\right), \quad \varphi(T) - \varphi(0) = 2\pi n, \quad n \quad \text{``winding number''}.$ Solution:  $\varphi(t) = \varphi(0) + \omega_n t, \quad \omega_n = \frac{2\pi n}{T}.$ 

Interaction with magnetic field described by "topological term":

$$S_{top} = \frac{e_0}{c} \int_0^T dt \; \vec{x} \cdot \vec{A}(\vec{x}(t)) = \hbar \frac{\Phi}{\Phi_0} \int_0^T dt \; \dot{\varphi} = \hbar \frac{\Phi}{\Phi_0} \; 2\pi n \,, \quad \Phi_0 \equiv \frac{2\pi\hbar c}{e_0} \,,$$

because 
$$A_i = \frac{\Phi}{2\pi} \frac{\partial}{\partial x_i} \arctan\left(\frac{x_2}{x_1}\right) = \frac{\Phi}{2\pi} \frac{1}{r^2} (-x_2, x_1) = \frac{\Phi}{2\pi} \frac{1}{r} (-\sin\varphi, \cos\varphi)$$
  
 $\rightarrow B_3 = \Phi \delta^{(2)}(\vec{x}) \rightarrow \int d^2 x B_3 = \Phi.$ 

 $S_{top}$  does not contribute to the classical equation of motion ! Situation changes in the quantum case: Aharonov-Bohm effect. Quantum mechanical scattering states:

$$\psi_k(x) \to e^{i\vec{k}\vec{x}} + \frac{e^{ikr}}{r}T(\varphi), \quad \varphi = \arctan\left(\frac{x_2}{x_1}\right).$$

Diff. cross section:

$$\frac{d\sigma}{d\varphi} = |T(\varphi)|^2 = \frac{1}{2\pi} \sin^2 \left(\pi \frac{\Phi}{\Phi_0}\right) \frac{1}{\cos^2(\varphi/2)},$$
  

$$\neq 0 \text{ for } \Phi \neq m\Phi_0, \quad m \in \mathbf{N}.$$

 $\implies$  Topology causes effect not existing in classical physics.

Interesting play model for QCD:

- perturbation theory shows asymptotic freedom,
- existence of topological solutions instantons,
- lattice simulations easy cluster algorithm available,
- model generalizable to larger number of degrees of freedom, with local U(1) invariance and allowing 1/n-expansion (CP(n-1) model),
- interaction with fermion fields can be implemented.

Studied also in condensed matter theory (in D=2+1 or 3+1). Consider 2D Euclidean space  $\mathbb{R}^2$ :

$$S[\Phi] = \int d^2x \frac{1}{2} \left( \partial_i \Phi^a(x) \cdot \partial_i \Phi^a(x) \right), \quad i = 1, 2, \ a = 1, 2, 3,$$

with condition:  $\sum_{a} \Phi^{a} \Phi^{a} = 1 \rightarrow \vec{\Phi} \in S^{2}_{int.sym.}$ . Model has global O(3) symmetry. Field equations by varying with Lagrange parameter  $\lambda(x)$ 

$$\widetilde{S} = \int d^2x \left[ \frac{1}{2} \partial_i \vec{\Phi} \cdot \partial_i \vec{\Phi} + \lambda(x) (\vec{\Phi}^2 - 1) \right].$$

$$-\Delta \Phi^{a} + 2\lambda \Phi^{a} = 0 \quad \rightarrow \quad \lambda = \frac{1}{2} \Phi^{a} \Delta \Phi^{a},$$
  
$$\Delta \vec{\Phi} - (\vec{\Phi} \cdot \Delta \vec{\Phi}) \vec{\Phi} = 0.$$

Search for fields with  $S[\Phi] < \infty$ ,

 $r|\text{grad }\Phi_i| \to 0 \quad \text{for} \quad r \to \infty, \quad \lim_{r \to \infty} \vec{\Phi} = \vec{\Phi}^{(vac)} = \text{const.},$  $\implies \quad \text{vacuum field breaks } O(3) \text{ symmetry.}$  $\implies \quad \mathbf{R}^2 \text{ gets compactified} \equiv S^2.$ 

Homotopy: Mapping  $x \in \mathbf{R}^2(S^2) \rightsquigarrow \vec{\Phi}(x) \in S^2_{int.sym.}$  called  $\pi_2(S^2)$ . Mapping decays into equivalence classes of continuously deformable mappings with fixed integer winding number or topological charge  $Q_t$ .  $Q_t = 0, \pm 1, \pm 2, \ldots$  corresponds to oriented surface on  $S^2_{int.sym.}$ , when covering  $\mathbf{R}^2(S^2)$  once. Illustration for homotopy:  $\pi_1(S^1)$  mapping circle onto circle.

$$\theta \in [0, 2\pi] \quad \leadsto \quad f(\theta) \in \mathbf{R}$$

with  $f(\theta)$  continuous function satisfying b. c. f(0) = 0 and  $f(\theta = 2\pi) = 2\pi n$  with  $n \in \mathbb{Z}$ .

### Examples:

- zero winding:  $f_0(\theta) = 0$  for all  $\theta$ ,

$$\tilde{f}_0(\theta) = \begin{cases} t \ \theta & \text{for } 0 \le \theta < \pi \\ t \ (2\pi - \theta) & \text{for } \pi \le \theta < 2\pi \end{cases}$$

with  $t \in [0, 1]$  for deformation.

- unit winding:  $f_1(\theta) = \theta$  for all  $\theta$ .

Winding number:  $Q_t = \frac{1}{2\pi} \int_0^{2\pi} d\theta \ (df/d\theta) = n,$ thus  $\pi_1(S^1) \equiv \mathbf{Z}$  for arbitrary mapping  $f(\theta)$ . Back to O(3)  $\sigma$ -model:

$$Q_t = \frac{1}{4\pi} \int dS^{(int.sym.)} = \frac{1}{4\pi} \int dS^a \cdot \Phi^a \in \mathbf{Z},$$
  
$$= \frac{1}{8\pi} \int d^2 x \ \epsilon_{\mu\nu} \epsilon_{abc} \frac{\partial \Phi^b}{\partial x_\mu} \frac{\partial \Phi^c}{\partial x_\nu} \cdot \Phi^a,$$
  
$$= \frac{1}{8\pi} \int d^2 x \ \epsilon_{\mu\nu} \vec{\Phi} \cdot (\partial_\mu \vec{\Phi} \times \partial_\mu \vec{\Phi}) \equiv \int d^2 x \ \rho_t(x).$$

 $Q_t$  invariant against continuous deformations of  $x \to \vec{\Phi}(x)$ .  $Q_t$  defines lower bound for  $S[\Phi]$ :

$$\int d^2 x \, \left[ (\partial_\mu \vec{\Phi} \pm \epsilon_{\mu\nu} \vec{\Phi} \times \partial_\nu \vec{\Phi}) (\partial_\mu \vec{\Phi} \pm \epsilon_{\mu\sigma} \vec{\Phi} \times \partial_\sigma \vec{\Phi}) \right] \ge 0$$

then

$$\frac{1}{2} \int d^2 x \, (\partial_\mu \vec{\Phi} \cdot \partial_\mu \vec{\Phi}) \geq \pm \frac{1}{2} \int d^2 x \, \epsilon_{\mu\nu} \vec{\Phi} \cdot (\partial_\mu \vec{\Phi} \times \partial_\nu \vec{\Phi}),$$
$$S[\Phi] \geq 4\pi \, |Q_t|.$$

 $S[\Phi] = 4\pi |Q_t| \quad \text{if} \quad \partial_\mu \vec{\Phi} = \pm \epsilon_{\mu\sigma} \vec{\Phi} \times \partial_\sigma \vec{\Phi}, \quad \text{``(anti)selfduality''}.$ 

2D lattice discretization (spacing a):

$$S \to S_L = a^2 \sum_{n,i} \frac{1}{2a^2} (\vec{\Phi}_{n+\hat{i}} - \vec{\Phi}_n) \cdot (\vec{\Phi}_{n+\hat{i}} - \vec{\Phi}_n),$$
  
=  $\sum_{n,i} (1 - \vec{\Phi}_{n+\hat{i}} \cdot \vec{\Phi}_n).$ 

represents O(3) spin model. Considered on finite lattice with p.b.c.  $(T^2)$ .

$$Q_t \to Q_L = \frac{1}{4\pi} \sum_{\sigma \in T^2} A_\sigma \equiv \sum_{\sigma \in T^2} \rho_\sigma$$

with  $\sigma \equiv (l, m, n)$  simplex of adjacent lattice sites, and  $A_{\sigma}$  oriented surface spanned by 3-leg  $(\vec{\Phi}_l, \vec{\Phi}_m, \vec{\Phi}_n)$ . Spherical triangle with angles  $(\alpha_l, \alpha_m, \alpha_n)$ , then

$$A_{\sigma} = \operatorname{sign}[\vec{\Phi}_l \cdot (\vec{\Phi}_m \times \vec{\Phi}_n)] \ (\alpha_l + \alpha_m + \alpha_n - \pi).$$

 $Q_L$  alternatively computable by counting how often a reference point on  $S^2$  is covered by  $\Phi$  simplices taking the orientation  $\operatorname{sign}[\vec{\Phi}_l \cdot (\vec{\Phi}_m \times \vec{\Phi}_n)]$  into account.

# Properties of $Q_L$ :

- $Q_L \in \mathbb{Z}$  by definition;
- local topological density defined  $\rho_t \equiv \rho_\sigma$ ;
- smoothness condition for configurations  $\{\vec{\Phi}_n\}$ :

 $1 - \vec{\Phi}_m \cdot \vec{\Phi}_n < \epsilon \quad \text{for all neighbour pairs} \quad \langle m, n \rangle$ keeping  $\vec{\Phi}_l \cdot (\vec{\Phi}_m \times \vec{\Phi}_n) \neq 0$ ,

 $\implies Q_L$  can be uniquely defined if  $\epsilon$  sufficiently small.

## Solution of selfduality equation: [Belavin, Polyakov, '75]

Complex formulation via stereographic projection:

$$\omega(z) = 2 \frac{\Phi^1 + i\Phi^2}{1 - \Phi^3}, \quad z = x_1 + ix_2$$

$$S = \int d^2x \frac{|d\omega/dz|^2}{(1+|\omega|^2/4)^2} = 4\pi Q_t \,.$$

Selfduality equation = Cauchy-Riemann eqs. for analytic functions:

$$\partial_1 \omega = \mp i \ \partial_2 \omega$$

#### Multi- (anti-) instanton solutions:

'instantons'= 'pseudo-particles' localized in (Euclidean) space-time

$$\omega_{multiinst}(z) = \frac{P_1(z)}{P_2(z)} \quad \text{or} \quad \frac{P_1(\overline{z})}{P_2(\overline{z})} \quad \text{, where } P_i, \quad i = 1, 2 \quad \text{polynoms.}$$
$$Q_t[\omega_{inst}] = \begin{cases} +\max(\deg P_1(z), \deg P_2(z)) > 0 & \text{`instantons'} \\ -\max(\deg P_1(\overline{z}), \deg P_2(\overline{z})) < 0 & \text{`antiinstantons'} \end{cases}$$

Example:  $\omega_{inst}(z) = (z - z_0)/\lambda$ ,  $z_0$  'position',  $\lambda =$  'width'  $\implies Q_t = +1$ ,  $S = 4\pi$  independent of  $z_0$  and  $\lambda$  !

#### Path integral quantization:

compute Euclidean vacuum transition amplitudes or correlation functions ( $\beta$  inverse coupling)

$$\begin{aligned} \langle \Omega(\Phi) \rangle &= \frac{1}{Z} \int D\Phi(x) \ \Omega(\Phi) \exp(-\beta S[\Phi]) \\ Z &= \int D\Phi(x) \ \exp(-\beta S[\Phi]), \quad D\Phi(x) = \prod_{x,a} d\Phi^a(x) \ \delta(\Phi^2 - 1) \end{aligned}$$

Interesting non-perturbative observables  $< \Omega >$ :

- topological susceptibility:  $\chi_t = \frac{1}{V^{(2)}} \langle Q_t^2 \rangle$ ,  $V^{(2)}$  2D volume,  $\chi_t$  diverges for one-instanton contribution (see below),
- correlation length  $\xi$  from correlator:  $C^{ab}(x,y) = \langle \Phi^a(x)\Phi^b(y)\rangle \propto \delta^{ab} (C\exp(-|x-y|/\xi)+\ldots)$  for  $|x-y| \to \infty$ ,
- dimensionless combination of both:  $\chi_t \xi^2$ .

Semiclassical approximation in general – the limit  $\hbar \to 0$ :

Taylor expansion 'around' classical solutions (multi-instantons):  $\Phi = \Phi_{cl} + \eta$ 

$$S(\Phi) = S(\Phi_{cl}) + \frac{1}{2!} \int d^2 x \ \eta \left. \frac{\delta^2 S}{\delta \eta^2} \right|_{\Phi = \Phi_{cl}} \eta + \dots$$
$$Z \simeq \sum_{\Phi_{cl}} \exp(-\beta S[\Phi_{cl}]) \ \cdot \ \operatorname{Det} \left( \left. \frac{\delta^2 S}{\delta \eta^2} \right|_{\Phi = \Phi_{cl}} \right)^{-\frac{1}{2}} + \dots$$

Difficulties:

- zero-modes of  $\frac{\delta^2 S}{\delta \eta^2}\Big|_{\Phi=\Phi_{cl}}$ ,  $\Rightarrow$  method of collective coordinates (instanton positions, scales, etc.), - treat determinant of non-zero modes (UV divergencies, renormalization). Concrete for non-linear  $O(3) \sigma$  model: [Fateev, Folov, Schwarz, 1978]

- one-instanton amplitude is IR divergent in the zero-mode scale integration,
- multi-instanton contributions to vacuum amplitude well-defined, dominate in the form

$$\omega_{multiinst}(z) = c \frac{(z - a_1) \cdot \ldots \cdot (z - a_q)}{(z - b_1) \cdot \ldots \cdot (z - b_q)} \quad \rightarrow \quad Q_t = q > 0.$$

**Result:** Partition function

$$Z \simeq \sum_{q} Z_{q}, \quad Z_{q} \propto \frac{1}{(q!)^{2}} \int \prod_{i=1}^{q} d^{2}a_{i} \prod_{j=1}^{q} d^{2}b_{j} \int \frac{d^{2}c}{(1+|c|^{2})^{2}} \exp(-\epsilon_{q}(a,b))$$

with 'energy'

$$\epsilon_q(a,b) = -\sum_{i$$

Corresponds to 2D Coulomb gas of positively (negatively) charged constituents  $a_i (b_i) \implies$  "instanton quarks".

Known to have phase transition:

 $T > T_c \rightarrow$  molecular phase of bound constituents,  $T < T_c \rightarrow$  plasma phase of unbound constituents (realized for  $O(3) \sigma$  m.). Hope, that similar mechanism works also in QCD  $\Rightarrow$  confinement (??).

## 3. Topology and instantons in 4D Yang-Mills theory

[Belavin, Polyakov, Schwarz, Tyupkin, '75; 't Hooft, '76; Callan, Dashen, Gross, '78-'79] Mostly talk about SU(2) for simplicity.

Potentials:  $A_{\mu} \equiv \sum_{a} g \frac{\sigma^{a}}{2i} A^{a}_{\mu} \in su(2),$  $\sigma^{a}$  Pauli matrices with  $[\sigma^{a}/2, \sigma^{b}/2] = i\epsilon^{abc}\sigma^{c}/2.$ 

Field strength:  $G_{\mu\nu} = \sum_{a} g \frac{\sigma^{a}}{2i} G^{a}_{\mu\nu}, \ G_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} + [A_{\mu}, A_{\nu}].$ 

Gauge transformation:  $U(x) = e^{-i\omega^a \sigma^a/2} \in SU(2)$ 

$$A_{\mu}(x) \rightarrow A^{U}_{\mu}(x) = U^{\dagger}(x)A_{\mu}(x)U(x) + U^{\dagger}(x)\partial_{\mu}U(x)$$
$$G_{\mu\nu}(x) \rightarrow G^{U}_{\mu\nu}(x) = U^{\dagger}(x)G_{\mu\nu}(x)U(x)$$

Euclidean action:  $S[A] = -\frac{1}{2g^2} \int d^4x \operatorname{tr} (G_{\mu\nu}G_{\mu\nu}) = \frac{1}{4} \int d^4x \ G^a_{\mu\nu}G^a_{\mu\nu}.$ Field equation:  $\frac{\delta S}{\delta A^a_{\mu}} = 0 \Rightarrow D_{\mu}G_{\mu\nu} = \partial_{\mu}G_{\mu\nu} + [A_{\mu}, G_{\mu\nu}] = 0.$  Want to compute Euclidean vacuum-to-vacuum amplitude with path integral:

$$Z = \langle vac | \exp(-\frac{1}{\hbar}\hat{H}(\tau - \tau_0)) | vac \rangle = C \int DA_{\mu}(x) \exp\left(-\frac{1}{\hbar}S[A]\right)$$
  
.  $|vac \rangle \implies$  boundary condition for "field trajectories":

$$A_{\mu}(x) \to A_{\mu}^{vac}(x) \equiv U^{\dagger}(x)\partial_{\mu}U(x) \text{ for } |x| \to \infty.$$

Show that "pure gauge" contribution  $A_{\mu}^{vac}(x)$  is characterized by integer "winding number" or "Pontryagin index".

Introduce topological charge:

$$Q_t[A] = \int d^4x \ \rho_t(x), \quad \rho_t(x) = -\frac{1}{16\pi^2} \ \text{tr} \left(G_{\mu\nu}\tilde{G}_{\mu\nu}\right), \quad \text{gauge invariant,}$$
  
dual field strength  $\tilde{G}_{\mu\nu} \equiv \frac{1}{2}\epsilon_{\mu\nu\rho\sigma}G_{\rho\sigma}.$ 

Topological density can be rewritten as  $\rho_t(x) = \partial_\mu K_\mu, \qquad K_\mu = -\frac{1}{8\pi^2} \epsilon_{\mu\nu\rho\sigma} \operatorname{tr} \left[A_\nu (\partial_\rho A_\sigma + \frac{2}{3}A_\rho A_\sigma)\right],$ "Chern-Simons density", gauge variant current. Winding at  $|x| \to \infty$ :

$$w_{\infty} = \oint_{S^3(R \to \infty)} d\sigma_{\mu} K_{\mu} = \oint d^3 \sigma \ n_{\mu} K_{\mu} = \frac{1}{24\pi^2} \oint d^3 \sigma \ n_{\mu} \epsilon_{\mu\nu\rho\sigma} \operatorname{tr} \left[A_{\nu} A_{\rho} A_{\sigma}\right].$$

Used vanishing of  $G_{\mu\nu} = 0$  for  $|x| \to \infty$ , thus  $\epsilon_{\mu\nu\rho\sigma}\partial_{\rho}A_{\sigma} = -\epsilon_{\mu\nu\rho\sigma}A_{\rho}A_{\sigma}$ .

$$w_{\infty} = \frac{1}{24\pi^2} \oint_{S^3(R \to \infty)} d^3 \sigma \ n_{\mu} \ \epsilon_{\mu\nu\rho\sigma} \text{tr} \left[ (U^{\dagger} \partial_{\nu} U) (U^{\dagger} \partial_{\rho} U) (U^{\dagger} \partial_{\sigma} U) \right],$$

 $\epsilon_{\mu\nu\rho\sigma} \text{tr} [\ldots]$  represents Jacobian for mapping  $S^3(R) \to SU(2)$ .

Indeed, for SU(2)  $U = B_0 + i\vec{\sigma} \cdot \vec{B}$ ,  $\sum_{i=0}^{3} B_i B_i = 1$ , thus  $SU(2) \equiv S^3$ .

$$w_{\infty} = \frac{1}{2\pi^2} \oint_{S^3(R \to \infty)} d^3 \sigma \det(\nabla_i B_j)$$

 $w_{\infty}$  counts how often  $S^{3}(R)$  is continuously mapped onto  $S^{3}$ -sphere of SU(2).

Thus, (gauge-variant) vacuum fields  $A^{(vac)}_{\mu}(x)$  characterized by classes of non-trivial Pontryagin index  $w_{\infty} \in \mathbb{Z}$ .

Notice:  $S^3(R) \to SU(N_c)$  continuously deformable to  $S^3(R) \to SU(2)$ , i.e. same homotopy group.

Now additional assumption:

$$A_{\mu}(x) \to U^{\dagger}(x)\partial_{\mu}U(x)$$
 for  $x \to x^{(i)}, i = 1, 2, \dots, q.$ 

Then, due to Gauss' law:

$$Q_{t}[A] = w_{\infty} + \sum_{i=1}^{q} w_{i} = w_{\infty} + \sum_{i} \lim_{R^{(i)} \to 0} \oint_{\sigma^{(i)}} d^{3}\sigma \ n_{\mu}K_{\mu}$$
  

$$\equiv \text{ sum of 'Pontryagin indices' at singular points } x_{i} \text{ and } |x| \to \infty$$

٠

Example for (pure gauge) vacuum field with  $w_{\infty} = +1$ :

$$A_{\mu}^{(+1)}(x) = U^{\dagger}(x)\partial_{\mu}U(x) \text{ with } U \equiv U_{1} = \frac{1x_{4} - i\vec{\sigma} \cdot \vec{x}}{\sqrt{x^{2}}} \in SU(2).$$
$$A_{a,\mu}^{(+1)}(x) = \frac{2}{g}\eta_{a\mu\nu}^{(+)}\frac{x_{\nu}}{x^{2}},$$

't Hooft symbols:

$$\eta_{a\mu\nu}^{(\pm)} = \epsilon_{a\mu\nu}$$
 for  $\mu, \nu = 1, 2, 3, \ \eta_{a4\nu}^{(\pm)} = -\eta_{a\nu4}^{(\pm)} = \pm \delta_{a\nu}, \ \eta_{a44}^{(\pm)} = 0.$ 

 $U_1$  can be used to characterize homotopy equivalence classes by

$$U_n = (U_1)^{\pm n} \quad \rightarrow \quad w_\infty[U_n] = \pm n$$

"Little" gauge transformations  $(w_{\infty}[U] = 0)$  deform  $U_n$ , but leave winding invariant.

Comment: 
$$S[A^{(+1)}] = 0$$
 and  $Q_t[A^{(+1)}] = w_{\infty} + w_{x=0} = 1 - 1 = 0.$ 

Quantum case: vacuum state(s) classified by winding

$$|n\rangle \leftrightarrow w_{\infty} = n$$
 ("prevacua")

"Large" gauge transformation (with w = 1) represented by unitary operator  $\hat{T}(U_1)$ :  $\hat{T} |n\rangle = |n+1\rangle$ 

Hamiltonian  $\hat{H}$  invariant:  $[\hat{T}, \hat{H}] = 0.$ 

Physical gauge invariant ground state – " $\theta$ -vacuum:"

$$\begin{aligned}
\hat{H}|\theta\rangle &= E_0|\theta\rangle, \\
\Rightarrow \hat{H}\hat{T}|\theta\rangle &= E_0\hat{T}|\theta\rangle, \\
\Rightarrow \hat{T}|\theta\rangle &= \exp(-i\theta)|\theta\rangle
\end{aligned}$$

Realized from "prevacua"  $|n\rangle$  as "Bloch states" for periodic potentials:

$$|vac\rangle \equiv |\theta\rangle \equiv \sum_{n=-\infty}^{n=+\infty} e^{in\theta} |n\rangle$$

Vacuum transition amplitude  $(\hbar = 1, \tau \to \infty)$ 

$$Z(\theta, \theta') = \langle \theta' | \exp(-\hat{H}\tau) | \theta \rangle = \sum_{n,n'} e^{i(n\theta - n'\theta')} \langle n' | \exp(-\hat{H}\tau) | n \rangle$$

$$= \sum_{n,n'} e^{i(n\theta - n'\theta')} \int DA_{\mu}(x) |_{n,n'} \exp(-S[A])$$
with b.c.'s  $A_{\mu} \rightarrow \begin{cases} A_{\mu}^{(n')} & \text{for } \tau' \rightarrow +\infty \\ A_{\mu}^{(n)} & \text{for } \tau' \rightarrow -\infty \end{cases}$ 
put  $\nu \equiv n' - n \equiv Q_t$ 

$$= \sum_{n,n'} e^{i(n\theta - n'\theta')} f(n' - n)$$

$$= \sum_{n} e^{i n (\theta - \theta')} \sum_{\nu} e^{-i \nu \theta'} f(\nu)$$

$$= \delta(\theta - \theta') \sum_{\nu} \int DA_{\mu}(x) |_{\nu} \exp(-S[A] - i Q_t[A] \theta')$$

i.e. superselection rule.

#### Comments:

- So far no reference to specific classical solutions of field equations;
- $\theta$ -term in the action: 4-divergence does contribute, if topologically non-trivial field configurations with  $Q_t \neq 0$  exit;
- $\theta$ -term violates P-, T-, thus CP-invariance: "Strong CP-violation";
- electric dipole moment of the neutron provides bound:  $\theta < O(10^{-9})$ ;
- $\theta$  as a variational parameter:  $\langle Q_t^2 \rangle \sim \frac{1}{Z(\theta)} \left. \frac{d^2}{d\theta^2} Z(\theta) \right|_{\theta=0};$
- Open question: occurrence of a phase transition, when varying  $\theta$ .

Instanton solutions: [Belavin, Polyakov, Schwarz, Tyupkin, '75]

As for O(3)  $\sigma$ -model:  $S[A] \ge \frac{8\pi^2}{g^2} |Q_t[A]|$ , since

$$-\int d^4x \operatorname{tr}\left[(G_{\mu\nu} \pm \tilde{G}_{\mu\nu})^2\right] \ge 0\,,$$

iff 
$$S[A] = \frac{8\pi^2}{g^2} |Q_t[A]|$$
, then  $G_{\mu\nu} = \pm \tilde{G}_{\mu\nu}$ .

BPST one-(anti)instanton solution (singular gauge) for SU(2):

$$\mathcal{A}_{a,\mu}^{(\pm)}(x-z,\rho,R) = R^{a\alpha} \eta_{\alpha\mu\nu}^{(\pm)} \frac{2 \ \rho^2 \ (x-z)_{\nu}}{(x-z)^2 \ ((x-z)^2 + \rho^2)},$$

with free parameters  $\rho$  – scale size,  $z_{\nu}$  – position,  $R^{a\alpha} T^{\alpha} = U^{\dagger} T^{a} U$  – global SU(2) orientation.

 $\Rightarrow \quad S[\mathcal{A}^{(\pm)}] = \frac{8\pi^2}{g^2}, \quad Q_t[\mathcal{A}^{(\pm)}] = \pm 1 \quad \text{independent of the 8 parameters} \Rightarrow$ fluctuations around  $\mathcal{A}^{(\pm)}$  provide 8 zero modes !

Multi-Instantons exist for any  $Q_t \in \mathbb{Z}$  [Atiyah, Hitchin, Manin, Drinfeld, '78], in practice difficult to handle.

Instanton contributions to vacuum amplitude – semiclassical approximation ['t Hooft, '76; Callan, Dashen, Gross, '78, '79]

$$Z(\theta) \equiv \sum_{\nu} \int \left. DA_{\mu}(x) \right|_{\nu} \exp\left(-S[A] - i \ \nu \ \theta\right), \quad \nu = Q_t[A],$$

approximated by (sufficiently dilute) superpositions

$$\begin{aligned} \mathcal{A}_{a,\mu}^{[\nu]}(x) &= \sum_{\sigma=\pm} \sum_{i=1}^{N_{\sigma}} \mathcal{A}_{a,\mu}^{(\sigma)}(x - z^{(i)}, \rho^{(i)}, R^{(i)}), \\ &\text{with} \quad \nu = N_{+} - N_{-}, \quad \rho^{(i)} \rho^{(j)} \ll (z^{(i)} - z^{(j)})^{2} \\ \mathcal{A}_{a,\mu}(x) &= \mathcal{A}_{a,\mu}^{[\nu]}(x) + \varphi_{a,\mu}(x) \\ Z(\theta = 0) &= \sum_{\nu} \int DA_{\mu}(x)|_{\nu} \exp\left(-S[A]\right) \\ &\simeq \sum_{\nu} \exp(-S[\mathcal{A}^{[\nu]}]) \int D\varphi \exp\left(-\int \frac{\delta S}{\delta A}\Big|_{\mathcal{A}^{[\nu]}} \varphi - \frac{1}{2} \int \varphi \frac{\delta^{2} S}{\delta A^{2}}\Big|_{\mathcal{A}^{[\nu]}} \varphi\right) + \cdots \\ &S[\mathcal{A}^{[\nu]}] \simeq (N_{+} + N_{-}) \frac{8\pi^{2}}{g^{2}}, \qquad \frac{\delta S}{\delta A}\Big|_{\mathcal{A}^{[\nu]}} \simeq 0. \end{aligned}$$

$$Z(\theta = 0) \simeq \sum_{\nu} \exp(-S[\mathcal{A}^{[\nu]}]) \operatorname{Det}\left(\left.\frac{\delta^2 S}{\delta A^2}\right|_{\mathcal{A}^{[\nu]}}\right)^{-\frac{1}{2}} + \cdots$$

Since single (anti-)instantons localized in space-time, expression can be factorized into one-instanton contributions.

One-instanton amplitude: ['t Hooft, '76]

$$Z_{1} = \exp\left(-\frac{8\pi^{2}}{g^{2}}\right) \operatorname{Det}\left(\left.\frac{\delta^{2}S}{\delta A^{2}}\right|_{\mathcal{A}^{(\pm)}}\right)^{-\frac{1}{2}}$$
$$= Z_{0} \cdot \int [dR] \int_{V} d^{4}z \int \frac{d\rho}{\rho} d(\rho),$$
$$d(\rho) = C\rho^{-4} \left(\frac{8\pi^{2}}{g^{2}}\right)^{2N_{c}} \exp\left(-\frac{8\pi^{2}}{\bar{g}(\rho)^{2}}\right),$$
$$-\frac{8\pi^{2}}{\bar{g}(\rho)^{2}} = -\frac{8\pi^{2}}{g^{2}} + b \ln M\rho = b \ln \rho\Lambda, \quad b = 11N_{c}/3$$

Final result: Partition function of an interacting instanton gas or liquid:

$$\frac{Z}{Z_0} = \sum_{N} \frac{1}{N!} \prod_{l=1}^{N} \sum_{\sigma_l = \pm 1} \int [dR_l] \int_{V} d^4 z_l \int \frac{d\rho_l}{\rho_l} \ d(\rho_l) \cdot \exp(-\sum_{m,n} V(m,n)).$$

"Interaction potentials" V(m,n) contain all non-factorization corrections. Problem:  $\rho$ -integration infrared divergent. Wayout: repulsive interactions at small (anti-)instanton distances.

$$d(\rho) \rightarrow d_{eff}(\rho) = d(\rho) \exp(-a \frac{\rho^2}{<\rho>^2}$$

[Ilgenfritz, M.-P., '81; Münster, '81; Shuryak, '82; Diakonov, Petrov, '84]

To be used for computing gluonic vacuum expectation values like:

- gluon condensates like  $\langle \operatorname{tr} G_{\mu\nu} G_{\mu\nu} \rangle \Rightarrow \checkmark$
- topological susceptibility  $\chi_t = (1/V) \langle Q_t^2 \rangle \Rightarrow \checkmark$
- glueball correlator  $\Rightarrow \sqrt{}$
- contribution to Wilson loops, i.e. potential between static QQ-pair

 $\Rightarrow$  no confinement for uncorrelated dilute instanton gas.

as well as for fermionic observables: quark condensate and hadronic correlators.

First resumé and further problems:

- Useful phenomenological approach for non-perturbative quantities in pure Yang-Mills.  $\iff$  Confinement hard to explain.
- What about fermions: chiral symmetry breaking and  $U_A(1)$  problem? See reviews by Schäfer, Shuryak, '98; Dyakonov, '03;...
- Instantons found in lattice YM theory by minimizing lattice gauge action with various methods like "cooling", "smoothing",...
   Teper, '86; Ilgenfritz, Laursen, M.-P., Schierholz, Schiller, '86; Polikarpov, Veselov, '88; ...
- Relation to models of confinement as proven on the lattice: monopole and vortex condensation?
- Are BPST instantons really the dominant semiclassical building blocks?
- Can the semiclassical approach be improved?
  - Recent attempts:
  - interacting instanton (-meron) liquid model [Lenz, Negele, Thies, '03-'04]
  - instantons at T > 0 "calorons" with non-trivial holonomy [Kraan, van Baal, '98; Lee, Lu, '98; Ilgenfritz, Martemyanov, MP, Shcheredin, Veselov, '03;
  - Ilgenfritz, MP, Peschka, '05; Gerhold, Ilgenfritz, MP, '06]
  - pseudoparticle approximation of path integral [M. Wagner,.. '06-'08]

# 4. Topology of gauge fields and fermions

[See e.g. book R. Rajaraman, Solitons and Instantons, review by A. Smilga, arXiv:0010049 (2000)]. Full QCD Lagrangian:

$$\mathcal{L}_{QCD} = -\frac{1}{2g^2} \int d^4x \,\operatorname{tr}\left(G_{\mu\nu}G_{\mu\nu}\right) + \sum_{f=1}^{N_f} \bar{\psi}_f (i\gamma^{\mu}\mathcal{D}_{\mu} - m_f)\psi_f\,,$$

invariant under flavour transformations

$$\delta \psi_f = i \alpha_A [t^A \psi]_f, \quad \text{if all } m_f = m \quad \text{identical},$$
  
$$\delta \psi_f = i \beta_A \gamma^5 [t^A \psi]_f, \quad \text{for } m_f \to 0$$

 $t^A \ (A = 0, 1, \dots, N_f^2 - 1)$  generators of the  $U(N_f)$  flavour group.

Noether currents:

$$(j^{\mu})^{A} = \bar{\psi}t^{A}\gamma^{\mu}\psi, (j^{\mu5})^{A} = \bar{\psi}t^{A}\gamma^{\mu}\gamma^{5}\psi.$$

Singlet axial anomaly  $(T^A \equiv 1)$ : quantum amplitude not invariant under

$$\delta\psi = i\alpha\gamma^5\psi, \qquad \delta\bar\psi = i\alpha\bar\psi\gamma^5 \;,$$

Axial anomaly [Adler, '69; Bell, Jackiw, '69; Bardeen, '74]

$$\partial_{\mu} j^{\mu 5}(x) = D(x) + 2N_{f} \rho_{t}(x)$$
  
with  $j^{\mu 5}(x) = \sum_{f}^{N_{f}} \bar{\psi}_{f}(x) \gamma^{\mu} \gamma^{5} \psi_{f}(x)$   
$$D(x) = 2im \sum_{f=1}^{N_{f}} \bar{\psi}_{f}(x) \gamma^{5} \psi_{f}(x)$$

- Related to triangle diagram for process  $\pi_0 \rightarrow \gamma \gamma$ .
- Occurs from proper regularization of the divergent fermionic determinant in the path integral [Fujikawa, '79].

 $\rho_t \neq 0 \quad \text{due to non-trivial topology} \implies \text{solution of the } U_A(1) \text{ problem:}$   $\eta'$ -meson (pseudoscalar singlet) for  $m \to 0$  not a Goldstone boson,  $m_{\eta'} \gg m_{\pi}$ .

Related Ward identity in full QCD:

$$4N_f^2 \int d^4x \, \langle \rho_t(x)\rho_t(0)\rangle = 2iN_f \langle -2m\bar{\psi}_f\psi_f\rangle + \int d^4x \, \langle D(x)D(0)\rangle$$
$$= 2iN_f m_\pi^2 F_\pi^2 + O(m^2)$$
$$\chi_t \equiv \frac{1}{V} \langle Q_t^2\rangle \Big|_{N_f} = \frac{i}{2N_f} m_\pi^2 F_\pi^2 + O(m_\pi^4)$$

 $\implies$  vanishes in the chiral limit.

However, using  $1/N_c$ -expansion, i.e. fermion loops suppressed ("quenched approximation") one gets [Witten, '79, Veneziano '79]

$$\chi_t^q = \left. \frac{1}{V} \langle Q_t^2 \rangle \right|_{N_f=0} = \frac{1}{2N_f} F_\pi^2 \left[ m_{\eta'}^2 + m_\eta^2 - 2m_K^2 \right] \simeq (180 \text{MeV})^4.$$

Discuss simplified case  $N_f = 1$ , Euclidean space.

$$\partial_{\mu} j_{\mu 5}(x) = -2m\bar{\psi}\gamma_5\psi - 2iQ_t(x)$$

Integrating axial anomaly over Euclidean space, taking fermionic path integral average: Atiyah-Singer index theorem

$$Q_t[A] = n_+ - n_-,$$

 $n_{\pm}$  number of zero modes of the Dirac operator

$$(i\gamma^{\mu}\mathcal{D}_{\mu}[A])f_{r}(x) = \lambda_{r}f_{r}(x), \text{ with } \lambda_{r} = 0, \text{ chirality } \gamma_{5}f_{r} = \pm f_{r}.$$

- $\Rightarrow$  Alternative definition of  $Q_t$ .
- $\Rightarrow$  Important for lattice computations, when employing a chiral  $i\gamma^{\mu}\mathcal{D}_{\mu}$ .

#### Zero mode in one-instanton background:

$$f_0(x-z,\rho) = \frac{\rho}{(\rho^2 + (x-z)^2)^{3/2}} u_0$$
, with  $u_0$  fixed spinor.

#### Consequence:

Transition amplitude including massless dynamical fermions  $\sim \text{Det}(i\gamma^{\mu}\mathcal{D}_{\mu})$ 

$$\langle n+1|\exp(-\hat{H}\tau)|n\rangle = 0$$

More general:

$$\langle n'| \exp(-\hat{H}\tau) | n \rangle = 0 \text{ for } n' \neq n.$$
  
$$\langle \theta'| \exp(-\hat{H}\tau) | \theta \rangle = \sum_{n,n'} \langle n'| \exp(-\hat{H}\tau) | n \rangle e^{i(n\theta - n'\theta')}$$
  
$$= \sum_{n} \langle n| \exp(-\hat{H}\tau) | n \rangle e^{in(\theta - \theta')}$$

Since  $[\hat{T}, \hat{H}] = 0$  and  $\hat{T} |n\rangle = |n+1\rangle$ ,  $\langle n|\exp(-\hat{H}\tau)|n\rangle$  independent of n. Hence,

$$\langle \theta' | \exp(-\hat{H}\tau) | \theta \rangle = e^{-E_o \tau} \sum_n e^{in(\theta - \theta')}$$
$$= 2\pi \delta(\theta - \theta') e^{-E_o \tau}$$

Allows for path integral representation including fermions, summing over all  $Q_t$ -sectors with  $\langle Q_t \rangle = 0$ . Semiclassically approximated by superpositions (of equal number) of instantons (I) and anti-instantons ( $\overline{I}$ ).

Notice:  $I\bar{I}$ -pairs also responsible for  $\langle \bar{\psi}\psi \rangle \neq 0$ .

## 5. Abelian monopoles and center vortices

(A) Abelian monopoles:

Conjecture: QCD as a dual superconductor.

Confinement in QCD is due to condensation of monopoles, leading to a dual Meissner effect. ['t Hooft '75, Mandelstam '76]

Main ingredience: Abelian projection

Assume

 $A^a_\mu - SU(2)$  gauge field,  $\Phi^a$  – Higgs field in adjoint representation of SU(2).

Georgi-Glashow model:

$$L = -\frac{1}{4}G^{a}_{\mu\nu}G^{a}_{\mu\nu} + \frac{1}{2}D_{\mu}\vec{\Phi} \cdot D_{\mu}\vec{\Phi} - V(|\vec{\Phi}|)$$

(Gauge invariant) Abelian projection:

$$F_{\mu\nu} \equiv \Phi^a G^a_{\mu\nu} =$$
 e.-m.,  $U(1)$  gauge field.

Monopole solutions exist (topological objects - "3d instantons"), sources of magnetic flux localized at zeros of  $\Phi^a(x)$  ('t Hooft-Polyakov monop.) Yang-Mills theory on the lattice:  $A_{\mu}(x_n) \to U_{n,\mu} \in SU(2)$ 

No Higgs available, but may diagonalize any operator transforming as  $\vec{\Phi}$ : e.g. Polyakov loop, some plaquette loop etc.

Alternative: maximally Abelian gauge (MAG)

[Kronfeld, Laursen, Schierholz, Wiese, '87]

$$\sum_{\mu} (\partial_{\mu} \mp i A_{\mu}^{3}) A_{\mu}^{\pm} = 0, \quad A_{\mu}^{\pm} = \frac{1}{\sqrt{2}} (A_{\mu}^{1} \pm i A_{\mu}^{2})$$

On the lattice suppress non-diagonal SU(2) components:

$$\begin{split} F_{U}[\Omega] &= \sum_{n,\mu} \left\{ 1 - \frac{1}{2} \operatorname{tr} \left( \sigma_{3} U_{n\mu}^{(\Omega)} \sigma_{3} U_{n\mu}^{(\Omega)\dagger} \right) \right\} = \operatorname{Min.}, \\ &= \sum_{n,\mu} \left\{ 1 - \frac{1}{2} \operatorname{tr} \left( \Phi_{n} U_{n\mu} \Phi_{n+\hat{\mu}} U_{n\mu}^{\dagger} \right) \right\}, \quad \Phi_{n} \equiv \Omega_{n}^{\dagger} \sigma_{3} \Omega_{n} = \Phi_{n}^{a} \sigma_{a}, \quad ||\Phi_{n}|| = 1, \\ &= \sum_{n,\mu} \left\{ 1 - \Phi_{n}^{a} R_{n\mu}^{ab}(U) \Phi_{n+\hat{\mu}}^{b} \right\}, \quad R_{n\mu}^{ab} = \frac{1}{2} \operatorname{tr} \left( \sigma_{a} U_{n\mu} \sigma_{b} U_{n\mu}^{\dagger} \right), \\ &= \frac{1}{2} \sum_{na;mb} \Phi_{n}^{a} \{ - \Box_{nm}^{ab}(U) \} \Phi_{m}^{b} \equiv \hat{F}_{U}[\Phi], \quad \Box_{nm}^{ab}(U) = \text{ lattice Laplacian.} \end{split}$$

Problem with Gribov copies. Careful gauge fixing required (sim. annealing).

#### Modification: Laplacian Abelian gauge (LAG)

[Vink, Wiese; van der Sijs]

Relax the normalization condition:  $||\Phi_n|| = 1$ , minimize  $\hat{F}_U[\Phi]$  by finding lowest lying eigenmode of the Laplacian (e.g. with CG method).

'tHooft-Polyakov-like monopole excitations expected at zeros  $\Phi_n \simeq 0$ . Finally rotate locally  $U_{n\mu}$  and  $\Phi_n$  such that  $\Phi_n = \Phi_n^a \sigma_a \to \phi_n \sigma_3$ .

Having fixed the gauge, Abelian projection = coset decomposition:

$$U_{n\mu} = C_{n\mu} \cdot V_{n\mu}, \qquad V_{n\mu} = \exp(i\theta_{n\mu}\sigma_3),$$

 $C_{n\mu}$  representing charged components w. r. to residual U(1).

Compute observables with Abelian fields  $V_{n\mu}$  or  $\theta_{n\mu}$ , e.g. Wilson loops to check confinement force (so-called Abelian dominance). Check dual superconductor scenario by studying magnetic monopole currents: [DeGrand, Toussaint, '80]

$$a^2 F_{\mu\nu} \equiv \theta_{n\mu\nu} = \theta_{n\mu} + \theta_{n+\hat{\mu},\nu} - \theta_{n+\hat{\nu},\mu} - \theta_{n\nu}.$$

Gauge invariant flux through plaquette P:

$$\overline{\theta}_P \equiv \overline{\theta}_{n,\mu\nu} = \theta_{n,\mu\nu} - 2\pi M_{n,\mu\nu}, \quad M \in \mathbf{Z}$$

such that  $-\pi \leq \overline{\theta}_{n,\mu\nu} < \pi$ .

Then magnetic charge of 3-cube C:

$$m_c = \frac{1}{2\pi} \sum_{P \in \partial c} \overline{\theta}_P = 0, \pm 1, \pm 2.$$

Monopole current along dual links:

$$K_{n\mu} = \frac{1}{4\pi} \epsilon_{\mu\nu\rho\sigma} \partial_{\nu} \overline{\theta}_{n,\rho\sigma}, \quad \sum_{\mu} \partial_{\mu} K_{n\mu} = 0.$$

Conservation law for dual currents  $K_{n\mu}$  leads to closed monopole loops on the 4d dual lattice.
#### Consequences:

[Suzuki, Yotsuyanagi, '90; Bali, Bornyakov, M.-P., Schilling, '96; Chernodub, Polikarpov, Veselov,...; Del Debbio, DiGiacomo, Paffuti,...; ... ]

- Abelian dominance  $\langle O[U_{n\mu}] \rangle \simeq \langle O[V_{n\mu}] \rangle$ , not surprising at least without prior gauge fixing (MAG or LAG).
- Monopole dominance, i.e. string tension reproduced from monopole contributions alone.
- Monopole condensation for  $T < T_c$  from monopole creation operator with  $<\mu_{mon}> \neq 0$

[DiGiacomo, Lucini, Montesi, Paffuti, '00].

• Deconfinement transition at  $T_c$  can be viewed as bond percolation of monopole clusters. [Bornyakov,Mitrjushkin,M.-P., '92]

Abelian static potential V(R)from full SU(2) Wilson loop (V) and Abelian Wilson loop  $(V^{ab})$  $\implies$  string tension:  $\sigma_{SU(2)} \simeq 0.94 \sigma_{abelian}$ .



[Bali, Bornyakov, M.-P., Schilling, '96]

Splitting the potential into monopole and photon contributions:

$$u_{n\mu}^{mon} = \exp[i\theta_{n\mu}^{mon}], \qquad \theta_{n\mu}^{mon} = -\sum_m D(n,m) \ \partial'_\nu M_{m,\mu\nu}.$$

D(n,m) – lattice Coulomb propagator,  $\partial'$  – means backward derivative. Define photon contributions from:

$$u_{n\mu}^{ph} = \exp[i\theta_{n\mu}^{ph}], \qquad \theta_{n\mu}^{ph} = \theta_{n\mu} - \theta_{n\mu}^{mon}$$



### (B) Center vortices:

J. Greensite's criticism (see [Greensite, arXiv:hep-lat/0301023, '03]):

Abelian and monopole potentials from different group representations do not show so-called Casimir scaling at intermediate distances.

Better does another model: Center vortices.

### Center vortex for SU(2) in 4d:

Assume link variables taking values as center elements  $z \in Z(2) \subset SU(2)$ :

$$U_{n\mu} = z_{n\mu} = \pm \mathbf{1}_2.$$

Vortex = plaquette with  $\frac{1}{2}$ tr  $U_P = -1$ .

Build up closed vortex sheets (or end at world lines of center-monopoles). Modelling Confinement: percolating vortex sheets provide area law of the Wilson loop.

#### Direct maximal center gauge (DMCG):

Find the gauge, which fits link variables  $\{U_{n\mu}\}$  at best by

$$u_{n\mu} = \Omega_n z_{n\mu} \Omega_{n+\hat{\mu}}^{\dagger}.$$

Sufficient to maximize first

$$R_U[\Omega] = \sum_{n,\mu} \operatorname{tr}_A \{ \Omega_n^{\dagger} U_{n\mu} \Omega_{n+\hat{\mu}} \}$$

 $(\operatorname{tr}_A O \equiv (\operatorname{tr}_F O)^2 - 1 = \operatorname{trace} \text{ in adjoint representation}).$ 

Second minimize for fixed  $\Omega_{n\mu}$  w.r. to  $z_{n\mu}$ :

$$\sum_{n,\mu} \operatorname{tr}_{F} \left[ (U_{n\mu} - \Omega_{n} z_{n\mu} \Omega_{n+\hat{\mu}}^{\dagger}) \times (h.c.) \right]$$

putting  $z_{n\mu} = \operatorname{sign} \operatorname{tr} \left[\Omega_n^{\dagger} U_{n\mu} \Omega_{n+\hat{\mu}}\right]$ 

Other gauge fixing prescriptions have been tested (Laplacian center gauge, indirect center gauges,...).

 $\implies$  String tension  $\sigma_F$  similar as for Abelian monopoles.

However, center-valued field contains less information than Abelian one.

Question: How instanton models are related to monopole and vortex models?

## <u>6. Instantons at T > 0: calorons</u>

Partition function

$$Z_{\rm YM}(T,V) \equiv \text{Tr} \ e^{-\frac{\hat{H}}{T}} \propto \int DA \ e^{-S_{\rm YM}[A]} \text{ with } A(\vec{x}, x_4 + b) = A(\vec{x}, x_4), \ b = 1/T.$$

Old semiclassical treatment with Harrington-Shepard (HS) caloron solutions  $\equiv x_4$ -periodic instanton chains Gross, Pisarski, Yaffe, '81

$$A_{a\mu}^{\rm HS} = \bar{\eta}_{a\mu\nu} \partial_{\nu} \log(\Phi(x))$$

$$\Phi(x) = 1 + \sum_{k \in \mathbf{Z}} \frac{\rho^2}{(\vec{x} - \vec{z})^2 + (x_4 - z_4 - kb)^2}$$
$$= 1 + \frac{\pi \rho^2}{b|\vec{x} - \vec{z}|} \frac{\sinh\left(\frac{2\pi}{b}|\vec{x} - \vec{z}|\right)}{\cosh\left(\frac{2\pi}{b}|\vec{x} - \vec{z}|\right) - \cos\left(\frac{2\pi}{b}(x_4 - z_4)\right)}$$

Kraan - van Baal - Lee - Lu solutions (KvBLL) = (multi-) calorons with non-trivial asymptotic holonomy

$$P(\vec{x}) = \mathbf{P} \exp\left(i \int_{0}^{b=1/T} A_4(\vec{x}, t) \, dt\right) \stackrel{|\vec{x}| \to \infty}{\Longrightarrow} \quad \mathcal{P}_{\infty} = e^{2\pi i \boldsymbol{\omega} \tau_3} \notin \mathbf{Z}$$

Kraan, van Baal, '98 - '99, Lee, Lu '98



Action density of an SU(3) caloron (van Baal, '99)  $\implies$  not a simple SU(2) embedding into SU(3) !!

## Calorons with non-trivial holonomy

K. Lee, Lu, '98, Kraan, van Baal, '98 - '99, Garcia-Perez et al. '99

- $x_4$ -periodic, (anti)selfdual solutions from ADHM formalism,
- generalize Harrington-Shepard calorons (i.e.  $x_4$  periodic BPST instantons).

$$\begin{array}{lll} \mbox{For } SU(2): & \mbox{holonomy parameter } \bar{\omega} = 1/2 - \omega, & \mbox{$0 \le \omega \le 1/2$}. \\ A^{C}_{\mu} & = & \frac{1}{2} \bar{\eta}^{3}_{\mu\nu} \tau_{3} \partial_{\nu} \log \phi + \frac{1}{2} \ \phi \ \mbox{Re} \left( (\bar{\eta}^{1}_{\mu\nu} - i\bar{\eta}^{2}_{\mu\nu}) (\tau_{1} + i\tau_{2}) (\partial_{\nu} + 4\pi i\omega \delta_{\nu,4}) \tilde{\chi} \right) \\ & & + \delta_{\mu,4} \ 2\pi \omega \tau_{3} \ , \\ \phi(x) & = & \frac{\psi(x)}{\hat{\psi}(x)} \ , & x = (\vec{x}, x_{4} \equiv t) \ , & r = |\vec{x} - \vec{x}_{1}|, \ s = |\vec{x} - \vec{x}_{2}| \ , \\ \psi(x) & = & -\cos(2\pi t) + \cosh(4\pi r \bar{\omega}) \cosh(4\pi s \omega) + \frac{r^{2} + s^{2} + \pi^{2} \rho^{4}}{2rs} \sinh(4\pi r \bar{\omega}) \sinh(4\pi s \omega) \\ & & + \frac{\pi \rho^{2}}{s} \sinh(4\pi s \omega) \cosh(4\pi r \bar{\omega}) + \frac{\pi \rho^{2}}{r} \sinh(4\pi r \bar{\omega}) \cosh(4\pi s \omega) \ , \\ \hat{\psi}(x) & = & -\cos(2\pi t) + \cosh(4\pi r \bar{\omega}) \cosh(4\pi s \omega) + \frac{r^{2} + s^{2} - \pi^{2} \rho^{4}}{2rs} \sinh(4\pi r \bar{\omega}) \sinh(4\pi s \omega) \ , \\ \hat{\chi}(x) & = & \frac{1}{\psi} \left\{ e^{-2\pi i t} \frac{\pi \rho^{2}}{s} \sinh(4\pi s \omega) + \frac{\pi \rho^{2}}{r} \sinh(4\pi r \bar{\omega}) \right\} \ . \end{array}$$

#### Properties:

- periodicity with b = 1/T,
- (anti)selfdual with topological charge  $Q_t = \pm 1$ ,
- has two centers at  $\vec{x}_1, \vec{x}_2 \rightarrow$  "instanton quarks",
- scale-size versus distance:  $\pi \rho^2 T = |\vec{x}_1 \vec{x}_2| = d$ ,
- limiting cases:
  - $\omega \to 0 \implies$  'old' HS caloron,
  - $|\vec{x}_1 \vec{x}_2|$  large  $\implies$  two static BPS monopoles or dyons (DD)with mass ratio  $\sim \bar{\omega}/\omega$ ,
  - $|\vec{x}_1 \vec{x}_2|$  small  $\implies$  non-static single caloron (*CAL*).

-  $L(\vec{x}) = \frac{1}{2} \operatorname{tr} P(\vec{x}) \to \pm 1$  close to  $\vec{x} \simeq \vec{x}_{1,2} \Longrightarrow$  "dipole structure"

KvBLL SU(2) caloron:

Action density

Polyakov loop



DD

- Localization of the zero-mode of the Dirac operator:
  - time-antiperiodic b.c.:

around the center with  $L(\vec{x}_1) = -1$ ,

$$|\psi^{-}(x)|^{2} = -\frac{1}{4\pi}\partial_{\mu}^{2} \left[ \tanh(2\pi r\bar{\omega})/r \right] \text{ for large } d,$$

• time-periodic b.c.:

around the center with  $L(\vec{x}_2) = +1$ ,

$$|\psi^+(x)|^2 = -\frac{1}{4\pi}\partial^2_\mu \left[\tanh(2\pi s\omega)/s\right]$$
 for large  $d$ .

### - $SU(N_c)$ KvBLL calorons

- - consist of  $N_c$  monopole constituents becoming well-separated static BPS monopoles (dyons) in the limit of large distances or scale sizes,
  - resemble single-localized HS calorons (BPST instantons) at small distances, but are genuine  $SU(N_c)$  objects not embedded SU(2).
- Eigenvalues of the (asymptotic) holonomy

$$\mathcal{P}_{\infty} = g \exp(2\pi i \operatorname{diag}(\mu_1, \mu_2, \dots, \mu_N)) g^{\dagger}$$

with ordering  $\mu_1 < \mu_2 < \cdots < \mu_{N+1} \equiv 1 + \mu_1$ ,  $\mu_1 + \mu_2 + \cdots + \mu_N = 0$ determine the masses of the dyons:  $M_i = 8\pi^2(\mu_{i+1} - \mu_i), i = 1, \cdots, N.$ 

• Monopole constituents are localized at positions  $\vec{x}_m$ , where eigenvalues of the Polyakov loop  $P(\vec{x})$  degenerate.

• SU(3): moving localization of the fermionic zero mode from constituent to constituent when changing the boundary condition with phase  $\zeta \in [0, 1]$ :

$$\Psi_z(x_0+b,\vec{x}) = e^{-2\pi i \zeta} \Psi_z(x_0,\vec{x})$$

(with b = 1/T)



Garcia Perez, et al., '99; Chernodub, Kraan, van Baal, '00

- Multi-calorons known only in very special cases van Baal, Bruckmann, Nogradi, '04
- Treatment of the path integral in the background of KvBLL calorons in terms of monopole constituents: free energy favours non-trivial holonomy at  $T \simeq T_c$  Diakonov, '03; Diakonov, Gromov, Petrov, Slizovskiy, '04

Lattice tools for the instanton and caloron search

Gauge fields:

$$A_{\mu}(x_n) \Longrightarrow U_{n,\mu} \equiv P \exp i \int_{x_n}^{x_n + \hat{\mu}a} A_{\mu} dx_{\mu} \in SU(N_c)$$

Gauge action (Wilson '74):

$$S_W = \beta \sum_{x,\mu < \nu} \left( 1 - \frac{1}{N_c} \operatorname{Re} \operatorname{Tr} \mathbf{U}_{\mathbf{x},\mu\nu} \right) \sim a^4 \sum_{x,\mu < \nu} \operatorname{Tr} \mathbf{G}_{\mu\nu} \mathbf{G}_{\mu\nu}(\mathbf{x}), \quad \beta = \frac{2N_c}{g_0^2}$$

Path integral quantization:

$$\langle W \rangle = Z^{-1} \int \prod_{n,\mu} dU_{n,\mu} W(U) \exp(-S_W(U))$$
$$Z = \int \prod_{n,\mu} dU_{n,\mu} \exp(-S_W(U))$$

Monte Carlo method: Generates ensemble of lattice fields in a Markov chain  $\{U\}_1, \{U\}_2, \cdots, \{U\}_N$ 

with resp. to probability distribution ('Importance sampling')

$$W(\{U\}) = Z^{-1} \exp(-S_W(U)).$$

Take  $x_4$ -periodic quantum lattice fields as "snapshots" at  $T \neq 0$ in order to search for semi-classical objects

 $\implies$  calorons with non-trivial holonomy ??

• Cooling and smearing:

Successive minimization of the (Wilson plaquette) action S(U) by replacing  $U_{x,\mu} \to \bar{U}_{x,\mu}$ 

$$\bar{U}_{x,\mu} = \mathbf{P}_{SU(N_c)} \left( (1 - \boldsymbol{\alpha}) U_{x,\mu} + \frac{\boldsymbol{\alpha}}{6} \sum_{\nu(\neq\mu)} \left[ U_{x,\nu} U_{x+\hat{\nu},\mu} U_{x+\hat{\mu},\nu}^{\dagger} + U_{x-\hat{\nu},\nu}^{\dagger} U_{x-\hat{\nu},\mu} U_{x+\hat{\mu}-\hat{\nu},\nu} \right] \right)$$

with

 $- \alpha = 1.0 \rightarrow \text{cooling}$ 

iteration down to action plateaus in order to search for (approximate) solutions of the classical (lattice) equations of motion  $\delta S/\delta U_{x,\mu} = 0$ .

 $- \alpha = 0.45 \rightarrow 4d$  APE smearing

iteration in order to remove short-range fluctuations

 $\rightarrow~$  clusters of top. charge far from being class. solutions.

- Gluonic observables
  - action density  $\varsigma(\vec{x}) = \frac{1}{N_t} \sum_t s(\vec{x}, t);$
  - topological density

$$q_t(\vec{x}) = -\frac{1}{2^9 \pi^2 N_t} \sum_t \left( \sum_{\mu,\nu,\rho,\sigma=\pm 1}^{\pm 4} \epsilon_{\mu\nu\rho\sigma} \operatorname{tr} \left[ U_{x,\mu\nu} U_{x,\rho\sigma} \right] \right);$$

- spatial Polyakov loop distribution

$$L(\vec{x}) = \frac{1}{N_c} \operatorname{tr} \mathcal{P}(\vec{x}), \qquad P(\vec{x}) = \prod_{t=1}^{N_t} U_{\vec{x},t,4};$$

in particular asymptotic holonomy

$$L_{\infty} = \frac{1}{N_c} \operatorname{tr} \left( \frac{1}{V_{\alpha}} \sum_{\vec{x} \in \boldsymbol{V_{\alpha}}} \left[ \mathcal{P}(\vec{x}) \right]_{\text{diagonal}} \right) \,,$$

where  $V_{\alpha}$  region of minimal action (topological) density;

- Abelian magnetic fluxes and monopole charges within MAG.
- Center vortices within DMCG.

[Bruckmann, Ilgenfritz, Martemyanov, Zhang, '10]

• Fermionic modes:

eigenvalues and eigenmode densities of lattice Dirac operator

$$\sum_{y} D[U]_{x,y} \ \psi(y) = \lambda \ \psi(x)$$

(with varying  $x_4$ -boundary conditions) determined numerically by applying Arnoldi method (ARPACK code package).

Standard Wilson - badly breaking chiral invariance:

$$D_{W}[U]_{x,y} = \delta_{xy} - \kappa \sum_{\mu} \left\{ \delta_{x+\hat{\mu},y} \left( \mathbf{1} - \gamma^{\mu} \right) U_{x,\mu} + \delta_{y+\hat{\mu},x} \left( \mathbf{1} + \gamma^{\mu} \right) U_{y,\mu}^{\dagger} \right\}$$

Chiral improvement - overlap operator:

$$D_{\rm ov} = \frac{\rho}{a} \left( 1 + D_{\rm W} / \sqrt{D_{\rm W}^{\dagger} D_{\rm W}} \right) , \qquad D_{\rm W} = M - \frac{\rho}{a} ,$$

satisfies Ginsparg-Wilson relation  $\implies$  chiral symmetry at  $a \neq 0$ 

$$D\gamma_5 + \gamma_5 D = \frac{a}{\rho} D\gamma_5 D$$

 $D_{\rm ov}$  guarantees index theorem  $Q_{\rm index} = n_- - n_+$ . Topological charge density filtered by truncated mode expansion:

$$q_{\lambda_{\rm cut}}(x) = -\sum_{|\lambda| \le \lambda_{\rm cut}} \left(1 - \frac{\lambda}{2}\right) \psi_{\lambda}^{\dagger} \gamma_5 \psi_{\lambda}(x) ,$$

Numerical evidence for equivalence of filters:

Chirally improved fermionic filter applied to equilibrium (quantum) fields reveals similar cluster structures as 4D smearing, if mode truncation is tuned to appropriate number of smearing steps:

Small 
$$N_{\text{smear}} \iff \text{large } N_{\text{modes}}.$$

## $\implies$ moderate smearing of MC lattice fields seems justified.

[Bruckmann, Gattringer, Ilgenfritz, M.-P., A. Schäfer, Solbrig, '07]

## Lattice filter strategies:

(A) Lowest action plateaux, i.e. extract classical solutions with various minimization or "cooling" methods:

 $S \approx n S_0, \quad n = 1, \cdots, 6, \quad (S_0 \equiv 8\pi^2/g^2)$ 

 $\implies$  KvBLL-like topological clusters seen for SU(2) (and SU(3))

- "dipole (triangle)" constituent structure for the Polyakov loop,
- MAG Abelian monopoles correlated with dyon constituents,
- and fermionic mode "hopping" from constituent to constituent.

[Ilgenfritz, Martemyanov, M.-P., Shcheredin, Veselov '02; Ilgenfritz, M.-P., Peschka, '05]

- (B) Clusters of top. charge by 4d smearing  $S \approx n S_0$ , n = O(30 40), string tension reduced but non-zero.
- (C) Equilibrium lattice gauge fields:

low-lying modes of chirally improved or exact (overlap) Dirac operator in equilibrium without and in combination with smearing.

### ad (B) Topological clusters from 4d smearing - SU(2) case

Ilgenfritz, Martemyanov, M.-P., Veselov, '04 - '05

## 4D APE smearing:

- reduces quantum fluctuations while keeping long range physics,
- (spatial) string tension becomes slowly reduced, stop at  $\sigma_{sm} \simeq 0.6 \sigma_{full}$ ,
- lumps (clusters) of topological charge become visible.

We analyse top. clusters w. r. to their MAG Abelian monopole content,

- select static monopole world lines = 'distinct dyons',
  - closing monopole world lines = 'distinct calorons'.



Analytic DD and CAL, both with their (MAG) Abelian monopole loops.

Estimate cluster radius from peak values of top. density  $\implies$  cluster charges.

# $T < T_c$ : lattice size $24^3 \times 6$ , 50 4d smearing steps

Polyakov loop distributions in lattice sites with time-like MAG Abelian monopoles. For comparison: unbiased distribution of Polyakov loops in all sites.







- $\Rightarrow$  Topological clusters with  $Q_t \simeq \pm \frac{1}{2}$  identified.
- $\Rightarrow N_{\rm dyon}: N_{\rm caloron} \text{ of identifiable single dyons and non-dissociated calorons}$ rises with  $T \to T_c$ .

<u> $T > T_c$ </u>: lattice size  $24^3 \times 6$ , 25 (20) smearing steps for  $\beta = 2.5$  (2.6).

Polyakov loop distributions in lattice sites with time-like MAG Abelian monopoles.



 $Q_{\text{cluster}}$  versus Pol. loop averaged over positions of time-like Abelian monopoles



 $\Rightarrow$  dominantly light monopoles (dyons) found, calorons suppressed for  $T > T_c$ .

## ad (C) Equilibrium fields: low-lying fermionic modes (SU(2))

[Bornyakov, Ilgenfritz, Martemyanov, Morozov, M.-P., Veselov, '07; Bornyakov, Ilgenfritz, Martemyanov, M.-P., '09]

Use tadpole-improved Lüscher-Weisz action for better performance of the overlap operator.

#### Observables:

- $q_{\lambda_{cut}}(x)$  with 20 lowest-lying modes for p.b.c. and (anti-) p.b.c.,
- identify topological clusters of both sign, find  $q_{\max}(cluster)$ ,
- Polyakov loop P(x) inside top. clusters after 10 APE smearings, find  $P_{\text{extr}}(cluster)$ ,
- identify clusters of type "CAL  $\equiv$  DD" and "D"

Results support previous observations relying on top. clusters found with smearing.

## Illustration at $T\simeq 1.5~T_c$

Realized with  $20^3 \times 4$ , within Z(2) sector with  $\langle L \rangle > 0$ .

 $\implies$  Overlap eigenvalues of a typical MC configuration:



For  $\langle L \rangle < 0$  Figs. for "pbc" and "apbc" would interchange!

For clusters containing static MAG Abelian monopoles show

- the extremal value of the topological charge density,
- the peak value of the local Polyakov line.

(Anti)selfduality with field strength from low-lying modes is well satisfied.

Circles  $\leftrightarrow$  clusters found with pbc (light dyons), triangles  $\leftrightarrow$  clusters found with apbc (heavy dyons).



 $\implies \text{KvBLL-like constituents again visible.}$  $\implies \text{But D's (not CAL's) are statistically dominant.}$ 

## Simulating a caloron gas

[HU Berlin master thesis by P. Gerhold, '06; Gerhold, Ilgenfritz, M.-P., '06]

Model based on random superpositions of KvBLL calorons.

Superpositions made in the algebraic gauge –  $A_4$ -components fall off. Gauge rotation into periodic gauge

$$A^{per}_{\mu}(x) = e^{-2\pi i x_4 \vec{\omega} \vec{\tau}} \cdot \sum_i A^{(i),alg}_{\mu}(x) \cdot e^{+2\pi i x_4 \vec{\omega} \vec{\tau}} + 2\pi \vec{\omega} \vec{\tau} \cdot \delta_{\mu,4}.$$

### First important check: study the influence of the holonomy

- same fixed holonomy for all (anti)calorons:  $\mathcal{P}_{\infty} = \exp 2\pi i \omega \tau_3$  $\omega = 0 - \text{trivial}, \ \omega = 1/4 - \text{maximally non-trivial},$
- put equal number of calorons and anticalorons randomly but with fixed distance between monopole constituents  $d = |\vec{x}_1 \vec{x}_2| = \pi \rho^2 T$ , in a 3d box with open b.c.'s,
- for measurements use a  $32^3 \times 8$  lattice grid and lattice observables,
- fix parameters and lattice scale: temperature:  $T = 1 \text{ fm}^{-1} \simeq T_c$ , density:  $n = 1 \text{ fm}^{-4}$ , scale size: fixed  $\rho = 0.33 \text{ fm}$  vs. distribution  $D(\rho) \propto \rho^{7/3} \exp(-c\rho^2)$  such that  $\overline{\rho} = 0.33 \text{ fm}$ .

Polyakov loop correlator  $\rightarrow$  quark-antiquark free energy

$$F(R) = -T \log \langle L(\vec{x})L(\vec{y}) \rangle, \quad R = |\vec{x} - \vec{y}|$$

with trivial ( $\omega = 0$ ) and maximally non-trivial holonomy ( $\omega = 0.25$ ).



 $\implies$  Non-trivial (trivial) holonomy (de)confines

for standard instanton or caloron liquid model parameters.

## Building a more realistic model for the deconfinement transition Main ingrediences:

- Holonomy parameter:  $\omega = \omega(T)$ lattice results for the (renormalized) average Polyakov loop. Digal, Fortunato, Petreczky, '03; Kaczmarek, Karsch, Zantow, Petreczky, '04  $\omega = 1/4$  for  $T \leq T_c$ ,  $\omega$  smoothly decreasing for  $T > T_c$ .
- Density parameter: n = n(T) for uncorrelated caloron gas to be identified with top. susceptibility χ(T) from lattice results
  Alles, D'Elia, Di Giacomo, '97

#### • $\rho$ -distribution:

T=0:Ilgenfritz, M.-P., '81; Dyakonov, Petrov, '84<br/> T>0:Gross, Pisarski, Yaffe, '81

 $T < T_c \quad D(\rho, T) = A \cdot \rho^{7/3} \cdot \exp(-c\rho^2) \qquad \int D(\rho, T) d\rho = 1, \quad \bar{\rho} \text{ fixed}$  $T > T_c \quad D(\rho, T) = A \cdot \rho^{7/3} \cdot \exp(-\frac{4}{3}(\pi\rho T)^2) \qquad \int D(\rho, T) d\rho = 1, \quad \bar{\rho} \text{ running}$ 

Distributions sewed together at  $T_c \implies$  relates  $\overline{\rho}(T=0)$  to  $T_c$ , then  $\overline{\rho}(T=0)$  to be fixed from known lattice space-like string tension  $T_c/\sqrt{\sigma_s(T=0)} \simeq 0.71$ :  $\overline{\rho} = 0.37$  fm Effective string tension  $\sigma(R, R_2)$  from Creutz ratios of spatial Wilson loops (with  $R_2 = 2 \cdot R$ ) versus distance R $T/T_c = 0.8, 0.9, 1.0$  for confined phase,  $T/T_c = 1.10, 1.20, 1.32$  for deconfined phase.



 $\implies$  Nice plateaux, but no rising  $\sigma(T)$  for  $T > T_c$ .

Test of Casimir scaling for ratio  $\sigma_{Adj}/\sigma_{Fund}$  at various T:



Color averaged free energy versus distance R at different temperatures from Polyakov loop correlators.



 $\implies$  successful description of the deconfinement transition,  $\implies$  but still no realistic description of the deconf. phase.

## Test of the magnetic monopole content in MAG: histograms of 3-d extensions of dual link-connected monopole clusters



 $\implies$  Some percolation seen for  $T < T_c$  as well as its disappearance for  $T > T_c$ 

# Summary

- Topological aspects in QCD occur naturally and have phenomenological impact. Instanton gas/liquid model remains phenomenologically important. Main qualitative achievements: chiral symmetry breaking, solution of  $U_A(1)$ , ...
- Drawback: no confinement. Alternative models: monopoles, vortices explaining confinement.
- Check of models is possible with lattice methods.
- Basic quantity:  $\chi_t = \langle Q_t^2 \rangle / V$ . To be computed on the lattice, too. Requires suitable lattice definition of Q (e.g. via overlap operator modes).
- KvBLL calorons with non-trivial holonomy have been identified by cooling, 4d smearing and with fermionic modes in the confinement phase.
- For  $T \nearrow T_c$  calorons seem to dissociate more and more into well-separated monopoles.
- For  $T > T_c$  (corresp. to trivial holonomy) light monopole pairs with opposite top. charge are dominating.

 $\implies$  Requires more investigations.

• KvBLL caloron gas model very encouraging !!

# Some literature for further reading

Books:

- R. Rajaraman, Solitons and Instantons,
- M. Shifman, Instantons in Gauge Theories,
- J. Greensite, An Introduction to the Confinement Problem.

## Reviews:

- T. Schäfer, E. Shuryak, Instantons in QCD, arXiv:hep-ph/9610451v3,
- D. Diakonov, Instantons at Work, arXiv:hep-ph/0212026,
- J. Greensite, The Confinement Problem in Lattice Gauge Theory, arXiv:hep-lat/0301023.
Thank you for your attention !