Aktuelle Veranstaltungen

Kolloquium

Thema: Vorstellung der Arbeitsgruppen

Datum: 15.10.18

Uhrzeit: 16:15

Ort: H6

Vortragender: Arbeitsgruppen der Physik

Inhalt:

Ansprechpartner: Fachschaft

Kolloquium Mathematische Physik

Thema: Upper and lower Lipschitz bounds for the perturbation of edges of the essential spectrum

Datum: 01.06.18

Uhrzeit: 14:15

Ort: V3-204

Vortragender: Ivan Veselic

TU Dortmund
Let A be a selfadjoint operator, B a bounded symmetric operator and $A+tB$ a perturbation. I will present upper and lower Lipschitz bounds on the function of t which locally describes the movement of edges of the essential spectrum. Analogous bounds apply also for eigenvalues within gaps of the essential spectrum. The bounds hold for an optimal range of values of the coupling constant t. This result is applied to Schrödinger operators on unbounded domains which are perturbed by a non-negative potential which is mostly equal to zero. Unique continuation estimates nevertheless ensure quantitative bounds on the lifting of spectral edges due to this semidefinite potential. This allows to perform spectral engineering in certain situations.

The talks is based on the preprint https://arxiv.org/abs/1804.07816

Ansprechpartner: G. Akemann

Seminar Hochenergiephysik

Thema: **Towards reduction of autocorrelation in HMC by machine learning**

Datum: 09.10.18

Uhrzeit: 14:15

Ort: D6-135

Vortragender: Akio Tomiya

Univ. Wuhan

We propose new algorithm to reduce autocorrelation in Markov chain Monte-Carlo algorithms for euclidean field theories on the lattice. Our proposing algorithm is the Hybrid Monte-Carlo algorithm (HMC) with restricted Boltzmann machine. We examine the validity of the algorithm by employing the phi-fourth theory in three dimension. We observe reduction of the autocorrelation both in symmetric and broken phase as well. Our proposing algorithm provides consistent central values of expectation values of the action density and one-point Green's function with ones from the original HMC in both the symmetric phase and broken phase within the statistical error. On the other hand, two-point Green's functions have slight difference between one calculated by the HMC and one by our proposing algorithm in the symmetric phase. Furthermore, near the criticality, the distribution of the one-point Green's function differs from the one from HMC. We discuss the origin of discrepancies and its improvement. This talk is based on arXiv:1712.03893 and collaborated with Akinori Tanaka. We also discuss some improvement of our algorithm.

Ansprechpartner: O. Kaczmarek
Seminar Kondensierte Materie

Thema: Nonlinear Fokker-Planck equations and distribution dependent SDE

Datum: 18.10.18

Uhrzeit: 14:15

Ort: D5-153

Vortragender: Prof. Dr. Michael Roeckner

Fakultät für Mathematik, Universität Bielefeld

Joint work with Viorel Barbu (Romanian Academy of Sciences, Iasi) It is a classical problem to present a solution of a PDE as the density of the time marginal distributions of a stochastic process. If the PDE is a linear Fokker-Planck equation, then by classical stochastic analysis this is known to be true under very general conditions. For nonlinear Fokker-Planck equations the situation is much more difficult and only known to be true under very restrictive assumptions on the regularity of the (nonlinear) dependence of the coefficients in the Fokker-Planck equations on the solutions. In this talk a new general concept is presented, how to find the desired stochastic process (similarly as in the linear case) through solving a corresponding stochastic differential equation (SDE), whose coefficients, however, depend on the marginal distributions of its solution (DDSDE). The point is that this new general concept does not require strong regularity assumptions on the coefficients (as e.g. fulfilled for McKean-Vlasov type equations) and thus does not rule out a lot of other nonlinear Forker-Planck equations of interest in Physics. As an example it will be shown that it can be applied to the case, where the nonlinear Forker-Planck equation is a generalized porous media equation on d-dimensional Euclidean space (with d arbitrary), perturbed by a transport term. So its solution is the density of the time marginal distributions of a (tractable) stochastic process solving a corresponding DDSDE. Apart from its conceptual interest this result could lead to new numerical approximations of solutions to nonlinear Fokker-Planck equations through numerically solving the corresponding DDSDE. In the first part of the talk we shall recall the general connection between stochastic differential equations and (both linear and nonlinear) Forker-Planck equations. Reference: arXiv:1801.10510 and SIAM J. Math. Anal. 50 (2018), no. 4, 4246–4260. arXiv:1808.10706

Ansprechpartner: Jürgen Schnack

Seminar Mathematische Physik
Symmetry transitions of systems have been always of particular interest in physics. There are only few real systems, that are pure and ideal yielding the desired results predicted by simplified, analytically feasible models. This is also the case for the spectral statistics of linear operators corresponding to such realistic systems, which are usually described by random matrices. Especially the global symmetries can be well-captured by random matrices, since the local spectral statistics on the level of the mean level spacing is extremely sensitive to these symmetries. Therefore, the question arises what the statistics would look like when a symmetry transition takes place to compare these results efficiently with physical measurements. Exactly this has been the goal of my joint work with Takuya Kanazawa when we studied an interpolation between the Gaussian unitary ensemble (GUE) and the chiral Gaussian unitary ensemble (chGUE) while protecting the chirality of the matrix. This transition is motivated by several QCD applications. Particularly the protection of the chirality leads to surprising effects. I am going to report on these results which comprise finite matrix size as well as the limit of large matrix dimensions.
Symmetry transitions of systems have been always of particular interest in physics. There are only few real systems, that are pure and ideal yielding the desired results predicted by simplified, analytically feasible models. This is also the case for the spectral statistics of linear operators corresponding to such realistic systems, which are usually described by random matrices. Especially the global symmetries can be well-captured by random matrices, since the local spectral statistics on the level of the mean level spacing is extremely sensitive to these symmetries. Therefore, the question arises what the statistics would look like when a symmetry transition takes place to compare these results efficiently with physical measurements. Exactly this has been the goal of my joint work with Takuya Kanazawa when we studied an interpolation between the Gaussian unitary ensemble (GUE) and the chiral Gaussian unitary ensemble (chGUE) while protecting the chirality of the matrix. This transition is motivated by several QCD applications. Particularly the protection of the chirality leads to surprising effects. I am going to report on these results which comprise finite matrix size as well as the limit of large matrix dimensions.

Ansprechpartner: Gernot Akemann