
1 / 28

ParFORM and FORM4

Takahiro Ueda
TTP KIT Karlsruhe, Germany

International Workshop on
Frontiers in Perturbative Quantum Field Theory
11 September 2012, Bielefeld U.

 ParFORM and FORM4 - T. Ueda (TTP KIT) 2 / 28

Outline

● Introduction

● FORM and its parallel versions

● New features in FORM 4 (and also in parallel versions)

● Summary

 ParFORM and FORM4 - T. Ueda (TTP KIT) 3 / 28

Introduction

● FORM (by J. Vermaseren et al.) is a program for symbolic
manipulations, which can handle expressions consisting
of a huge number of terms (TB).

● The current version is FORM 4.0.

● The FORM web site: .

● Parallel versions, which make use of multiple CPUs
simultaneously:

● ParFORM: the Message Passing Interface (MPI).

● TFORM: the POSIX threads (Pthreads).

>~

FORM version 4.0, J. Kuipers, TU, J.A.M. Vermaseren,
and J. Vollinga, arXiv:1203.6543 [cs.SC].

http://www.nikhef.nl/~form

http://arxiv.org/abs/1203.6543
http://www.nikhef.nl/~form

 ParFORM and FORM4 - T. Ueda (TTP KIT) 4 / 28

The First Example

● User program:

Symbol a,b,x;
Local expr = a*x + x^2;

identify x = a + b;

.sort

if (count(b,1) == 1)
multiply a/b;

Print;
.end

a*x + x^2

2*a^2 + 3*a*b + b^2

a^2 + a*b + a^2 + 2*a*b + b^2

5*a^2 + b^2

2*a^2 + 3*a^2 + b^2

1st m
o

du
le

2nd
 m

o
du

le

 ParFORM and FORM4 - T. Ueda (TTP KIT) 5 / 28

FORM 4.0 (Sep 4 2012) 64-bits Run: Thu Sep 6 17:50:48 2012
 Symbol a,b,x;
 Local expr = a*x + x^2;

 identify x = a + b;

 .sort

Time = 0.00 sec Generated terms = 5
 expr Terms in output = 3
 Bytes used = 108

 if (count(b,1) == 1)
 multiply a/b;

 Print;
 .end

Time = 0.00 sec Generated terms = 3
 expr Terms in output = 2
 Bytes used = 64

 expr =
 b^2 + 5*a^2;

 0.00 sec out of 0.00 sec

$ form example.frm

 ParFORM and FORM4 - T. Ueda (TTP KIT) 6 / 28

More Examples: Pattern Matching

● For more complicated manipulations (differentiation,
integration, series expansion, etc.), one need to use
powerful and flexible features of FORM,
e.g., pattern matching.

For example, differentiation of a polynomial with respect to
 can be written as follows:

Symbol x,n;
Local expr = 1 + x + x^2 + x^3;

identify x^n? = n * x^(n-1);

Print;
.end

Matches with to the power of
any integer (including zero).

 ParFORM and FORM4 - T. Ueda (TTP KIT) 7 / 28

More Examples: Other Types of Objects

● FORM has many types of objects: symbols, functions,
vectors, indices etc.

Symbol x,a;
CFunction den;
Local expr = den(1-2*x);

#define N "5"

splitarg (x) den;
repeat;
 identify den(a?,x?) = 1/a - x/a * den(a,x);
 if (count(x,1) > `N') discard;
endrepeat;

Print;
.end

Series expansion of den(a+b*x) =

up to (with nonzero and).

Repeat

Split arguments as den(a+b*x) den(a,b*x)

until enough higher terms are obtained.

 ParFORM and FORM4 - T. Ueda (TTP KIT) 8 / 28

More Examples: $-variables

● $-variables are basically small expressions. They can
store various types of information and can be accessed in
both compile-time (preprocessor) and run-time
(processor).

● The following code is to determine the maximum power of
 in expressions:

Symbol x,n;
Local expr = (1+x)^5;

#$n = 0;
if (count(x,1) > $n) $n = count_(x,1);
.sort

#message the maximum power of x is `$n'
.end

If the higher power of is found,
store it into $n.

 ParFORM and FORM4 - T. Ueda (TTP KIT) 9 / 28

Structure of FORM

● Preprocessor: preparation and filter of the user input.

● Compiler: compiles statements to internal representation.

● Processor: execution of statements, generation of terms
and sorting them.

Preprocessor Compiler

Processor

User Program

“dot” instructions
e.g., .sort, .end

regular
statements

preprocessor
instructions

internal
representation

input
expressions output

expressions

sorting

 ParFORM and FORM4 - T. Ueda (TTP KIT) 10 / 28

Sequential FORM

Sorting

Generating

Terms
...

Input

Output

● Locality principle:
● Operations are local for each term.

● Complete data are stored locally for each term.
● Can process each term independently.

● Expressions as “streams” of terms.
● Sequential access to the disk storage. Merge sort on disk.

● Expressions bigger
than the memory
(limited only by disk).

Process
term by term

 ParFORM and FORM4 - T. Ueda (TTP KIT) 11 / 28

Concept of Parallelisation of FORM

● Based on master-worker model.

● The master distributes terms to workers.

● Term generation and
partial sorting on
each worker.

● The master collects results
from the workers and
performs the final sorting.

● Parallelisation is
transparent for users.

...

Terms
...

Input

...

Sorting Sorting

Worker 2

Generating Generating

Worker 1

Master

Master

Sorting

Output

 ParFORM and FORM4 - T. Ueda (TTP KIT) 12 / 28

ParFORM

● Multiprocessor version of FORM.

● Communication via the Message Passing Interface (MPI).

● Can run on computer clusters.

Master

data

Worker

data

Worker

data

Worker

data

MPI MPI MPI

Independent
processes

Karlsruhe, 1998-

Fliegner, Retey, Vermaseren '00
Tentyukov, Fliegner, Frank,
Onischenko, Retey, Staudenmaier '04
Tentyukov, Staudenmaier,
Vermaseren '06

 ParFORM and FORM4 - T. Ueda (TTP KIT) 13 / 28

TFORM

Master

data on
shared memory

Worker Worker Worker

thread

thread thread thread

One process

● Multithreaded version of FORM.

● Based on the POSIX threads (Pthreads).

● Communication via the shared memory space.

● Performance gain on multicore computers.

NIKHEF, 2005-

Tentyukov, Vermaseren '10

 ParFORM and FORM4 - T. Ueda (TTP KIT) 14 / 28

Benchmark I

● BAICER benchmark on ttpmoon cluster.
Each node has 12 cores (X5675 @ 3.07GHz),
96 GB RAM, 3.6TB local disk (Raid 0 with 6 stripes)
and connected by QDR Infiniband.

sequential
FORM

n
cpu

=12

n
cpu

=12
n

cpu
=1

 ParFORM and FORM4 - T. Ueda (TTP KIT) 15 / 28

Benchmark II

● BAICER benchmark with ParFORM on HP XC4000 at KIT
SCC. Each node has 4 cores (AMD Opteron @ 2.6GHz).
 $TMP: local disk (R/W perf. / node: 60/60MB/s)
 $WORK: global disk (R/W perf. / node : 320/400MB/s)

Disk speed can considerably affect on the performance.

slower disk

faster disk

FORMTMP=

 ParFORM and FORM4 - T. Ueda (TTP KIT) 16 / 28

New Features in FORM 4

● Many features have been added since FORM 3.

● Polynomial factorisation.

● Rational functions as coefficients.

● New statements, e.g., Transform statement.

● Extra Symbols, ToPolynomial, FromPolynomial.

● New functions (some of them are for polynomial algebra
including gcd_, div_, rem_).

● Checkpoints (recovery from a crash).

● System independent save files.

● …..

 ParFORM and FORM4 - T. Ueda (TTP KIT) 17 / 28

FORM 4: Factorisation

● The statement FactArg now factorise argument of
functions.

● FORM 3 does not factorise this function argument.
(Only overall factors can be factorised.)

● Also factorisation of
● Expressions : Factorize / Unfactorize
● $-variables : FactDollar / #FactDollar

Symbol x,a,b;
CFunction f;
Local E = f(a*b + x*b + x*a + x^2);
FactArg f;
Print;
.end

 E =
 f(a + x,b + x);

 ParFORM and FORM4 - T. Ueda (TTP KIT) 18 / 28

FORM 4: Rational Functions as Coeffs.

● Normal sorting:

● PolyFun (already in Form 3):

● Rational coefficients can be used with PolyRatFun.

● The first argument of the function serves as numerator
and the second as denominator.
Symbol x,y,z;
CFunction rat;
PolyRatFun rat;
Local E = x * rat(y,z) + x * rat(y,1-z)
 + x^2 * rat(y^2-1,y-1);
Print;
.end

 E =
 x*rat(- y,z^2 - z) + x^2*rat(y + 1,1);

1/2*x + 1/3*x 5/6*x

acc(1/2+a)*x + acc(1/2+b)*x
 acc(1+a+b)*x

 ParFORM and FORM4 - T. Ueda (TTP KIT) 19 / 28

Application: MincerExact (1/3)

● Mincer (program for 3-loop massless propagator
diagrams) works in expansions in , typically
up to 6th power.

● Big tables for expansions of Pochhammer symbols etc.
are needed.

● Using PolyRatFun, no need of expansions at all. Code is
much cleaner/shorter and only slightly slower.

● Results for Mellin moments look like:

VALUE = GschemeConstants(0,0)^2*GschemeConstants(2,0)*
cf^2*rat(-16+96*ep-48*ep^2-640*ep^3+1680*ep^4-
1824*ep^5+944*ep^6-192*ep^7,9+33*ep+36*ep^2+12*ep^3);

 ParFORM and FORM4 - T. Ueda (TTP KIT) 20 / 28

Application: MincerExact (2/3)

● One can expand the rational function in the result around
 up to any order you want.
Local E = rat(-16+96*ep-48*ep^2-640*ep^3+1680*ep^4
 -1824*ep^5+944*ep^6192*ep^7,
 9+33*ep+36*ep^2+12*ep^3);

identify rat(x?,y?) = num(x)*den(y);

 E = num(-16+96*ep-48*ep^2-640*ep^3+1680*ep^4
 -1824*ep^5+944*ep^6-192*ep^7)
 *den(9+33*ep+36*ep^2+12*ep^3);

factarg den;

 E = num(-16+96*ep-48*ep^2-640*ep^3+1680*ep^4
 -1824*ep^5+944*ep^6-192*ep^7)
 *den(3,1+ep,1+2*ep,3+2*ep);

 ParFORM and FORM4 - T. Ueda (TTP KIT) 21 / 28

Application: MincerExact (3/3)

● Expanding num and den up to gives

 E = num(-16+96*ep-48*ep^2-640*ep^3+1680*ep^4
 -1824*ep^5+944*ep^6-192*ep^7)
 *den(3,1+ep,1+2*ep,3+2*ep);

chainout den;

 E = num(-16+96*ep-48*ep^2-640*ep^3+1680*ep^4
 -1824*ep^5+944*ep^6-192*ep^7)
 *den(3)*den(1+ep)*den(1+2*ep)*den(3+2*ep);

 E = -16/9
 +464/27*ep
 -4960/81*ep^2
 +21152/243*ep^3
 +65264/729*ep^4
 -1744048/2187*ep^5
 +16761728/6561*ep^6;

 ParFORM and FORM4 - T. Ueda (TTP KIT) 22 / 28

ParFORM with New Features

● ParFORM is ready for the new features of the version 4
(and also TFORM).

● Some new features needed special code for MPI
interactions between the master and the workers, for
example:

● Factorised $-variable. (factorized subexpressions)

● Factorised expressions. (sync. of some flags)

● …

● Users do not need to worry about the implementation. It is
transparent for users.

 ParFORM and FORM4 - T. Ueda (TTP KIT) 23 / 28

MincerExact on Parallel FORM

● The benchmark result of MincerExact (calcdia.frm with
keeping higher order gauge terms) on ttpmoon. Since the
problem is not so big (14min by FORM), only small benefit.
But ParFORM and TFORM work correctly.

 ParFORM and FORM4 - T. Ueda (TTP KIT) 24 / 28

$-variables on Parallel Versions (1/2)

● The parallelisation is transparent to users:
most of existing FORM programs can get a benefit
without any modifications.

● $-variables can obstruct parallel execution. In the previous
example, FORM does not know how to combine the results
of $n on the workers. Enter the sequential mode.

Symbol x,n;
Local expr = (1+x)^5;

#$n = 0;
if (count(x,1) > $n) $n = count_(x,1);
.sort

#message the maximum power of x is `$n'
.end

 ParFORM and FORM4 - T. Ueda (TTP KIT) 25 / 28

$-variables on Parallel Versions (2/2)

● Give a hint:

Then FORM can run in the parallel mode and combine
$-variables correctly after the execution of the module.

ModuleOption maximum $n;

Symbol x,n;
Local expr = (1+x)^5;

#$n = 0;
if (count(x,1) > $n) $n = count_(x,1);
ModuleOption maximum $n;
.sort

#message the maximum power of x is `$n'
.end

● Other hints:

● local

● maximum

● minimum

● sum

 ParFORM and FORM4 - T. Ueda (TTP KIT) 26 / 28

Parallel Versions of FORM in CVS (1/2)

● FORM is now open source. One can download the source
code from the FORM CVS repository:

● ParFORM/TFORM sources are also in the repository.

● One can find pre-compiled FORM/TFORM executables on
the web site. But one may want to build them because

● Bug fixes in the latest CVS version, (sometimes more bugs...)

● Compiler optimisations for your machine.

● For ParFORM, one has to build it on his/her environment
because MPI implementations are not binary-compatible.

http://www.nikhef.nl/~form/formcvs.php

(alternatively, a Git Mirror: http://github.com/tueda/form)

http://www.nikhef.nl/~form/formcvs.php
http://github.com/tueda/form

 ParFORM and FORM4 - T. Ueda (TTP KIT) 27 / 28

Parallel Versions of FORM in CVS (2/2)

● To build executable files, automatic configuration is
available for UNIX-like environments, e.g., Linux.

● Run as

$ wget http://www.nikhef.nl/~form/formcvs.php?dl=
formcvs.tar.gz -O formcvs.tar.gz
$ tar xzf formcvs.tar.gz
$ cd formcvs
$ autoreconf -i
$./configure --enable-parform
$ make form, tform, parform in sources subdirectory

(or one can “make install”)

$ form myprogram.frm
$ tform -w 4 myprogram.frm
$ mpirun -np 16 parform myprogram.frm

http://www.nikhef.nl/~form/formcvs.php?dl

 ParFORM and FORM4 - T. Ueda (TTP KIT) 28 / 28

Summary

● FORM 4.0 is now available.

● Many new features, e.g., polynomial algebra.

● Future calculations may use significantly different
algorithms from those used in the past.

● ParFORM and TFORM are ready for the new features.

● No modification in one's program is needed.

● One can try the parallel versions for one's big problems.

FORM version 4.0, J. Kuipers, TU, J.A.M. Vermaseren,
and J. Vollinga, arXiv:1203.6543 [cs.SC].

http://www.nikhef.nl/~form/

http://www.nikhef.nl/~form/

 ParFORM and FORM4 - T. Ueda (TTP KIT)

Backup Slides

 ParFORM and FORM4 - T. Ueda (TTP KIT) 30 / 28

Preprocessor

● Powerful preprocessor to prepares/filters the input to be
passed to the compiler, e.g., flow control.

● Preprocessor instructions.

● Preprocessor variables.

#define flag "1"
#define N "3"

#ifdef `flag'
 #write "`N'"
#endif
.end

3

#procedure proc(a,b)
 #write "`a'+`b'={`a'+`b'}"
#endprocedure

#do i=1,3
 #call proc(`i',2)
#enddo
.end

1+2=3
2+2=4
3+2=5

 ParFORM and FORM4 - T. Ueda (TTP KIT) 31 / 28

$-variables

● A (small) expression stored in the memory.

● Get/set in both preprocessor and processor phases.

#$a = 1;
$a = 1;
.sort
#write "`$a'"
multiply $a;
.end

Symbol x,a,b;
Cfunction f;
Local E = f(a+b) + f(a+2*b);
.sort
id f(x?$x) = f(x);
multiply $x;
Print;
.end

 E =
 f(b + a)*b + f(b + a)*a + 2*f(2*b + a)*b
+ f(2*b + a)*a;

 ParFORM and FORM4 - T. Ueda (TTP KIT) 32 / 28

Polynomial Algebra in FORM 4

● Programmed by Jan Kuipers.

● Polynomial algebra in FORM 4 basically consists of:

● Greatest common divisor

● Factorization

● PolyRatFun

 ParFORM and FORM4 - T. Ueda (TTP KIT) 33 / 28

Polynomial Manipulation

● Distributed degree sparse and variable dense
representation of polynomials is used:

● Stored as an array of pairs of coefficient and exponents
 , ,

● Needs conversions from FORM expressions, but is faster.

● Fast algorithms for multiplying and division using heaps
are implemented.

 ParFORM and FORM4 - T. Ueda (TTP KIT) 34 / 28

Greatest Common Divisor

● The function gcd_ gives the greatest common divisor of its
arguments. The arguments can be multivariate
polynomials in FORM 4.

● FORM 3 would gives E = 1.

Symbol x,y;
Local E = gcd_(x^2+x*y, y^2+x*y);
Print;
.end

 E =
 y + x;

 ParFORM and FORM4 - T. Ueda (TTP KIT) 35 / 28

Greatest Common Divisor Algorithm

● For small polynomials, a heuristic that substitutes integers
and performs integer gcd calculations is used.

● For large polynomials, Zippel's modular algorithm is used.

● Speed is comparable to Mathematica.

 ParFORM and FORM4 - T. Ueda (TTP KIT) 36 / 28

Factorization of Dollar Variables

● The preprocessor instruction #FactDollar factorizes
a dollar variable.
Symbol x,y;
#$a = x^2-y^2;
#FactDollar $a;

#do i=1,`$a[0]'
 #write "%$", $a[`i'];
#enddo
.end

-y+x
 y+x

●$a[0] stores the number of
factors.

●$a[1], …, $[$a[0]] store the
factorized parts.

 ParFORM and FORM4 - T. Ueda (TTP KIT) 37 / 28

Factorization of Dollar Variables (cont'd)

● Analogous statement FactDollar for runtime factorization.

Symbol x,y;
CFunction f;
Local E = 1;
$a = x^2-y^2;
FactDollar $a;

do $i=1, $a[0];
 multiply f($a[$i]);
enddo;
Print;
ModuleOption local $i, $a;
.end

 E =
 f(- y + x)*f(y + x);

 ParFORM and FORM4 - T. Ueda (TTP KIT) 38 / 28

Factorization Algorithm

● For univariate polynomials Berlekamp's algorithm is used.

● Multivariate polynomials are reduced to univariate and
afterwards Hensel lifting is used to reconstruct multivariate
factors.

● To factorize this polynomial

FORM takes 9 sec and Mathematica takes 900 sec.

-6272714818668017*a^35*b^22*c^20*d^9*e^21
-6867348605700329*a^34*b^33*c^19*d^11*e^36
+323798222821062*a^34*b^20*c^29*d^8*e^18
+ (... 10 more terms ...)
+2081169781417560*a^28*b^10*c^13*d^27*e^12
-285878431480222*a^28*b^4*c^25*d^13*e^13
-520827763173144*a^27*b^4*c^19*d^24*e^11

 ParFORM and FORM4 - T. Ueda (TTP KIT) 39 / 28

Application: MincerExact (1/5)

● Mincer (program for 3-loop massless propagator
diagrams) works in expansions in , typically
up to 6th power.

● Big tables for expansions of Pochhammer symbols and
alike are needed.

● Using PolyRatFun, no need of expansions at all. Code is
much cleaner/shorter and only slightly slower.

● Results for Mellin moments look like:

VALUE=GschemeConstants(0,0)^2*GschemeConstants(2,0)*
cf^2*rat(-192*ep^7+944*ep^6-1824*ep^5+1680*ep^4-640*
ep^3-48*ep^2+96*ep-16,12*ep^3+36*ep^2+33*ep+9)

 ParFORM and FORM4 - T. Ueda (TTP KIT) 40 / 28

Application: MincerExact (2/5)

● Let's have a closer look at an answer of MincerExact.
First, factorize the denominator:
Symbol ep,a,b,c,d;
CFunction rat,num,den;
Local E = rat(-192*ep^7+944*ep^6-1824*ep^5+1680*ep^4
 -640*ep^3-48*ep^2+96*ep-16,
 12*ep^3+36*ep^2+33*ep+9);
id rat(a?,b?) = num(a)*den(b);
FactArg den;
ChainOut den;
id den(a?number_) = 1/a;
Print +s;
.sort

 E=
 +1/3*num(-16+96*ep-48*ep^2-640*ep^3+1680*ep^4
 -1824*ep^5+944*ep^6-192*ep^7)
 *den(1+ep)*den(1+2*ep)*den(3+2*ep);

 ParFORM and FORM4 - T. Ueda (TTP KIT) 41 / 28

Application: MincerExact (3/5)

● Make a partial fraction expansion:

SplitArg den;
FactArg den;
id den(a?,ep,b?) = 1/b*den(a/b,ep);
repeat id den(a?,ep)*den(b?,ep) =
 (den(a,ep)-den(b,ep)) / (b-a);
Print +s;
Bracket num;
.sort

 E=
 +num(-16+96*ep-48*ep^2-640*ep^3+1680*ep^4
 -1824*ep^5+944*ep^6-192*ep^7)*(
 +1/6*den(1/2,ep)
 +1/6*den(3/2,ep)
 -1/3*den(1,ep)
);

 ParFORM and FORM4 - T. Ueda (TTP KIT) 42 / 28

Application: MincerExact (4/5)

● Rewrite it once more:

id num(a?) = a;
repeat id ep*den(a?,ep) = 1 - a*den(a,ep);
Print +s;
.sort

 E=
 -7828/3
 +3803/3*ep
 -488*ep^2
 +380/3*ep^3
 -16*ep^4
 +243/8*den(1/2,ep)
 +153125/24*den(3/2,ep)
 -5120/3*den(1,ep)
 ;

 ParFORM and FORM4 - T. Ueda (TTP KIT) 43 / 28

Application: MincerExact (5/5)

● Finally, expand around up to 6th order

● Same result as Mincer.

Symbol ep(:6);
repeat id den(a?,ep) = 1/a - ep/a * den(a,ep);
Print +s;
.end

 E=
 -16/9
 +464/27*ep
 -4960/81*ep^2
 +21152/243*ep^3
 +65264/729*ep^4
 -1744048/2187*ep^5
 +16761728/6561*ep^6
 ;

 ParFORM and FORM4 - T. Ueda (TTP KIT) 44 / 28

ParFORM with New Features

● Some new features needed special code for MPI
interactions between the master and the workers, for
example:

● Factorized $-variable. (factorized stuff)

● Factorized expressions. (some flags)

● FromPolynomial in parallel module. (conversion table made
by ToPolynomial)

● #inside / #endinside construction containing RHS
expressions. ($-variables, redefined preprocessor
variables)

● Users do not need to worry about the implementation.

 ParFORM and FORM4 - T. Ueda (TTP KIT) 45 / 28

An Example: RHS expressions at Compile-Time

● Even at compile-time, one can manipulate $-variables by using
#Inside preprocessor instruction. Since the master and all workers
compile the user program and $-variables can affect the
compilation, all processes must know the result.
#Inside can contain any regular statements.
If expressions appear on the right hand side of substitutions at
compile-time, the master broadcasts the result to all the workers.

● In this case, $a, $b, $c and var will be broadcast.

#inside $a
 id x^2 = F;
 id f(x?$b) = 1;
 $c = 1;
 redefine var “1”;
#endinside

Change on $b and $c.

Change on preprocessor
variable var.

An expression defined previously
(stored on the master; the workers can't access it)

 ParFORM and FORM4 - T. Ueda (TTP KIT) 46 / 28

Comparison with Other CAS

Mathematica, Maple, etc. FORM

Swiss Army knife Chef's knife

● Much built-in mathematical knowledge
(integration, solving equations, special
functions etc.)

● Very general, versatile (sometimes overkill)

● Big and slow (especially on large problems)

● (Many of them are) proprietary

● Limited built-in knowledge (calculus with
tensors and gamma matrices, etc.)

● Optimized for efficiency

● Small and fast (also on large problems)

● Open source

 ParFORM and FORM4 - T. Ueda (TTP KIT) 47 / 28

Modulus Calculus in FORM 4

● Various options in Modulus statement has been added
and the syntax has been changed slightly from the
previous one.

● PlusMin, Positive

● AlsoFunctions, NoFunctions

● CoefficientsOnly

● AlsoDollars, NoDollars

● InverseTable, NoInverseTable

● AlsoPowers, NoPowers

● PrintPowersOf

 ParFORM and FORM4 - T. Ueda (TTP KIT) 48 / 28

Recovery mechanism

● Programmed by Jens Volinga.

● A mechanism allowing the user to make snapshots of
runtime information, and recovery form them when
unforeseen machine failures occurs.

● More options are in the manual.

On Checkpoint;

form -R myprogram.frm

Snapshot FORMrecv.tmp created at
the each end of module

Recovery from the snapshot

 ParFORM and FORM4 - T. Ueda (TTP KIT) 49 / 28

Extra Symbols

● A mechanism to replace non-symbol objects by internally
generated symbols.

● Can be used for code generations (C or Fortran, etc.)

Symbol a,b;
CFunction log;
Local E = (log(a)+log(b))^2;
Print;
.sort

 E =
 log(a)^2 + 2*log(a)*log(b) + log(b)^2;

ExtraSymbols array, Y;
ToPolynomial;
Print;
.sort

 E =
 Y(1)^2 + 2*Y(2)*Y(1) + Y(2)^2;

 ParFORM and FORM4 - T. Ueda (TTP KIT) 50 / 28

Transform Statement

● Manipulation of function arguments. allows speedy
transformations without the need of multiple statements or
repeat loops (e.g., ArgExplode ArgImplode).
Symbol x,x1,x2;
Cfunction H,H1;
Local E = H(3,4,2,6,1,1,1,2);
repeat id H(?a,x?!{0,1},?b)
 = H(?a,0,x-1,?b);
Print;
.sort
multiply H1;
repeat id H(x?,?a)*H1(?b)
 = H(?a)*H1(?b,1-x);
id H1(?a)*H = H(?a);
Print;
.sort
repeat id H(x1?,x2?,?a)
 = H(2*x1+x2,?a);
Print;
.end

Cfunction H;
Local E = H(3,4,2,6,1,1,1,2);
transform,H,explode(1,last),
 replace(1,last)=(0,1,1,0),
 encode(1,last):base=2;
Print;
.end

 E =
 H(907202);

 ParFORM and FORM4 - T. Ueda (TTP KIT) 51 / 28

Short List of Bug Fixes on ParFORM

● Fixed bugs about RHS expressions:

● The output routine can override the buffers storing RHS
expressions.

● Memory bugs when RHS expressions are broadcast.

● Didn't work with “Keep Brackets” statement.

● InParallel + Keep Brackets didn't work.

● The handling of “dummy indices” was not sufficient.

● Creation of “bracket index” in parallel module was broken.

● ...

 ParFORM and FORM4 - T. Ueda (TTP KIT) 52 / 28

Support for New Features

● The following features needed some modifications of
ParFORM source.

● IntoHide statement.

● Initialization of the random number generator.

 ParFORM and FORM4 - T. Ueda (TTP KIT) 53 / 28

Support for New Features (cont'd)

● The following features needed special code for MPI
interactions between the master and the workers.

● Factorized $-variable. (factorized stuff)

● Factorized expressions. (some flags)

● FromPolynomial in parallel module. (conversion table made
by ToPolynomial)

● #inside / #endinside construction containing RHS
expressions. ($-variables, redefined preprocessor
variables)

 ParFORM and FORM4 - T. Ueda (TTP KIT) 54 / 28

RHS expressions (Run-time)

● Expression names appearing in the right-hand side.

● Substitutions to F / G are performed in workers, but only

the master knows whole expressions of F / G.

● The whole expressions of F / G must be broadcast from

the master to the (all) slaves before executing the module.

Symbol a,b,x;

Local F = a + b;
Local G = x + F;

Symbol a,b,c,d;

Local F = a + b;
Local G = c + d;
id a = G;

 ParFORM and FORM4 - T. Ueda (TTP KIT) 55 / 28

$-variable

● Variables which store small expressions and can be
accessed from both the preprocessor (compile-time) and
the virtual machine (run-time).

#$a = 1+x;
id a = `$a';

compile-time

$a = 1+x;
id a = $a;

run-time

Expanded as a preprocessor
variable at the compilation.

id f(x?$a) = whatever;

● Substitution by
pattern matching

● Hint for parallelization:

ModuleOption local $a;

Repeated for each
term in active
expressions.

 ParFORM and FORM4 - T. Ueda (TTP KIT) 56 / 28

Inside Statement (Run-time)

● Statements in Inside … EndInside are executed for the
given $-variable(s), not for active expressions.

● If RHS expressions are in Inside … EndInside, they have
to broadcast before executing the module, as usual.

$a = (1+x)^5;
inside $a;
 id x^2 = 1;
 if (count(x,1)) discard;
 multiply 2;
endinside;

Operated on terms in $a.

 ParFORM and FORM4 - T. Ueda (TTP KIT) 57 / 28

#Inside Instruction (Compile-time)

● Statements in #Inside … #EndInside are executed for the
given $-variable(s) in compile-time.

#$a = (1+x)^5;
#inside $a
 id x^2 = 1;
 if (count(x,1)) discard;
 multiply 2;
#endinside

Operated on terms in $a.

 ParFORM and FORM4 - T. Ueda (TTP KIT) 58 / 28

RHS expressions (Compile-time)

● At compile-time, the master and all workers executes
manipulations on $-variables, because they are needed
on all processes for the compilation.

● RHS expressions can appear in substitution at compile-
time. Only the master knows the whole expression.

● Solution: In such cases, only the master executes the
manipulations, and then the master broadcasts the result
to the all workers.

#$a = 1; #inside $a
 id x = 1;
#endinside

#$a = F; #inside $a
 id x = F;
#endinside

 ParFORM and FORM4 - T. Ueda (TTP KIT) 59 / 28

RHS expressions (Compile-time)

● A complication: #Inside … #EndInside can contain all
executable statements.

● In this case, $a, $b, $c and var must be broadcast.

#inside $a
 id x^2 = F;
 id f(x?$b) = 1;
 $c = 1;
 redefine var “1”;
#endinside

Change on $b and $c.

Change on preprocessor
variable var.

 ParFORM and FORM4 - T. Ueda (TTP KIT) 60 / 28

Sortbots (TFORM)

● The final sorting is a bottleneck.

● Special threads (sortbots) merge each two results.

Output

Final sorting

Results of workers

Master

1 2 3 4 5 6 7 8

SortbotsSortbots Master All workers Real time

no 125.87 1733.26 225.43

yes 62.54 1914.57 175.22

Mellin N=10, 16 workers

cancellation

 ParFORM and FORM4 - T. Ueda (TTP KIT) 61 / 28

Future Plans of FORM Parallelisation

● On computer clusters built from multicore processors:

● Heavy network traffic to the master.

Master

Worker 1

Worker 2

Worker 3

Worker 4

Worker 5

Worker 6

Worker 7

Worker 8

Node 1

Node 2

MPI

MPI
Heavy network
traffic

ParFORMCurrent

 ParFORM and FORM4 - T. Ueda (TTP KIT) 62 / 28

Future Plans of FORM Parallelisation

● On computer clusters built from multicore processors:

● Each node has its own master.

● Still MPI overheads in each node.

Master 1

Worker 1

Worker 2

Worker 3

Master 2

Worker 5

Worker 6

Worker 7

Super Master

Node 1

Node 2

MPI

MPI

MPI

MPI
cancellation

Worker 4

Worker 8

 ParFORM and FORM4 - T. Ueda (TTP KIT) 63 / 28

Future Plans of FORM Parallelisation

● On computer clusters built from multicore processors:

● Hybrid MPI/Pthreads parallelisation.

● Avoid heavy network traffic to the master.

● No MPI overheads in each node.

Master 1

Worker 1

Worker 2

Worker 3

Worker 4

Master 2

Worker 5

Worker 6

Worker 7

Worker 8

Supermaster

Node 1

Node 2

MPI

MPI

Shared
memory

Shared
memorycancellation

