Gaussian beta ensembles and associated Hermite polynomials

Gaussian beta ensembles are generalizations of the GOE, GUE and GSE in terms of the joint density of the eigenvalues. When the parameter β is fixed, their empirical distribution converges weakly to the semicircle distribution, almost surely, which is called Wigner’s semicircle law. Gaussian fluctuations around the semicircle distribution are also well-studied: see Johansson (1998) for an approach based on analyzing the joint density, Dumitriu and Edelman (2006) for an approach using a random tridiagonal matrix model, and Cabanal-Duvillard (2001) for a dynamical approach. What happens when the parameter β varies as the system size N tends to infinity? It turns out that Wigner’s semicircle law holds as long as βN tends to infinity. In this regime, Gaussian fluctuations are almost the same as those in the case β is fixed. When βN stays bounded, referred to as a high temperature regime, the limiting distribution belongs to a family of probability measures of associated Hermite polynomials, see Allez et al. (2012) and Duy and Shirai (2015). In a high temperature regime, Gaussian fluctuations around the limit were established by using a random tridiagonal matrix model; see Nakano and Trinh (2016) or Trinh (2019). This talk introduces a dynamical approach to study Gaussian fluctuations with further relations with associated Hermite polynomials.

Wednesday, 17 November 2021, 0900 hrs CET

Zoom Conference Call— Please contact Anas Rahman (anas.rahman@live.com.au) for details regarding access