The scientific scope of Ultrafast Science research unit (D4) is the studies of dynamics of electrons, lattice, and spins in condensed matter on the ultrafast timescales ranging from attoseconds (10^{-18} s) to picoseconds (10^{-12} s). Advanced experimental techniques used in our research unit range from attosecond XUV spectroscopy to femtosecond nano-optics to terahertz spectroscopy, implemented in many different modalities. All our research methods rely on highly-elaborate femtosecond laser infrastructure, established within the research unit.

Ultrafast Science
Bielefeld University, Department of Physics
Universitätsstrasse 25
33615 Bielefeld
Germany
Phone: +49 521 106 5467

Selected Publications

W. Zhang et al., *Ultrafast terahertz magnetometry*
Nature Commun. 11, 4247 (2020)

H. A. Hafez et al., *Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions*

X. Li et al., *Observation of Dicke cooperativity in magnetic interactions*

A. Tomadin et al., *The ultrafast dynamics and conductivity of photoexcited graphene at different Fermi energies*

M. Grechko et al., *Coupling between intra- and intermolecular motions in liquid water revealed by two-dimensional terahertz-infrared-visible spectroscopy*

K.-J. Tielrooij et al., *Out-of-plane heat transfer in van der Waals stacks through electron–hyperbolic phonon coupling*

H. Kim et al., *Direct observation of mode-specific phonon-band gap coupling in methylammonium lead halide perovskites*

T. Seifert et al., *Efficient metallic spintronic emitters of ultrabroadband terahertz radiation*

H. Tu et al., *Stain-free histopathology by programmable supercontinuum pulses*

Z. Jin et al., *Accessing the fundamentals of magnetotransport in metals with terahertz probes*

Z. Mics et al., *Thermodynamic picture of ultrafast charge transport in graphene*

Group Admin

A. Kay Lofthouse

D4 Ultrafast Science
Bielefeld University
Faculty of Physics / BINAS
Universitaetsstrasse 25
33615 Bielefeld, Germany
Office: UHG D4-217
Tel.: +49 (521) 106 - 54 67
Fax: +49 (521) 106 - 60 01
Email: AKLofthouse@physik.uni-bielefeld.de