Axion-like particles (ALPs) are leading dark matter candidates originally motivated by the strong CP problem and also arise in theories of string compactifications. We present two sensitive astrophysical probes for ALPs. The first probe is birefringence induced in the cosmic microwave background (CMB) polarization. Birefringence arises from the oscillating ALPs effective refractive index and is also relevant for laboratory axion searches. Constraints on the axion-photon coupling for ultralight ($10^{-27} - 10^{-24}$ eV) ALPs derived from birefringence of CMB polarization lead to orders of magnitude improvement over previous constraints. A second probe is parametric resonance of background photons which can occur as they propagate through a Galactic dark matter axion condensate. A radio to optical scan for an unresolved resonant spectral line can constrain the axion-photon coupling over a broad range of ALP masses 0.08μ eV – 8 eV. The axion-photon coupling constraint from a 10kpc-scale axion condensate is predicted to be sensitive down to the QCD axion band at $m_a > 10\mu$ eV. These limits, in hitherto unconstrained regions of the axion-photon coupling vs. ALP mass parameter space, are independent of any assumption about the presence of magnetic fields. (Based on G. Sigl and P. Trivedi, arXiv:1811.07873 and 1907.04849)